BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feng J, Li Y, Li M, Li F, Han J, Dong Y, Chen Z, Wang P, Liu H, Wei Q. A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. Biosensors and Bioelectronics 2017;91:441-8. [DOI: 10.1016/j.bios.2016.12.070] [Cited by in Crossref: 107] [Cited by in F6Publishing: 110] [Article Influence: 21.4] [Reference Citation Analysis]
Number Citing Articles
1 Duan X, Zhang N, Wang G, Huang X, Sun X, Li Y, Wang Y, Guo Y, Zhou Z, Zhang T, Zhang D. Simply composed electrochemiluminescence immunosensor based-on nano-scale BODIPY organic emitter for hypersensitive PSA detection. Sensors and Actuators B: Chemical 2022;373:132617. [DOI: 10.1016/j.snb.2022.132617] [Reference Citation Analysis]
2 Abedi R, Bakhsh Raoof J, Mohseni M, Bagheri Hashkavayi A. Sandwich-Type Electrochemical Aptasensor for Highly Sensitive and Selective Detection of Pseudomonas Aeruginosa Bacteria Using a Dual Signal Amplification Strategy. Bioelectrochemistry 2022. [DOI: 10.1016/j.bioelechem.2022.108332] [Reference Citation Analysis]
3 Saravanan V, Lakshmanan P, Palanisami N, John A, Pyarasani RD, Ramalingan C. 2D/3D- C3N4/CeO2 S-scheme Heterojunctions with Enhanced Photocatalytic Performance. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.110189] [Reference Citation Analysis]
4 Li Z, Zhang J, Huang Y, Zhai J, Liao G, Wang Z, Ning C. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coordination Chemistry Reviews 2022;471:214723. [DOI: 10.1016/j.ccr.2022.214723] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ortega FG, Gómez GE, González-Martinez C, Valero T, Expósito-Hernández J, Puche I, Rodriguez-Martinez A, Serrano MJ, Lorente JA, Fernández-Baldo MA. A Novel, Quick, and Reliable Smartphone-Based Method for Serum PSA Quantification: Original Design of a Portable Microfluidic Immunosensor-Based System. Cancers (Basel) 2022;14:4483. [PMID: 36139646 DOI: 10.3390/cancers14184483] [Reference Citation Analysis]
6 Macovei D, Irimes M, Hosu O, Cristea C, Tertis M. Point-of-care electrochemical testing of biomarkers involved in inflammatory and inflammatory-associated medical conditions. Anal Bioanal Chem. [DOI: 10.1007/s00216-022-04320-z] [Reference Citation Analysis]
7 Sakthivel R, Keerthi M, Chung R, He J. Heterostructures of 2D materials and their applications in biosensing. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.101024] [Reference Citation Analysis]
8 Wei JJ, Li HB, Wang GQ, Zheng JY, Wang AJ, Mei LP, Zhao T, Feng JJ. Novel Ultrasensitive Photoelectrochemical Cytosensor Based on Hollow CdIn2S4/In2S3 Heterostructured Microspheres for HepG2 Cells Detection and Inhibitor Screening. Anal Chem 2022. [PMID: 35994715 DOI: 10.1021/acs.analchem.2c02982] [Reference Citation Analysis]
9 Ozkan-ariksoysal D. Current Perspectives in Graphene Oxide-Based Electrochemical Biosensors for Cancer Diagnostics. Biosensors 2022;12:607. [DOI: 10.3390/bios12080607] [Reference Citation Analysis]
10 Yi R, Li Y, Wang S, Liu Q, Dong H, Liu S, Li Y. A Neuron-specific Enolase Electrochemical Immunosensor Based on rGO/Cu 8 Ni 2 Nanocomposite with Enhanced Catalytic Activity. J Electrochem Soc 2022;169:067509. [DOI: 10.1149/1945-7111/ac7a61] [Reference Citation Analysis]
11 Khumngern S, Thavarungkul P, Kanatharana P, Bejrananda T, Numnuam A. Molecularly imprinted electrochemical sensor based on poly(o-phenylenediamine-co-o-aminophenol) incorporated with poly(styrenesulfonate) doped poly(3,4-ethylenedioxythiophene) ferrocene composite modified screen-printed carbon electrode for highly sensitive and selective detection of prostate cancer biomarker. Microchemical Journal 2022;177:107311. [DOI: 10.1016/j.microc.2022.107311] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Khamsavi A, Abdi Y, Fekrirad Z, Arefian E. Graphene/Si-Based Biosensor for Glioblastoma Cancer Cell Detection. IEEE Sensors J 2022;22:5548-54. [DOI: 10.1109/jsen.2022.3150516] [Reference Citation Analysis]
13 Patel M, Agrawal M, Srivastava A. Signal amplification strategies in electrochemical biosensors via antibody immobilization and nanomaterial-based transducers. Mater Adv 2022. [DOI: 10.1039/d2ma00427e] [Reference Citation Analysis]
14 Nemati F, Pebdeni AB, Hosseini M. Graphene-based devices for cancer diagnosis. Biosensor Based Advanced Cancer Diagnostics 2022. [DOI: 10.1016/b978-0-12-823424-2.00014-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Martins TS, Bott-Neto JL, Oliveira ON Jr, Machado SAS. A sandwich-type electrochemical immunosensor based on Au-rGO composite for CA15-3 tumor marker detection. Mikrochim Acta 2021;189:38. [PMID: 34958417 DOI: 10.1007/s00604-021-05145-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
16 Ning J, Wei J, Huang S, Wang F, Luo X, Sun C, Chen D, Wei R, Sha L, Liu Y. A high performance Pb(II) electrochemical sensor based on spherical CuS nanoparticle anchored g-C3N4. Anal Methods 2021;13:5617-27. [PMID: 34762078 DOI: 10.1039/d1ay01587g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021;6:3841-81. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
18 Zheng J, Zhao H, Ning G, Sun W, Wang L, Liang H, Xu H, He C, Zhao H, Li CP. A novel affinity peptide-antibody sandwich electrochemical biosensor for PSA based on the signal amplification of MnO2-functionalized covalent organic framework. Talanta 2021;233:122520. [PMID: 34215135 DOI: 10.1016/j.talanta.2021.122520] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
19 Yadav S, Jain A, Malhotra P. Bioinspired synthesis and green ecological applications of reduced graphene oxide based ternary nanocomposites. Sustainable Materials and Technologies 2021;29:e00315. [DOI: 10.1016/j.susmat.2021.e00315] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Khanmohammadi A, Afkhami A, Hajian A, Khoshsafar H, Bagheri H. Electrochemical sandwich-type immunosensor for the detection of PSA based on a trimetallic AgAuPt nanocomposite synthesized using the galvanic replacement reaction. Anal Methods 2021;13:3676-84. [PMID: 34318783 DOI: 10.1039/d1ay01004b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron 2021;192:113494. [PMID: 34303137 DOI: 10.1016/j.bios.2021.113494] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
22 Chang Z, Xu Y, Shen Y. Ultrasensitive Electrochemical Immunoassay for Prostate Specific Antigen (PSA) Based Upon Silver-Functionalized Polyethyleneimine (PEI)–Silica Nanoparticles (NPs). Analytical Letters 2022;55:68-84. [DOI: 10.1080/00032719.2021.1916752] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Zheng Y, Li J, Zhou B, Ian H, Shao H. Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art. Biosensors and Bioelectronics 2021;178:113021. [DOI: 10.1016/j.bios.2021.113021] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
24 Saravanan V, Lakshmanan P, Ramalingan C. Alumina surface modified with graphitic carbon nitride: Synthesis, characterization and its application as photocatalyst. Diamond and Related Materials 2021;114:108291. [DOI: 10.1016/j.diamond.2021.108291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
25 Li N, Shen M, Xu Y. A Portable Microfluidic System for Point-of-Care Detection of Multiple Protein Biomarkers. Micromachines (Basel) 2021;12:347. [PMID: 33804983 DOI: 10.3390/mi12040347] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
26 Feng YG, Wang XY, Wang ZW, Wang AJ, Mei LP, Luo X, Feng JJ. A label-free electrochemical immunosensor based on encapsulated signal molecules in mesoporous silica-coated gold nanorods for ultrasensitive assay of procalcitonin. Bioelectrochemistry 2021;140:107753. [PMID: 33631415 DOI: 10.1016/j.bioelechem.2021.107753] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
27 Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021;516:111-35. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
28 Barbosa AI, Rebelo R, Reis RL, Bhattacharya M, Correlo VM. Current nanotechnology advances in diagnostic biosensors. Med Devices Sens 2021;4. [DOI: 10.1002/mds3.10156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ranjithkumar R, Lakshmanan P, Devendran P, Nallamuthu N, Sudhahar S, Kumar MK. Investigations on effect of graphitic carbon nitride loading on the properties and electrochemical performance of g-C3N4/TiO2 nanocomposites for energy storage device applications. Materials Science in Semiconductor Processing 2021;121:105328. [DOI: 10.1016/j.mssp.2020.105328] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 21.0] [Reference Citation Analysis]
30 Huang X, Wu N, Liu W, Shang Y, Liu H, He Y, Meng H, Dong Y. Construction of electrochemical immunosensors based on redox hydrogels for ultrasensitive detection of carcinoembryonic antigens. New J Chem 2021;45:10880-10889. [DOI: 10.1039/d1nj01282g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. Nanomaterials (Basel) 2020;10:E2556. [PMID: 33352731 DOI: 10.3390/nano10122556] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
32 Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020;:1-33. [PMID: 33293939 DOI: 10.1007/s11426-020-9864-7] [Cited by in Crossref: 49] [Cited by in F6Publishing: 33] [Article Influence: 24.5] [Reference Citation Analysis]
33 Medetalibeyoglu H, Kotan G, Atar N, Yola ML. A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation. Talanta 2020;220:121403. [DOI: 10.1016/j.talanta.2020.121403] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 20.0] [Reference Citation Analysis]
34 Wang H, Xiao J, Li C, Li X, Deng K. A Photoelectrochemical Immunosensor for Prostate Specific Antigen Detection Based on Graphdiyne Oxide Conjugated with Horseradish Peroxidase. Electroanalysis 2021;33:652-62. [DOI: 10.1002/elan.202060296] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
35 Sun X, Li C, Zhu Q, Huang H, Jing W, Chen Z, Kong L, Han L, Wang J, Li Y. A label-free photoelectrochemical immunosensor for detection of the milk allergen β-lactoglobulin based on Ag2S -sensitized spindle-shaped BiVO4/BiOBr heterojunction by an in situ growth method. Anal Chim Acta 2020;1140:122-31. [PMID: 33218474 DOI: 10.1016/j.aca.2020.10.021] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
36 Liu R, Ye X, Cui T. Recent Progress of Biomarker Detection Sensors. Research (Wash D C) 2020;2020:7949037. [PMID: 33123683 DOI: 10.34133/2020/7949037] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
37 Liu K, Deng H, Wang Y, Cheng S, Xiong X, Li C. A sandwich-type photoelectrochemical immunosensor based on ReS2 nanosheets for high-performance determination of carcinoembryonic antigen. Sensors and Actuators B: Chemical 2020;320:128341. [DOI: 10.1016/j.snb.2020.128341] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
38 Dhanapala L, Krause CE, Jones AL, Rusling JF. Printed Electrodes in Microfluidic Arrays for Cancer Biomarker Protein Detection. Biosensors (Basel) 2020;10:E115. [PMID: 32906644 DOI: 10.3390/bios10090115] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
39 Song Y, Li W, Ma C, Sun Y, Qiao J, Li H, Hong C. First use of inorganic copper silicate-transduced enzyme-free electrochemical immunosensor for carcinoembryonic antigen detection. Sensors and Actuators B: Chemical 2020;319:128311. [DOI: 10.1016/j.snb.2020.128311] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
40 Medetalibeyoglu H, Beytur M, Akyıldırım O, Atar N, Yola ML. Validated electrochemical immunosensor for ultra-sensitive procalcitonin detection: Carbon electrode modified with gold nanoparticles functionalized sulfur doped MXene as sensor platform and carboxylated graphitic carbon nitride as signal amplification. Sensors and Actuators B: Chemical 2020;319:128195. [DOI: 10.1016/j.snb.2020.128195] [Cited by in Crossref: 54] [Cited by in F6Publishing: 39] [Article Influence: 27.0] [Reference Citation Analysis]
41 Xu Q, Jia H, Duan X, Lu L, Tian Q, Chen S, Xu J, Jiang F. Label-free electrochemical immunosensor for the detection of prostate specific antigen based three-dimensional Au nanoparticles/MoS2-graphene aerogels composite. Inorganic Chemistry Communications 2020;119:108122. [DOI: 10.1016/j.inoche.2020.108122] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
42 Zang X, Pang Y, Li H, Chang Q, Zhang S, Wang C, Wang Z. Solid phase microextraction of polycyclic aromatic hydrocarbons from water samples by a fiber coated with covalent organic framework modified graphitic carbon nitride. Journal of Chromatography A 2020;1628:461428. [DOI: 10.1016/j.chroma.2020.461428] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
43 Wang X, Chen Y, Mei L, Wang A, Yuan P, Feng J. Confining signal probe in porous PdPtCoNi@Pt-skin nanopolyhedra to construct a sandwich-type electrochemical immmunosensor for ultrasensitive detection of creatine kinase-MB. Sensors and Actuators B: Chemical 2020;315:128088. [DOI: 10.1016/j.snb.2020.128088] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
44 Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. Adv Sci (Weinh) 2020;7:1902980. [PMID: 32670744 DOI: 10.1002/advs.201902980] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
45 Liu S, Huo Y, Bai J, Ning B, Peng Y, Li S, Han D, Kang W, Gao Z. Rapid and sensitive detection of prostate-specific antigen via label-free frequency shift Raman of sensing graphene. Biosensors and Bioelectronics 2020;158:112184. [DOI: 10.1016/j.bios.2020.112184] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
46 Tandon S, George SM, McIntyre R, Kandasubramanian B. Polymeric immunosensors for tumor detection. Biomed Phys Eng Express 2020;6:032001. [PMID: 33438645 DOI: 10.1088/2057-1976/ab8a75] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
47 Uen T, Kushiro K, Hibino H, Takai M. Surface functionalization of carbon-based sensors with biocompatible polymer to enable electrochemical measurement in protein-rich environment. Sensors and Actuators B: Chemical 2020;309:127758. [DOI: 10.1016/j.snb.2020.127758] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
48 Medyantseva EP, Brusnitsyn DV, Varlamova RM, Konovalova OA, Budnikov HK. Nanostructured Composites Based on Graphene and Cobalt Nanoparticles in Monoamine Oxidase Biosensors for Determining Antidepressants. Inorg Mater 2019;55:1390-8. [DOI: 10.1134/s0020168519140103] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Zhang S, Li Y, Zhang C, Jia Y, Wang P, Dong Y, Li X, Liu Q, Zhao Z. Label-Free Amperometric Immunosensor Based on Au@Pt DNPs/MoSe 2 @MoS 2 with Multiple Signal Amplification Capabilities for Squamous Cell Carcinoma Antigen Detection. J Electrochem Soc 2020;167:027547. [DOI: 10.1149/1945-7111/ab7095] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Cho IH, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 2020;24:6. [PMID: 32042441 DOI: 10.1186/s40824-019-0181-y] [Cited by in Crossref: 146] [Cited by in F6Publishing: 160] [Article Influence: 73.0] [Reference Citation Analysis]
51 Sun X, Li C, Zhu Q, Chen J, Li J, Ding H, Sang F, Kong L, Chen Z, Wei Q. A novel ultrasensitive sandwich-type photoelectrochemical immunoassay for PSA detection based on dual inhibition effect of Au/MWCNTs nanohybrids on N-GQDs/CdS QDs dual sensitized urchin-like TiO2. Electrochimica Acta 2020;333:135480. [DOI: 10.1016/j.electacta.2019.135480] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
52 Wang Z, Liu H, Li C, Chen X, Weerasooriya R, Wei J, Lv J, Lv P, Wu Y. Mesoporous g-C3N4/β-CD nanocomposites modified glassy carbon electrode for electrochemical determination of 2,4,6-trinitrotoluene. Talanta 2020;208:120410. [DOI: 10.1016/j.talanta.2019.120410] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
53 Traynor SM, Pandey R, Maclachlan R, Hosseini A, Didar TF, Li F, Soleymani L. Review—Recent Advances in Electrochemical Detection of Prostate Specific Antigen (PSA) in Clinically-Relevant Samples. J Electrochem Soc 2020;167:037551. [DOI: 10.1149/1945-7111/ab69fd] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
54 Negahdary M, Sattarahmady N, Heli H. Advances in prostate specific antigen biosensors-impact of nanotechnology. Clin Chim Acta 2020;504:43-55. [PMID: 32004532 DOI: 10.1016/j.cca.2020.01.028] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
55 Zhao X, Wang N, Chen H, Bai L, Xu H, Wang W, Yang H, Wei D, Yang L, Cheng Z. Preparation of a novel sandwich-type electrochemical immunosensor for AFP detection based on an ATRP and click chemistry technique. Polym Chem 2020;11:900-8. [DOI: 10.1039/c9py01279f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
56 Yola ML, Atar N. Amperometric galectin-3 immunosensor-based gold nanoparticle-functionalized graphitic carbon nitride nanosheets and core–shell Ti-MOF@COFs composites. Nanoscale 2020;12:19824-32. [DOI: 10.1039/d0nr05614f] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 22.0] [Reference Citation Analysis]
57 Zhang G, Yu Y, Zhang L, Lin B, Wang Y, Guo M, Cao Y. Precise detection of prostate specific antigen in serum: A surface molecular imprinted sensor based on novel cooperated signal amplification strategy. Sensors and Actuators B: Chemical 2020;302:126998. [DOI: 10.1016/j.snb.2019.126998] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
58 Iglesias-Mayor A, Amor-Gutiérrez O, Costa-García A, de la Escosura-Muñiz A. Nanoparticles as Emerging Labels in Electrochemical Immunosensors. Sensors (Basel) 2019;19:E5137. [PMID: 31771201 DOI: 10.3390/s19235137] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
59 Niu X, Cheng N, Ruan X, Du D, Lin Y. Review—Nanozyme-Based Immunosensors and Immunoassays: Recent Developments and Future Trends. J Electrochem Soc 2019;167:037508. [DOI: 10.1149/2.0082003jes] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 13.0] [Reference Citation Analysis]
60 Jiang L, Li Y, Gao Z, Wang P, Li D, Dong Y. Sensitive Detection of Prostate Specific Antigen Based on Copper Ions Doped Ag-Au Nanospheres Labeled Immunosensor. J Electrochem Soc 2019;166:B1637-43. [DOI: 10.1149/2.1341915jes] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
61 Zhang R, Lu N, Zhang J, Yan R, Li J, Wang L, Wang N, Lv M, Zhang M. Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosens Bioelectron 2020;150:111881. [PMID: 31780408 DOI: 10.1016/j.bios.2019.111881] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 20.3] [Reference Citation Analysis]
62 Proença CA, Freitas TA, Baldo TA, Materón EM, Shimizu FM, Ferreira GR, Soares FLF, Faria RC, Oliveira ON Jr. Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors. Beilstein J Nanotechnol 2019;10:2171-81. [PMID: 31807403 DOI: 10.3762/bjnano.10.210] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
63 Chen Y, Feng J, Mei L, Shi C, Wang A. Dendritic core-shell rhodium@platinum-cobalt nanocrystals for ultrasensitive electrochemical immunoassay of squamous cell carcinoma antigen. Journal of Colloid and Interface Science 2019;555:647-54. [DOI: 10.1016/j.jcis.2019.08.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
64 Sakthivel A, Chandrasekaran A, Jayakumar S, Manickam P, Alwarappan S. Sulphur Doped Graphitic Carbon Nitride as an Efficient Electrochemical Platform for the Detection of Acetaminophen. J Electrochem Soc 2019;166:B1461-9. [DOI: 10.1149/2.0021915jes] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
65 Wang Y, Zhang R, Zhang Z, Cao J, Ma T. Host–Guest Recognition on 2D Graphitic Carbon Nitride for Nanosensing. Adv Mater Interfaces 2019;6:1901429. [DOI: 10.1002/admi.201901429] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
66 Pothipor C, Wiriyakun N, Putnin T, Ngamaroonchote A, Jakmunee J, Ounnunkad K, Laocharoensuk R, Aroonyadet N. Highly sensitive biosensor based on graphene–poly (3-aminobenzoic acid) modified electrodes and porous-hollowed-silver-gold nanoparticle labelling for prostate cancer detection. Sensors and Actuators B: Chemical 2019;296:126657. [DOI: 10.1016/j.snb.2019.126657] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
67 Ma N, Zhang T, Fan D, Kuang X, Ali A, Wu D, Wei Q. Triple amplified ultrasensitive electrochemical immunosensor for alpha fetoprotein detection based on MoS2@Cu2O-Au nanoparticles. Sensors and Actuators B: Chemical 2019;297:126821. [DOI: 10.1016/j.snb.2019.126821] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
68 Xu L, Wen Y, Pandit S, Mokkapati VRSS, Mijakovic I, Li Y, Ding M, Ren S, Li W, Liu G. Graphene-based biosensors for the detection of prostate cancer protein biomarkers: a review. BMC Chem 2019;13:112. [PMID: 31508598 DOI: 10.1186/s13065-019-0611-x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
69 Sadighbayan D, Sadighbayan K, Tohid-kia MR, Khosroushahi AY, Hasanzadeh M. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. TrAC Trends in Analytical Chemistry 2019;118:73-88. [DOI: 10.1016/j.trac.2019.05.014] [Cited by in Crossref: 79] [Cited by in F6Publishing: 79] [Article Influence: 26.3] [Reference Citation Analysis]
70 Arora K. Recent Biosensing Applications of Graphene‐Based Nanomaterials. In: Celasco E, Chaika AN, Stauber T, Zhang M, Ozkan C, Ozkan C, Ozkan U, Palys B, Harun SW, editors. Handbook of Graphene. Wiley; 2019. pp. 297-348. [DOI: 10.1002/9781119468455.ch96] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
71 Farzin L, Sadjadi S, Shamsipur M, Sheibani S. An immunosensing device based on inhibition of mediator's faradaic process for early diagnosis of prostate cancer using bifunctional nanoplatform reinforced by carbon nanotube. Journal of Pharmaceutical and Biomedical Analysis 2019;172:259-67. [DOI: 10.1016/j.jpba.2019.05.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
72 Perry G, Cortezon-tamarit F, Pascu SI. Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing. Front Chem Sci Eng 2020;14:4-18. [DOI: 10.1007/s11705-019-1846-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
73 Thangamuthu M, Hsieh KY, Kumar PV, Chen GY. Graphene- and Graphene Oxide-Based Nanocomposite Platforms for Electrochemical Biosensing Applications. Int J Mol Sci 2019;20:E2975. [PMID: 31216691 DOI: 10.3390/ijms20122975] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 20.0] [Reference Citation Analysis]
74 Wang A, Zhu X, Chen Y, Yuan P, Luo X, Feng J. A label-free electrochemical immunosensor based on rhombic dodecahedral Cu3Pt nanoframes with advanced oxygen reduction performance for highly sensitive alpha-fetoprotein detection. Sensors and Actuators B: Chemical 2019;288:721-7. [DOI: 10.1016/j.snb.2019.03.061] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
75 Dong W, Ren Y, Bai Z, Yang Y, Chen Q. Fabrication of hexahedral Au-Pd/graphene nanocomposites biosensor and its application in cancer cell H2O2 detection. Bioelectrochemistry 2019;128:274-82. [PMID: 31059967 DOI: 10.1016/j.bioelechem.2019.04.018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
76 Sharifuzzaman M, Barman SC, Zahed MA, San NJ, Park JY. Green Synthesis of Reduced Graphene Oxide Decorated with Few-Layered MoS 2 -Nanoroses and Au/Pd/Ag Trimetallic Nanoparticles for Ultrasensitive Label-Free Immunosensing Platforms. J Electrochem Soc 2019;166:B249-57. [DOI: 10.1149/2.0861904jes] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
77 Chen Y, Wang AJ, Yuan PX, Luo X, Xue Y, Feng JJ. Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen. Biosens Bioelectron 2019;132:294-301. [PMID: 30884316 DOI: 10.1016/j.bios.2019.02.057] [Cited by in Crossref: 58] [Cited by in F6Publishing: 60] [Article Influence: 19.3] [Reference Citation Analysis]
78 Akbari Jonous Z, Shayeh JS, Yazdian F, Yadegari A, Hashemi M, Omidi M. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide-gold nanostructures. Eng Life Sci 2019;19:206-16. [PMID: 32625003 DOI: 10.1002/elsc.201800093] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
79 Peng J, Zhuge W, Huang Y, Zhang C, Huang W. UV‐Light Photoelectrochemical Sensor Based on the Copper Tetraamino‐Phthalocyanine‐modified ITO Electrode for the Detection of Nifedipine in Drugs and Human Serum. Bull Korean Chem Soc 2019;40:214-9. [DOI: 10.1002/bkcs.11667] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
80 Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochim Acta 2017;184:3049-67. [PMID: 29109592 DOI: 10.1007/s00604-017-2410-1] [Cited by in Crossref: 75] [Cited by in F6Publishing: 59] [Article Influence: 25.0] [Reference Citation Analysis]
81 Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019;9:8778-881. [DOI: 10.1039/c8ra09577a] [Cited by in Crossref: 351] [Cited by in F6Publishing: 361] [Article Influence: 117.0] [Reference Citation Analysis]
82 Hao N, Lu J, Hua R, Zhao W, Wang K. New Micro- and Nanotechnologies for Electrochemical Biosensor Development. Advanced Biosensors for Health Care Applications 2019. [DOI: 10.1016/b978-0-12-815743-5.00011-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
83 Lakshmanan P. Graphene–Carbon Nitride-Based Electrochemical Sensors for Biomolecules. Graphene-Based Electrochemical Sensors for Biomolecules 2019. [DOI: 10.1016/b978-0-12-815394-9.00009-1] [Reference Citation Analysis]
84 Feng J, Li F, Li X, Ren X, Fan D, Wu D, Ma H, Du B, Zhang N, Wei Q. An amplification label of core–shell CdSe@CdS QD sensitized GO for a signal-on photoelectrochemical immunosensor for amyloid β-protein. J Mater Chem B 2019;7:1142-8. [DOI: 10.1039/c8tb03164a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
85 Ahammad AS, Islam T, Hasan MM. Graphene-Based Electrochemical Sensors for Biomedical Applications. Biomedical Applications of Graphene and 2D Nanomaterials 2019. [DOI: 10.1016/b978-0-12-815889-0.00012-x] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
86 Yuan Y, Zhang F, Wang H, Gao L, Wang Z. A Sensor Based on Au Nanoparticles/Carbon Nitride/Graphene Composites for the Detection of Chloramphenicol and Ciprofloxacin. ECS J Solid State Sci Technol 2018;7:M201-8. [DOI: 10.1149/2.0111812jss] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
87 Chen Y, Yuan PX, Wang AJ, Luo X, Xue Y, Zhang L, Feng JJ. A novel electrochemical immunosensor for highly sensitive detection of prostate-specific antigen using 3D open-structured PtCu nanoframes for signal amplification. Biosens Bioelectron 2019;126:187-92. [PMID: 30415153 DOI: 10.1016/j.bios.2018.10.057] [Cited by in Crossref: 111] [Cited by in F6Publishing: 100] [Article Influence: 27.8] [Reference Citation Analysis]
88 Medyantseva EP, Brusnitsyn DV, Varlamova RV, Konovalova OA, Budnikov HK. Nanostructured composites based on graphene and nanoparticles of cobalt in the composition of monoamine oxidase biosensors for determination of antidepressants. Zavod lab , Diagn mater 2018;84:5-14. [DOI: 10.26896/1028-6861-2018-84-8-5-14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
89 Arya SK, Estrela P. Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. Sensors (Basel) 2018;18:E2010. [PMID: 29932161 DOI: 10.3390/s18072010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 12.3] [Reference Citation Analysis]
90 Shamsipur M, Emami M, Farzin L, Saber R. A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosensors and Bioelectronics 2018;103:54-61. [DOI: 10.1016/j.bios.2017.12.022] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 16.0] [Reference Citation Analysis]
91 Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics 2018;103:113-29. [DOI: 10.1016/j.bios.2017.12.031] [Cited by in Crossref: 462] [Cited by in F6Publishing: 472] [Article Influence: 115.5] [Reference Citation Analysis]
92 Yuan Q, He J, Niu Y, Chen J, Zhao Y, Zhang Y, Yu C. Sandwich-type biosensor for the detection of α2,3-sialylated glycans based on fullerene-palladium-platinum alloy and 4-mercaptophenylboronic acid nanoparticle hybrids coupled with Au-methylene blue-MAL signal amplification. Biosensors and Bioelectronics 2018;102:321-7. [DOI: 10.1016/j.bios.2017.11.043] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
93 Liu C, Dong J, Waterhouse GI, Cheng Z, Ai S. Electrochemical immunosensor with nanocellulose-Au composite assisted multiple signal amplification for detection of avian leukosis virus subgroup J. Biosensors and Bioelectronics 2018;101:110-5. [DOI: 10.1016/j.bios.2017.10.007] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
94 Yang L, Li N, Wang K, Hai X, Liu J, Dang F. A novel peptide/Fe3O4@SiO2-Au nanocomposite-based fluorescence biosensor for the highly selective and sensitive detection of prostate-specific antigen. Talanta 2018;179:531-7. [DOI: 10.1016/j.talanta.2017.11.033] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
95 Tang Z, He J, Chen J, Niu Y, Zhao Y, Zhang Y, Yu C. A sensitive sandwich-type immunosensor for the detection of galectin-3 based on N-GNRs-Fe-MOFs@AuNPs nanocomposites and a novel AuPt-methylene blue nanorod. Biosensors and Bioelectronics 2018;101:253-9. [DOI: 10.1016/j.bios.2017.10.026] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 13.8] [Reference Citation Analysis]
96 Evtugyn G, Hianik T. Electroanalytical Bioplatforms Based on Carbon Nanostructures as New Tools for Diagnosis. Nanotechnology and Biosensors 2018. [DOI: 10.1016/b978-0-12-813855-7.00009-x] [Reference Citation Analysis]
97 Farzin L, Shamsipur M. Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. Journal of Pharmaceutical and Biomedical Analysis 2018;147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 12.5] [Reference Citation Analysis]
98 Feng J, Li Y, Gao Z, Lv H, Zhang X, Fan D, Wei Q. Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites for sensitive detection OTA. Biosensors and Bioelectronics 2018;99:14-20. [DOI: 10.1016/j.bios.2017.07.029] [Cited by in Crossref: 79] [Cited by in F6Publishing: 81] [Article Influence: 19.8] [Reference Citation Analysis]
99 Gao Z, Li Y, Zhang X, Feng J, Kong L, Wang P, Chen Z, Dong Y, Wei Q. Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2@MWCNTs nanocomposite as enzyme-mimetic labels. Biosens Bioelectron 2018;102:189-95. [PMID: 29136590 DOI: 10.1016/j.bios.2017.11.032] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 11.8] [Reference Citation Analysis]
100 Fang X, Liu J, Wang J, Zhao H, Ren H, Li Z. Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker. Biosensors and Bioelectronics 2017;97:218-25. [DOI: 10.1016/j.bios.2017.05.055] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 10.6] [Reference Citation Analysis]
101 Mousavi MF, Amiri M, Noori A, Khoshfetrat SM. A Prostate Specific Antigen Immunosensor Based on Biotinylated-Antibody/Cyclodextrin Inclusion Complex: Fabrication and Electrochemical Studies. Electroanalysis 2017;29:2818-31. [DOI: 10.1002/elan.201700363] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
102 Sun L, Du T, Hu C, Chen J, Lu J, Lu Z, Han H. Antibacterial Activity of Graphene Oxide/g-C 3 N 4 Composite through Photocatalytic Disinfection under Visible Light. ACS Sustainable Chem Eng 2017;5:8693-701. [DOI: 10.1021/acssuschemeng.7b01431] [Cited by in Crossref: 172] [Cited by in F6Publishing: 177] [Article Influence: 34.4] [Reference Citation Analysis]
103 Wang J, Guo J, Zhang J, Zhang W, Zhang Y. RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosens Bioelectron 2017;95:100-5. [PMID: 28431362 DOI: 10.1016/j.bios.2017.04.014] [Cited by in Crossref: 73] [Cited by in F6Publishing: 74] [Article Influence: 14.6] [Reference Citation Analysis]
104 Ji H, Fan Y, Yan J, Xu Y, She X, Gu J, Fei T, Xu H, Li H. Construction of SnO 2 /graphene-like g-C 3 N 4 with enhanced visible light photocatalytic activity. RSC Adv 2017;7:36101-11. [DOI: 10.1039/c7ra05830f] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 10.8] [Reference Citation Analysis]