BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang R, Ma H, Zhang Y, Wang Q, Yang Z, Du B, Wu D, Wei Q. Photoelectrochemical sensitive detection of insulin based on CdS/polydopamine co-sensitized WO3 nanorod and signal amplification of carbon nanotubes@polydopamine. Biosens Bioelectron 2017;96:345-50. [PMID: 28525853 DOI: 10.1016/j.bios.2017.05.029] [Cited by in Crossref: 48] [Cited by in F6Publishing: 54] [Article Influence: 9.6] [Reference Citation Analysis]
Number Citing Articles
1 Asl GB, Arvand M, Habibi MF. High affinity aptamers for ultra-sensitive detection of aflatoxin B1 in milk and groundnut samples with label-free photo-electrochemical aptasensor. Food Chemistry 2022;397:133829. [DOI: 10.1016/j.foodchem.2022.133829] [Reference Citation Analysis]
2 Chen X, Wu W, Zhang Q, Wang C, Fan Y, Wu H, Zhang Z. Z-scheme Bi2O3/CuBi2O4 heterojunction enabled sensitive photoelectrochemical detection of aflatoxin B1 for health care, the environment, and food. Biosens Bioelectron 2022;214:114523. [PMID: 35803155 DOI: 10.1016/j.bios.2022.114523] [Reference Citation Analysis]
3 Zare Y, Soleymani J, Rahimi M, Nuri Ertas Y, Jafarzadeh S. Trends in advanced materials for the fabrication of insulin electrochemical immunosensors. Chem Pap . [DOI: 10.1007/s11696-022-02416-5] [Reference Citation Analysis]
4 Li N, Han L, Zhang H, Huang J, Luo X, Li X, Wang Y, Qian W, Yang Y. Polydopamine nanolayer assisted internal photo-deposition of CdS nanocrystals for stable cosensitized photoanode. Nano Res . [DOI: 10.1007/s12274-022-4588-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ghosh AB, Basak S, Bandyopadhyay A. Polymer Based Functional Materials: A New Generation Photo‐active Candidate for Electrochemical Application. Electroanalysis. [DOI: 10.1002/elan.202100359] [Reference Citation Analysis]
6 Lian K, Feng H, Liu S, Wang K, Liu Q, Deng L, Wang G, Chen Y, Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
7 He G, Zhou Y, Li M, Guo Y, Yin H, Yang B, Zhang S, Liu Y. Bioinspired Synthesis of ZnO@polydopamine/Au for Label-Free Photoelectrochemical Immunoassay of Amyloid-β Protein. Front Bioeng Biotechnol 2021;9:777344. [PMID: 34869291 DOI: 10.3389/fbioe.2021.777344] [Reference Citation Analysis]
8 Sakib S, Bakhshandeh F, Saha S, Soleymani L, Zhitomirsky I. Surface Functionalization of Metal Oxide Semiconductors with Catechol Ligands for Enhancing Their Photoactivity. Sol RRL 2021;5:2100512. [DOI: 10.1002/solr.202100512] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Qi P, Wang Y, Zhang D, Zeng Y, Sun Y, Ye X. Facile electrochemical/colorimetric platform based on electrochromic tungsten oxide film for sensitive/visual adenosine triphosphate detection. Sensors and Actuators B: Chemical 2021;339:129908. [DOI: 10.1016/j.snb.2021.129908] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Guan X, Deng X, Song J, Wang X, Wu S. Polydopamine with Tailorable Photoelectrochemical Activities for the Highly Sensitive Immunoassay of Tumor Markers. Anal Chem 2021;93:6763-9. [DOI: 10.1021/acs.analchem.1c00504] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
11 He X, Ying Y, Zhao X, Deng W, Tan Y, Xie Q. Cobalt-doped tungsten trioxide nanorods decorated with Au nanoparticles for ultrasensitive photoelectrochemical detection of aflatoxin B1 based on aptamer structure switch. Sensors and Actuators B: Chemical 2021;332:129528. [DOI: 10.1016/j.snb.2021.129528] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
12 Li J, Liu D, Zhou D, Shao L, Chen X, Song H. Label-free photoelectrochemical biosensor for alpha-fetoprotein detection based on Au/CsxWO3 heterogeneous films. Talanta 2021;225:122074. [DOI: 10.1016/j.talanta.2020.122074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
13 Li H, Yin D, Li W, Tang Q, Zou L, Peng Q. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids Surf B Biointerfaces 2021;199:111502. [PMID: 33387795 DOI: 10.1016/j.colsurfb.2020.111502] [Cited by in Crossref: 7] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
14 Hong Y, Wang Y, Zhu Y. Highly sensitive immunosensor based on polydopamine-nanofilm modified 3D gold nanoelectrode for α-fetoprotein detection. Electrochimica Acta 2020;364:137328. [DOI: 10.1016/j.electacta.2020.137328] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
15 Dashtian K, Hajati S, Ghaedi M. L-phenylalanine-imprinted polydopamine-coated CdS/CdSe n-n type II heterojunction as an ultrasensitive photoelectrochemical biosensor for the PKU monitoring. Biosensors and Bioelectronics 2020;165:112346. [DOI: 10.1016/j.bios.2020.112346] [Cited by in Crossref: 23] [Cited by in F6Publishing: 37] [Article Influence: 11.5] [Reference Citation Analysis]
16 Zhang X, Qi J, Feng F, Yang G. Study of ethosuximide detection using a novel molecularly imprinted electrochemiluminescence sensor based on tris(2,2′-bipyridyl) ruthenium(II)@nitrogen doped graphene quantum dots. Journal of Electroanalytical Chemistry 2020;874:114455. [DOI: 10.1016/j.jelechem.2020.114455] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Yang H, Guo X, Chen R, Liu Q, Liu J, Yu J, Lin C, Wang J, Zhang M. A hybrid sponge with guanidine and phytic acid enriched surface for integration of antibiofouling and uranium uptake from seawater. Applied Surface Science 2020;525:146611. [DOI: 10.1016/j.apsusc.2020.146611] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
18 Cajigas S, Orozco J. Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules 2020;25:E3542. [PMID: 32756410 DOI: 10.3390/molecules25153542] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
19 Svitkova V, Palchetti I. Functional polymers in photoelectrochemical biosensing. Bioelectrochemistry 2020;136:107590. [PMID: 32674004 DOI: 10.1016/j.bioelechem.2020.107590] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
20 Yang H, Chen H, Cao L, Wang H, Deng W, Tan Y, Xie Q. An immunosensor for sensitive photoelectrochemical detection of Staphylococcus aureus using ZnS–Ag2S/polydopamine as photoelectric material and Cu2O as peroxidase mimic tag. Talanta 2020;212:120797. [DOI: 10.1016/j.talanta.2020.120797] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
21 Yang H, Xu W, Liang X, Yang Y, Zhou Y. Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: a review. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-4172-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
22 Wang H, Deng K, Xiao J, Li C, Zhang S, Li X. A sandwich-type photoelectrochemical sensor based on tremella-like graphdiyne as photoelectrochemical platform and graphdiyne oxide nanosheets as signal inhibitor. Sensors and Actuators B: Chemical 2020;304:127363. [DOI: 10.1016/j.snb.2019.127363] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
23 Zhang B, Wang H, Xi J, Zhao F, Zeng B. In situ formation of inorganic/organic heterojunction photocatalyst of WO3/Au/polydopamine for immunoassay of human epididymal protein 4. Electrochimica Acta 2020;331:135350. [DOI: 10.1016/j.electacta.2019.135350] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
24 Fan B, Fan Q, Hu L, Cui M, Wang X, Ma H, Wei Q. Polydopamine-PEG–Folic Acid Conjugate Film Engineered TiO 2 Nanotube Arrays for Photoelectrochemical Sensing of Folate Binding Protein. ACS Appl Mater Interfaces 2020;12:1877-84. [DOI: 10.1021/acsami.9b17630] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
25 Deng K, Wang H, Xiao J, Li C, Zhang S, Huang H. Polydopamine nanospheres loaded with l-cysteine-coated cadmium sulfide quantum dots as photoelectrochemical signal amplifier for PSA detection. Analytica Chimica Acta 2019;1090:143-50. [DOI: 10.1016/j.aca.2019.09.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
26 Zhao X, Wang J, Chen H, Xu H, Bai L, Wang W, Yang H, Wei D, Yuan B. A multiple signal amplification based on PEI and rGO nanocomposite for simultaneous multiple electrochemical immunoassay. Sensors and Actuators B: Chemical 2019;301:127071. [DOI: 10.1016/j.snb.2019.127071] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
27 Shu J, Tang D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal Chem 2020;92:363-77. [DOI: 10.1021/acs.analchem.9b04199] [Cited by in Crossref: 208] [Cited by in F6Publishing: 330] [Article Influence: 69.3] [Reference Citation Analysis]
28 Yan T, Wu T, Wei S, Wang H, Sun M, Yan L, Wei Q, Ju H. Photoelectrochemical competitive immunosensor for 17β-estradiol detection based on ZnIn2S4@NH2-MIL-125(Ti) amplified by PDA NS/Mn:ZnCdS. Biosens Bioelectron 2020;148:111739. [PMID: 31731075 DOI: 10.1016/j.bios.2019.111739] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
29 Arvand M, Sayyar S, Hemmati S. Visible-light-driven polydopamine/CdS QDs hybrid materials with synergistic photocatalytic activity. Journal of Electroanalytical Chemistry 2019;848:113288. [DOI: 10.1016/j.jelechem.2019.113288] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS Nano 2019;13:8537-65. [PMID: 31369230 DOI: 10.1021/acsnano.9b04436] [Cited by in Crossref: 336] [Cited by in F6Publishing: 339] [Article Influence: 112.0] [Reference Citation Analysis]
31 Shafiei-irannejad V, Soleymani J, Azizi S, Khoubnasabjafari M, Jouyban A, Hasanzadeh M. Advanced nanomaterials towards biosensing of insulin: Analytical approaches. TrAC Trends in Analytical Chemistry 2019;116:1-12. [DOI: 10.1016/j.trac.2019.04.020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
32 Zhang L, Luo Z, Zeng R, Zhou Q, Tang D. All-solid-state metal-mediated Z-scheme photoelectrochemical immunoassay with enhanced photoexcited charge-separation for monitoring of prostate-specific antigen. Biosensors and Bioelectronics 2019;134:1-7. [DOI: 10.1016/j.bios.2019.03.052] [Cited by in Crossref: 40] [Cited by in F6Publishing: 51] [Article Influence: 13.3] [Reference Citation Analysis]
33 Qian Y, Feng J, Fan D, Zhang Y, Kuang X, Wang H, Wei Q, Ju H. A sandwich-type photoelectrochemical immunosensor for NT-pro BNP detection based on F-Bi2WO6/Ag2S and GO/PDA for signal amplification. Biosensors and Bioelectronics 2019;131:299-306. [DOI: 10.1016/j.bios.2019.02.029] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 9.0] [Reference Citation Analysis]
34 Li X, Wu D, Ma H, Wang H, Wang Y, Fan D, Du B, Wei Q, Zhang N. Ultrasensitive amyloid-β proteins detection based on curcumin conjugated ZnO nanoparticles quenching electrochemiluminescence behavior of luminol immobilized on Au@MoS2/Bi2S3 nanorods. Biosensors and Bioelectronics 2019;131:136-42. [DOI: 10.1016/j.bios.2019.01.066] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
35 Palladino P, Bettazzi F, Scarano S. Polydopamine: surface coating, molecular imprinting, and electrochemistry—successful applications and future perspectives in (bio)analysis. Anal Bioanal Chem 2019;411:4327-38. [DOI: 10.1007/s00216-019-01665-w] [Cited by in Crossref: 28] [Cited by in F6Publishing: 41] [Article Influence: 9.3] [Reference Citation Analysis]
36 Xue H, Zhao J, Zhou Q, Pan D, Zhang Y, Zhang Y, Shen Y. Boosting the Sensitivity of a Photoelectrochemical Immunoassay by Using SiO 2 @polydopamine Core–Shell Nanoparticles as a Highly Efficient Quencher. ACS Appl Nano Mater 2019;2:1579-88. [DOI: 10.1021/acsanm.9b00050] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
37 Zhang B, Wang H, Zhao F, Zeng B. LED visible-light driven label-free photoelectrochemical immunosensor based on WO3/Au/CdS photocatalyst for the sensitive detection of carcinoembryonic antigen. Electrochimica Acta 2019;297:372-80. [DOI: 10.1016/j.electacta.2018.11.209] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
38 Yu Y, Huang Z, Zhou Y, Zhang L, Liu A, Chen W, Lin J, Peng H. Facile and highly sensitive photoelectrochemical biosensing platform based on hierarchical architectured polydopamine/tungsten oxide nanocomposite film. Biosensors and Bioelectronics 2019;126:1-6. [DOI: 10.1016/j.bios.2018.10.026] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 9.7] [Reference Citation Analysis]
39 Bakhnooh F, Arvand M, Hemmati S. CuCo 2 O 4 mixed metal oxide/TiO 2 nanotube arrays hetero-nanostructure with enhanced photoelectrocatalytic activity toward galantamine. Anal Methods 2019;11:3221-9. [DOI: 10.1039/c9ay00665f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Shen X, Ge J, Chen J, Shen Y, Meng H, Li Z, Qu L. A novel fluorescence method for the highly sensitive detection of T4 polynucleotide kinase based on polydopamine nanotubes. New J Chem 2019;43:16753-8. [DOI: 10.1039/c9nj04381k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
41 Liu X, Li P, Mao C, Niu H, Song J, Jin B. Enhanced photoelectrochemical sensing for MUC1 detection based on TiO2/CdS:Eu/CdS cosensitized structure. Sensors and Actuators B: Chemical 2018;275:251-9. [DOI: 10.1016/j.snb.2018.07.140] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
42 Zhang T, Ma N, Ali A, Wei Q, Wu D, Ren X. Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosensors and Bioelectronics 2018;119:176-81. [DOI: 10.1016/j.bios.2018.08.020] [Cited by in Crossref: 79] [Cited by in F6Publishing: 99] [Article Influence: 19.8] [Reference Citation Analysis]
43 Wang Y, Fan D, Zhao G, Feng J, Wei D, Zhang N, Cao W, Du B, Wei Q. Ultrasensitive photoelectrochemical immunosensor for the detection of amyloid β-protein based on SnO2/SnS2/Ag2S nanocomposites. Biosensors and Bioelectronics 2018;120:1-7. [DOI: 10.1016/j.bios.2018.08.026] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 11.0] [Reference Citation Analysis]
44 Feng J, Li Y, Gao Z, Lv H, Zhang X, Dong Y, Wang P, Fan D, Wei Q. A competitive-type photoelectrochemical immunosensor for aflatoxin B1 detection based on flower-like WO3 as matrix and Ag2S-enhanced BiVO4 for signal amplification. Sensors and Actuators B: Chemical 2018;270:104-11. [DOI: 10.1016/j.snb.2018.05.015] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
45 Feng J, Li F, Li X, Wang Y, Fan D, Du B, Li Y, Wei Q. Label-free photoelectrochemical immunosensor for NT-proBNP detection based on La-CdS/3D ZnIn2S4/Au@ZnO sensitization structure. Biosensors and Bioelectronics 2018;117:773-80. [DOI: 10.1016/j.bios.2018.07.015] [Cited by in Crossref: 37] [Cited by in F6Publishing: 47] [Article Influence: 9.3] [Reference Citation Analysis]
46 Wan Y, Liu X, Liu P, Zhao L, Zou W. Optimization adsorption of norfloxacin onto polydopamine microspheres from aqueous solution: Kinetic, equilibrium and adsorption mechanism studies. Science of The Total Environment 2018;639:428-37. [DOI: 10.1016/j.scitotenv.2018.05.171] [Cited by in Crossref: 41] [Cited by in F6Publishing: 47] [Article Influence: 10.3] [Reference Citation Analysis]
47 Zang Y, Fan J, Ju Y, Xue H, Pang H. Current Advances in Semiconductor Nanomaterial‐Based Photoelectrochemical Biosensing. Chem Eur J 2018;24:14010-27. [DOI: 10.1002/chem.201801358] [Cited by in Crossref: 49] [Cited by in F6Publishing: 56] [Article Influence: 12.3] [Reference Citation Analysis]
48 Lv H, Li Y, Zhang X, Gao Z, Zhang C, Zhang S, Dong Y. Enhanced peroxidase-like properties of Au@Pt DNs/NG/Cu2+ and application of sandwich-type electrochemical immunosensor for highly sensitive detection of CEA. Biosensors and Bioelectronics 2018;112:1-7. [DOI: 10.1016/j.bios.2018.04.025] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 12.0] [Reference Citation Analysis]
49 Xing B, Zhu W, Zheng X, Zhu Y, Wei Q, Wu D. Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/Au NPs-luminol for insulin detection. Sensors and Actuators B: Chemical 2018;265:403-11. [DOI: 10.1016/j.snb.2018.03.053] [Cited by in Crossref: 85] [Cited by in F6Publishing: 97] [Article Influence: 21.3] [Reference Citation Analysis]
50 Ma H, Fan Q, Fan B, Zhang Y, Fan D, Wu D, Wei Q. Formation of Homogeneous Epinephrine-Melanin Solutions to Fabricate Electrodes for Enhanced Photoelectrochemical Biosensing. Langmuir 2018;34:7744-50. [PMID: 29884025 DOI: 10.1021/acs.langmuir.8b00264] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
51 Zhao G, Wang Y, Li X, Dong X, Wang H, Du B, Cao W, Wei Q. Quenching Electrochemiluminescence Immunosensor Based on Resonance Energy Transfer between Ruthenium (II) Complex Incorporated in the UiO-67 Metal–Organic Framework and Gold Nanoparticles for Insulin Detection. ACS Appl Mater Interfaces 2018;10:22932-8. [DOI: 10.1021/acsami.8b04786] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 11.3] [Reference Citation Analysis]
52 Lv L, Jin Y, Kang X, Zhao Y, Cui C, Guo Z. PVP-coated gold nanoparticles for the selective determination of ochratoxin A via quenching fluorescence of the free aptamer. Food Chem 2018;249:45-50. [PMID: 29407930 DOI: 10.1016/j.foodchem.2017.12.087] [Cited by in Crossref: 15] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
53 Wu H, Liu R, Kang X, Liang C, Lv L, Guo Z. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Mikrochim Acta 2017;185:27. [PMID: 29594393 DOI: 10.1007/s00604-017-2592-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
54 Zhao W, Xu J, Chen H. Photoelectrochemical Immunoassays. Anal Chem 2017;90:615-27. [DOI: 10.1021/acs.analchem.7b04672] [Cited by in Crossref: 154] [Cited by in F6Publishing: 175] [Article Influence: 30.8] [Reference Citation Analysis]