BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Y, Zeng B, Yang Y, Liang H, Yang Y, Yuan Q. Design of high stability thin-film transistor biosensor for the diagnosis of bladder cancer. Chinese Chemical Letters 2020;31:1387-91. [DOI: 10.1016/j.cclet.2020.03.043] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Zeng R, Xu J, Liang T, Li M, Tang D. Photocurrent-Polarity-Switching Photoelectrochemical Biosensor for Switching Spatial Distance Electroactive Tags. ACS Sens 2023. [PMID: 36617728 DOI: 10.1021/acssensors.2c02314] [Reference Citation Analysis]
2 Chen D, Chen N, Liu F, Wang Y, Liang H, Yang Y, Yuan Q. Flexible Point-of-Care Electrodes for Ultrasensitive Detection of Bladder Tumor-Relevant miRNA in Urine. Anal Chem 2023. [PMID: 36607132 DOI: 10.1021/acs.analchem.2c03156] [Reference Citation Analysis]
3 Song FX, Xu X, Ding H, Yu L, Huang H, Hao J, Wu C, Liang R, Zhang S. Recent Progress in Nanomaterial-Based Biosensors and Theranostic Nanomedicine for Bladder Cancer. Biosensors (Basel) 2023;13. [PMID: 36671940 DOI: 10.3390/bios13010106] [Reference Citation Analysis]
4 Chakraborty A, Dutta P, Wakankar A, Roychaudhuri C. Recent field effect transistors and electrical impedance spectroscopy based biosensing strategies for cancer biomarker screening: A mini review. Biosensors and Bioelectronics: X 2022;12:100253. [DOI: 10.1016/j.biosx.2022.100253] [Reference Citation Analysis]
5 Hwang C, Lee W, Kim SD, Park S, Kim JH. Recent Advances in Biosensor Technologies for Point-of-Care Urinalysis. Biosensors 2022;12:1020. [DOI: 10.3390/bios12111020] [Reference Citation Analysis]
6 Tanabe S, Itagaki S, Matsui K, Nishii S, Yamamoto Y, Sadanaga Y, Shiigi H. Simultaneous Optical Detection of Multiple Bacterial Species Using Nanometer-Scaled Metal-Organic Hybrids. Anal Chem 2022. [PMID: 35877190 DOI: 10.1021/acs.analchem.2c01188] [Reference Citation Analysis]
7 Zhao B, Qi L, Tai W, Zhao M, Chen X, Yu L, Shi J, Wang X, Lin JM, Hu Q. Paper-Based Flow Sensor for the Detection of Hyaluronidase via an Enzyme Hydrolysis-Induced Viscosity Change in a Polymer Solution. Anal Chem 2022. [PMID: 35258931 DOI: 10.1021/acs.analchem.1c04552] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Xu W, Mao X, Zhou N, Zhang Q, Peng B, Shen Y. Effects of atomic oxygen on the growth of NiO films by reactive magnetron sputtering deposition. Vacuum 2022;196:110785. [DOI: 10.1016/j.vacuum.2021.110785] [Reference Citation Analysis]
9 Macchia E, Torricelli F, Bollella P, Sarcina L, Tricase A, Di Franco C, Österbacka R, Kovács-Vajna ZM, Scamarcio G, Torsi L. Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chem Rev 2022. [PMID: 35077645 DOI: 10.1021/acs.chemrev.1c00290] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
10 Shen S, Tan P, Tang Y, Duan G, Luo Y. Adjustable Synthesis of Ni-Based Metal–Organic Framework Membranes and Their Field-Effect Transistor Sensors for Mercury Detection. ACS Appl Electron Mater 2022;4:622-30. [DOI: 10.1021/acsaelm.1c01009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Lunnoo T, Waiwijit U, Botta R, Horprathum M, Nuntawong N, Jomphoak A. DNA-Based Gold Nanoparticle Sensor for Bladder Cancer Detection. ACS Appl Nano Mater 2022;5:985-95. [DOI: 10.1021/acsanm.1c03658] [Reference Citation Analysis]
12 Chao L, Liang Y, Hu X, Shi H, Xia T, Zhang H, Xia H. Recent advances in field effect transistor biosensor technology for cancer detection: a mini review. J Phys D: Appl Phys 2021;55:153001. [DOI: 10.1088/1361-6463/ac3f5a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
13 Jubu P, Yam F, Kyesmen PI. Structural, optical and electrochemical transient photoresponse properties of ZnO/Ga2O3 nanocomposites prepared by two-step CVD method. International Journal of Hydrogen Energy 2021;46:33087-97. [DOI: 10.1016/j.ijhydene.2021.07.165] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Duan C, Hu J, Liu R, Dai J, Duan M, Yuan L, Xia F, Lou X. Spatial Order of Functional Modules Enabling Diverse Intracellular Performance of Fluorescent Probes. Angew Chem 2021;133:18428-36. [DOI: 10.1002/ange.202106195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Duan C, Hu JJ, Liu R, Dai J, Duan M, Yuan L, Xia F, Lou X. Spatial Order of Functional Modules Enabling Diverse Intracellular Performance of Fluorescent Probes. Angew Chem Int Ed Engl 2021;60:18280-8. [PMID: 34081387 DOI: 10.1002/anie.202106195] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
16 Şimşek B, Ceran ÖB, Şara ON. Difficulties in Thin Film Synthesis. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications 2021. [DOI: 10.1007/978-3-030-36268-3_84] [Reference Citation Analysis]
17 Şimşek B, Ceran ÖB, Şara ON. Difficulties in Thin Film Synthesis. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications 2020. [DOI: 10.1007/978-3-030-11155-7_84-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]