BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang W, Deng Y, He Y. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosensors and Bioelectronics 2017;91:89-94. [DOI: 10.1016/j.bios.2016.12.028] [Cited by in Crossref: 110] [Cited by in F6Publishing: 110] [Article Influence: 18.3] [Reference Citation Analysis]
Number Citing Articles
1 Chen Y, Wang X, Liu H, Yang J, Feng D, Hou K, Wang X, Wu W. A dual-optical sensor for mancozeb by UCNP@PVP@MnO(2) nanozyme. Food Chem 2023;409:135255. [PMID: 36586268 DOI: 10.1016/j.foodchem.2022.135255] [Reference Citation Analysis]
2 Zhang G, Zhang X, Zhang Q, Chen W, Wu S, Yang H, Zhou Y. MnO2 nanosheets-triggered oxVB1 fluorescence immunoassay for detection zearalenone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023;286:121954. [DOI: 10.1016/j.saa.2022.121954] [Reference Citation Analysis]
3 Alam N, Ravikumar CH, Sreeramareddygari M, Somasundrum M, Surareungchai W. Label-free ultra-sensitive colorimetric detection of hepatitis E virus based on oxidase-like activity of MnO(2) nanosheets. Anal Bioanal Chem 2023;415:703-13. [PMID: 36469053 DOI: 10.1007/s00216-022-04461-1] [Reference Citation Analysis]
4 Sui J, Wei Y, Li J, Xu Z. A portable multicolor aptasensor for MUC1 detection based on enzyme-mediated cascade reaction. Microchemical Journal 2022;183:108071. [DOI: 10.1016/j.microc.2022.108071] [Reference Citation Analysis]
5 Madhu M, Santhoshkumar S, Tseng W, Tseng W. Optical nanoprobes for aminothiols sensing in real-world samples. Sensors and Actuators Reports 2022;4:100123. [DOI: 10.1016/j.snr.2022.100123] [Reference Citation Analysis]
6 Li F, Jiang J, Peng H, Li C, Li B, He J. Platinum nanozyme catalyzed multichannel colorimetric sensor array for identification and detection of pesticides. Sensors and Actuators B: Chemical 2022;369:132334. [DOI: 10.1016/j.snb.2022.132334] [Reference Citation Analysis]
7 Erdemir S, Oguz M, Malkondu S. Real-time screening of hydrazine by a NIR fluorescent probe with low cytotoxicity in living cells and its multiple applications: Optimization using Box-Behnken Design. Sensors and Actuators B: Chemical 2022;364:131893. [DOI: 10.1016/j.snb.2022.131893] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Xia H, Li B, Zhao Y, Han Y, Wang S, Chen A, Kankala RK. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coordination Chemistry Reviews 2022;464:214540. [DOI: 10.1016/j.ccr.2022.214540] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
9 Sohail M, Xie B, Li B, Huang H. Zn-doped carbon dots-based versatile bioanalytical probe for precise estimation of antioxidant activity index of multiple samples via fenton chemistry. Sensors and Actuators B: Chemical 2022;363:131558. [DOI: 10.1016/j.snb.2022.131558] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zhao M, Lin X, Zhou X, Zhang Y, Wu H, Liu Y. Single Probe-Based Chemical-Tongue Sensor Array for Multiple Bacterial Identification and Photothermal Sterilization in Real Time. ACS Appl Mater Interfaces 2022;14:7706-16. [PMID: 35109650 DOI: 10.1021/acsami.1c24042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Du F, Zhou X, Bai Y, Tang Q, Cai Y, Tang Y. Construction of metal (Mn, Ce, Eu)-containing species in CN nanocomposites with photo-responsive oxidase-mimicking activity for multi-antioxidant discrimination. New J Chem 2022;46:6670-6. [DOI: 10.1039/d1nj06068f] [Reference Citation Analysis]
12 Khan ZA, Hong PJ, Lee CH, Hong Y. Recent Advances in Electrochemical and Optical Sensors for Detecting Tryptophan and Melatonin. Int J Nanomedicine 2021;16:6861-88. [PMID: 34675512 DOI: 10.2147/IJN.S325099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Singh H, Singh G, Kaur N, Singh N. Pattern-based colorimetric sensor array to monitor food spoilage using automated high-throughput analysis. Biosens Bioelectron 2021;196:113687. [PMID: 34649095 DOI: 10.1016/j.bios.2021.113687] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
14 Freitas RC, Orzari LO, Ferreira LM, Paixão TR, Coltro WK, Vicentini FC, Janegitz BC. Electrochemical determination of melatonin using disposable self-adhesive inked paper electrode. Journal of Electroanalytical Chemistry 2021;897:115550. [DOI: 10.1016/j.jelechem.2021.115550] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Wu R, Li K, Shen C, Huang J, Gao Z, Tang K, Leng Y, Chen Z. Antioxidant Recognition by Colorimetric Sensor Array Based on Differential Etching of Gold Nanorods and Gold Nanobypyramids. ACS Appl Nano Mater 2021;4:8482-90. [DOI: 10.1021/acsanm.1c01817] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Yang W, Li J, Lyu Y, Yan X, Yang P, Zuo M. Bioinspired 3D hierarchical BSA-NiCo2O4@MnO2/C multifunctional micromotors for simultaneous spectrophotometric determination of enzyme activity and pollutant removal. Journal of Cleaner Production 2021;309:127294. [DOI: 10.1016/j.jclepro.2021.127294] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wang F, Na N, Ouyang J. Particle-in-a-frame gold nanomaterials with an interior nanogap-based sensor array for versatile analyte detection. Chem Commun (Camb) 2021;57:4520-3. [PMID: 33956027 DOI: 10.1039/d1cc01094h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
18 Sang F, Li M, Yin S, Shi H, Zhao Y, Zhang Z. Highly sensitive and selective detection and intracellular imaging of glutathione using MnO2 nanosheets assisted enhanced fluorescence of gold nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc 2021;256:119743. [PMID: 33845335 DOI: 10.1016/j.saa.2021.119743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
19 Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nanomicro Lett 2021;13:154. [PMID: 34241715 DOI: 10.1007/s40820-021-00674-8] [Cited by in Crossref: 60] [Cited by in F6Publishing: 71] [Article Influence: 30.0] [Reference Citation Analysis]
20 Liu S, Ren H, Zhang S, Huang Y, Dai H, Lv L. WITHDRAWN: 3, 3’, 5, 5’-tetramethylbenzidine multicolor display system: The photothermal colorimetric paper-based analytical device using MXene nanosheets for ovarian cancer marker detection. Biosensors and Bioelectronics 2021. [DOI: 10.1016/j.bios.2021.113456] [Reference Citation Analysis]
21 Fu R, Zhou J, Wang Y, Liu Y, Liu H, Yang Q, Zhao Q, Jiao B, He Y. Oxidase-like Nanozyme-Mediated Altering of the Aspect Ratio of Gold Nanorods for Breaking through H2O2-Supported Multicolor Colorimetric Assay: Application in the Detection of Acetylcholinesterase Activity and Its Inhibitors. ACS Appl Bio Mater 2021;4:3539-46. [PMID: 35014439 DOI: 10.1021/acsabm.1c00069] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
22 Qin X, Yuan C, Geng G, Shi R, Cheng S, Wang Y. Enzyme-free colorimetric determination of uric acid based on inhibition of gold nanorods etching. Sensors and Actuators B: Chemical 2021;333:129638. [DOI: 10.1016/j.snb.2021.129638] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Sohal N, Maity B, Shetti NP, Basu S. Biosensors Based on MnO 2 Nanostructures: A Review. ACS Appl Nano Mater 2021;4:2285-302. [DOI: 10.1021/acsanm.0c03380] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 10.5] [Reference Citation Analysis]
24 Nejadmansouri M, Majdinasab M, Nunes GS, Marty JL. An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. Sensors (Basel) 2021;21:1176. [PMID: 33562374 DOI: 10.3390/s21041176] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
25 Chatterjee R, Majumder C. Uptake of azaarenic 2-Methylpyridine by pre-cooled carboxyl functionalized graphene nanocomposite: Detection, sorption and optimization. Journal of Water Process Engineering 2021;39:101686. [DOI: 10.1016/j.jwpe.2020.101686] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Chaharlangi M, Tashkhourian J, Bordbar MM, Brendel R, Weller P, Hemmateenejad B. A paper-based colorimetric sensor array for discrimination of monofloral European honeys based on gold nanoparticles and chemometrics data analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021;247:119076. [DOI: 10.1016/j.saa.2020.119076] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Jing W, Cui X, Kong F, Wei W, Li Y, Fan L, Li X. Fe–N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants. Analyst 2021;146:207-12. [DOI: 10.1039/d0an01447h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
28 Zeng M, Chen M, Huang D, Lei S, Zhang X, Wang L, Cheng Z. Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. Mater Horiz 2021;8:758-802. [DOI: 10.1039/d0mh01358g] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 25.0] [Reference Citation Analysis]
29 Liu S, Zhou X, Lv C, Liu R, Li S, Yang G. A novel bromelain-MnO2 biosensor for colorimetric determination of dopamine. New J Chem 2021;45:92-97. [DOI: 10.1039/d0nj05066k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Gao Q, Wan J, Chen X, Mo X, Sun Y, Zou J, Nie J, Zhang Y. A novel strategy for sensitive and rapid detection of ascorbic acid via the Tyndall effect of cobalt hydroxide nanoflakes. RSC Adv 2021;11:39306-39310. [DOI: 10.1039/d1ra07702c] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Qin X, Yuan C, Shi R, Wang S, Wang Y. Colorimetric Detection of Dopamine Based on Iodine-mediated Etching of Gold Nanorods. Chinese Journal of Analytical Chemistry 2021;49:60-7. [DOI: 10.1016/s1872-2040(20)60073-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Cao Y, Liu J, Zou L, Ye B, Li G. Ratiometric fluorescence sensing of glutathione by using the oxidase-mimicking activity of MnO2 nanosheet. Anal Chim Acta 2021;1145:46-51. [PMID: 33453880 DOI: 10.1016/j.aca.2020.12.019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
33 Apak R, Çekiç SD, Üzer A, Çapanoğlu E, Çelik SE, Bener M, Can Z, Durmazel S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. Anal Methods 2020;12:5266-321. [PMID: 33170182 DOI: 10.1039/d0ay01521k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Baral A, Satish L, Zhang G, Ju S, Ghosh MK. A Review of Recent Progress on Nano MnO2: Synthesis, Surface Modification and Applications. J Inorg Organomet Polym 2021;31:899-922. [DOI: 10.1007/s10904-020-01823-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
35 Pinheiro ND, Freire RT, Conrado JAM, Batista AD, da Silveira Petruci JF. Paper-based optoelectronic nose for identification of indoor air pollution caused by 3D printing thermoplastic filaments. Anal Chim Acta 2021;1143:1-8. [PMID: 33384106 DOI: 10.1016/j.aca.2020.11.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
36 Li J, Wei Y, Xu Z. Visual detection of acid phosphatase based on hollow mesoporous manganese dioxide nanospheres. Analytica Chimica Acta 2020;1138:1-8. [DOI: 10.1016/j.aca.2020.09.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
37 Jia Y, Yi X, Li Z, Zhang L, Yu B, Zhang J, Wang X, Jia X. Recent advance in biosensing applications based on two-dimensional transition metal oxide nanomaterials. Talanta 2020;219:121308. [DOI: 10.1016/j.talanta.2020.121308] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
38 Cai Y, Qiu Z, Lin X, Zeng W, Cao Y, Liu W, Liu Y. Self-assembled nanomaterials based on aggregation-induced emission of AuNCs: Fluorescence and colorimetric dual-mode biosensing of organophosphorus pesticides. Sensors and Actuators B: Chemical 2020;321:128481. [DOI: 10.1016/j.snb.2020.128481] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
39 Tian F, Fu R, Zhou J, Cui Y, Zhang Y, Jiao B, He Y. Manganese dioxide nanosheet-mediated etching of gold nanorods for a multicolor colorimetric assay of total antioxidant capacity. Sensors and Actuators B: Chemical 2020;321:128604. [DOI: 10.1016/j.snb.2020.128604] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
40 Jaberie H, Momeni S, Nabipour I. Total antioxidant capacity assessment by a development of an antioxidant assay based on green synthesized MnO2nanosheets. Microchemical Journal 2020;157:104908. [DOI: 10.1016/j.microc.2020.104908] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
41 Wang F, Na N, Ouyang J. A catalytic—regulated gold nanorods etching process as a receptor with multiple readouts for protein detection. Sensors and Actuators B: Chemical 2020;318:128215. [DOI: 10.1016/j.snb.2020.128215] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
42 Wang D, Liu D, Duan H, Xu Y, Zhou Z, Wang P. Catechol Dyes-Tyrosinase System for Colorimetric Determination and Discrimination of Dithiocarbamate Pesticides. J Agric Food Chem 2020;68:9252-9. [PMID: 32806111 DOI: 10.1021/acs.jafc.0c03352] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
43 Zhang Z, Yang Z, Chen X, Hu D, Hong Y. Facile gradient oxidation synthesizing of highly-fluorescent MoO3 quantum dots for Cr2O72− trace sensing. Inorganic Chemistry Communications 2020;118:108001. [DOI: 10.1016/j.inoche.2020.108001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
44 Liu B, Chen Y, Zhang M, Chen Z, Zuo X. Colorimetric discriminatory array for detection and discrimination of antioxidants based on HAuCl4/3,3',5,5'-tetramethylbenzidine. Analyst 2020;145:5221-5. [PMID: 32588845 DOI: 10.1039/d0an00617c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
45 Song D, Li T, Wei Y, Xu Z. Controlled formation of porous CuCo2O4 nanorods with enhanced oxidase and catalase catalytic activities using bimetal-organic frameworks as templates. Colloids and Surfaces B: Biointerfaces 2020;188:110764. [DOI: 10.1016/j.colsurfb.2019.110764] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
46 Xu X, Wu S, Guo D, Niu X. Construction of a recyclable oxidase-mimicking Fe3O4@MnOx-based colorimetric sensor array for quantifying and identifying chlorophenols. Anal Chim Acta 2020;1107:203-12. [PMID: 32200895 DOI: 10.1016/j.aca.2020.02.024] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
47 Zhang X, Chen Z, Zuo X. Chloroauric Acid/Silver Nanoparticle Colorimetric Sensors for Antioxidant Discrimination Based on a Honeycomb Ag-Au Nanostructure. ACS Sustainable Chem Eng 2020;8:3922-8. [DOI: 10.1021/acssuschemeng.9b07523] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
48 Ai R, He Y. Covalent organic framework-inspired chromogenic system for visual colorimetric detection of carcinogenic 3, 3′-diaminobenzidine. Sensors and Actuators B: Chemical 2020;304:127372. [DOI: 10.1016/j.snb.2019.127372] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
49 Hiremath SD, Priyadarshi B, Banerjee M, Chatterjee A. Carbon dots-MnO2 based turn-on fluorescent probe for rapid and sensitive detection of hydrazine in water. Journal of Photochemistry and Photobiology A: Chemistry 2020;389:112258. [DOI: 10.1016/j.jphotochem.2019.112258] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
50 Wang X, Wei H. Peroxidase-like nanozyme sensing arrays for versatile analytes. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-019-4738-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
51 Erdemir S, Malkondu S. A colorimetric and fluorometric probe for hydrazine through subsequent ring-opening and closing reactions: Its environmental applications. Microchemical Journal 2020;152:104375. [DOI: 10.1016/j.microc.2019.104375] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
52 Xiao P, Liu Y, Zong W, Wang J, Wu M, Zhan J, Yi X, Liu L, Zhou H. Highly selective colorimetric determination of catechol based on the aggregation-induced oxidase–mimic activity decrease of δ-MnO 2. RSC Adv 2020;10:6801-6. [DOI: 10.1039/c9ra10480a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
53 Liu B, Zhuang J, Wei G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ Sci : Nano 2020;7:2195-213. [DOI: 10.1039/d0en00449a] [Cited by in Crossref: 93] [Cited by in F6Publishing: 97] [Article Influence: 31.0] [Reference Citation Analysis]
54 Chen J, Wang Y, Wei X, Ni R, Meng J, Xu F, Liu Z. A composite prepared from MnO2 nanosheets and a deep eutectic solvent as an oxidase mimic for the colorimetric determination of DNA. Mikrochim Acta 2019;187:7. [PMID: 31797063 DOI: 10.1007/s00604-019-4021-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
55 Zhang Y, Cai Y, Dong F, Bian L, Li H, Wang J, Du J, Qi X, He Y. Chemically modified mesoporous wood: a versatile sensor for visual colorimetric detection of trinitrotoluene in water, air, and soil by smartphone camera. Anal Bioanal Chem 2019;411:8063-71. [PMID: 31768592 DOI: 10.1007/s00216-019-02172-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
56 Manjari G, Parthiban A, Saran S. Sustainable Utilization of Molasses Towards Green Synthesis of Silver Nanoparticles for Colorimetric Heavy Metal Sensing and Catalytic Applications. J Clust Sci 2020;31:1137-45. [DOI: 10.1007/s10876-019-01721-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
57 Pourreza N, Abdollahzadeh R. Colorimetric determination of hydrazine and nitrite using catalytic effect of palladium nanoparticles on the reduction reaction of methylene blue. Microchemical Journal 2019;150:104067. [DOI: 10.1016/j.microc.2019.104067] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
58 Usta HM, Forough M, Persil Çetinkol Ö. A DNA-free colorimetric probe based on citrate-capped silver nanoparticles for sensitive and rapid detection of coralyne. Sensors and Actuators B: Chemical 2019;298:126823. [DOI: 10.1016/j.snb.2019.126823] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
59 Li S, Li K, Li X, Chen Z. Colorimetric Electronic Tongue for Rapid Discrimination of Antioxidants Based on the Oxidation Etching of Nanotriangular Silver by Metal Ions. ACS Appl Mater Interfaces 2019;11:37371-8. [PMID: 31538470 DOI: 10.1021/acsami.9b14522] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
60 Du J, Deng Y, He Y. A single 9-mesityl-10-methylacridinium ion as a solvatochromic sensor array for multicolor visual discrimination of solvents. Analyst 2019;144:5420-4. [PMID: 31380527 DOI: 10.1039/c9an01225g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
61 Popa CV, Vasilescu A, Litescu SC, Albu C, Danet AF. Metal Nano-Oxide based Colorimetric Sensor Array for the Determination of Plant Polyphenols with Antioxidant Properties. Analytical Letters 2020;53:627-45. [DOI: 10.1080/00032719.2019.1662430] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
62 Zhong Y, Hu Y, Li G, Zhang R. Multistage Signals Based on Cyclic Chemiluminescence for Decoding Complex Samples. Anal Chem 2019;91:12063-9. [PMID: 31438668 DOI: 10.1021/acs.analchem.9b03189] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
63 Zhao S, Lei J, Hou C, Huang J, Hou J, Luo X, Huo D. An optoelectronic detector for aldehydes discrimination applications based on CD-like colorimetric chip. Microchemical Journal 2019;149:103979. [DOI: 10.1016/j.microc.2019.103979] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
64 Ertürk AS. Biosynthesis of Silver Nanoparticles Using Epilobium parviflorum Green Tea Extract: Analytical Applications to Colorimetric Detection of Hg2+ Ions and Reduction of Hazardous Organic Dyes. J Clust Sci 2019;30:1363-73. [DOI: 10.1007/s10876-019-01634-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
65 Han L, Liu SG, Liang JY, Li NB, Luo HQ. Free-label dual-signal responsive optical sensor by combining resonance Rayleigh scattering and colorimetry for sensitive detection of glutathione based on ultrathin MnO2 nanoflakes. Sensors and Actuators B: Chemical 2019;288:195-201. [DOI: 10.1016/j.snb.2019.02.117] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
66 Ge J, Yang X, Luo J, Ma J, Zou Y, Li J, Luo W, Cheng X, Deng Y. Ordered mesoporous CoO/CeO2 heterostructures with highly crystallized walls and enhanced peroxidase-like bioactivity. Applied Materials Today 2019;15:482-93. [DOI: 10.1016/j.apmt.2019.03.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
67 Li R, Wang J, He Y, Dong F, Bian L, Li B. Mechanochemical Synthesis of Defective Molybdenum Trioxide, Titanium Dioxide, and Zinc Oxide at Room Temperature. ACS Sustainable Chem Eng 2019. [DOI: 10.1021/acssuschemeng.9b00374] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
68 Shi M, Cen Y, Xu G, Wei F, Xu X, Cheng X, Chai Y, Sohail M, Hu Q. Ratiometric fluorescence monitoring of α-glucosidase activity based on oxidase-like property of MnO2 nanosheet and its application for inhibitor screening. Anal Chim Acta 2019;1077:225-31. [PMID: 31307713 DOI: 10.1016/j.aca.2019.05.037] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
69 Hu X, Liu X, Zhang X, Cao H, Huang Y. MnO2 nanowires tuning of photoluminescence of alloy Cu/Ag NCs and thiamine enables a ratiometric fluorescent sensing of glutathione. Sensors and Actuators B: Chemical 2019;286:476-82. [DOI: 10.1016/j.snb.2019.02.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
70 Wang J, Li H, Cai Y, Wang D, Bian L, Dong F, Yu H, He Y. Direct Blue Light-Induced Autocatalytic Oxidation of o -Phenylenediamine for Highly Sensitive Visual Detection of Triaminotrinitrobenzene. Anal Chem 2019;91:6155-61. [DOI: 10.1021/acs.analchem.9b00759] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
71 Li M, Huang X, Yu H. A colorimetric assay for ultrasensitive detection of copper (II) ions based on pH-dependent formation of heavily doped molybdenum oxide nanosheets. Mater Sci Eng C Mater Biol Appl 2019;101:614-8. [PMID: 31029354 DOI: 10.1016/j.msec.2019.04.022] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
72 Sun K, Li S, Chen H, Huang Q, Si Y. MnO 2 nanozyme induced the chromogenic reactions of ABTS and TMB to visual detection of Fe 2+ and Pb 2+ ions in water. International Journal of Environmental Analytical Chemistry 2019;99:501-14. [DOI: 10.1080/03067319.2019.1599875] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
73 Lv W, Qin W, Chen Y, Chen X. Fabrication of Co3O4 NPs-graphene oxide nanocomposites as an efficient catalyst towards oxygen reduction and its catalytic applications. J Colloid Interface Sci 2019;538:125-31. [PMID: 30502533 DOI: 10.1016/j.jcis.2018.11.089] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
74 Zhu S, Lei C, Sun J, Zhao X, Wang X, Yan X, Liu W, Wang H. Probing NAD+/NADH-dependent biocatalytic transformations based on oxidase mimics of MnO2. Sensors and Actuators B: Chemical 2019;282:896-903. [DOI: 10.1016/j.snb.2018.11.140] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
75 Li X, Kong C, Chen Z. Colorimetric Sensor Arrays for Antioxidant Discrimination Based on the Inhibition of the Oxidation Reaction between 3,3′,5,5′-Tetramethylbenzidine and Hydrogen Peroxides. ACS Appl Mater Interfaces 2019;11:9504-9. [DOI: 10.1021/acsami.8b18548] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
76 Huang W, Wang J, Du J, Deng Y, He Y. Contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of MoO3-x nanodots and 3,3′-diaminobenzidine. Microchim Acta 2019;186. [DOI: 10.1007/s00604-018-3190-y] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
77 Lu Q, Chen X, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S. A turn-on fluorescent probe for vitamin C based on the use of a silicon/CoOOH nanoparticle system. Microchim Acta 2019;186. [DOI: 10.1007/s00604-018-3181-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
78 Li Y, Zhang P, Fu W, Chen L, Wu S, Long Y, Wang Y. Smartphone-based colorimetric assay of antioxidants in red wine using oxidase-mimic MnO 2 nanosheets. Analyst 2019;144:5479-85. [DOI: 10.1039/c9an01202h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
79 Chen J, Meng H, Tian Y, Yang R, Du D, Li Z, Qu L, Lin Y. Recent advances in functionalized MnO 2 nanosheets for biosensing and biomedicine applications. Nanoscale Horiz 2019;4:321-38. [DOI: 10.1039/c8nh00274f] [Cited by in Crossref: 121] [Cited by in F6Publishing: 123] [Article Influence: 30.3] [Reference Citation Analysis]
80 Li J, Yang P, Huang R, Huo D, Hou C. A microarray chip based on photonic crystals and fluorescence amplification for discrimination of Baijiu. Anal Methods 2019;11:5413-20. [DOI: 10.1039/c9ay01805k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
81 Li J, Yang P, Zhang J, Shui Z, Huo D, Hou C, Zhang S, Shen C. A metal ion-regulated colorimetric sensor array: discriminating Chinese Baijiu from other beverages. Anal Methods 2019;11:5274-81. [DOI: 10.1039/c9ay01804b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
82 Li C, Meng X, Lan Huong D, Oh WK, Wang W, Yang J. Quantitative visualization and detection of acetylcholinesterase activity and its inhibitor based on the oxidation character of ultrathin MnO 2 nanosheets. Anal Methods 2019;11:4931-8. [DOI: 10.1039/c9ay01721f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
83 Shang J, Yu L, Sun Y, Chen X, Kang Q, Shen D. On site determination of free chlorine in water samples by a smartphone-based colorimetric device with improved sensitivity and reliability. New J Chem 2019;43:14409-16. [DOI: 10.1039/c9nj03954f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
84 Yan B. Photofunctional MOF-based hybrid materials for the chemical sensing of biomarkers. J Mater Chem C 2019;7:8155-75. [DOI: 10.1039/c9tc01477b] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 16.8] [Reference Citation Analysis]
85 Hu L, Liu Y, Hu S, Wang Y. 1T/2H multi-phase MoS 2 heterostructures: synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. New J Chem 2019;43:10434-41. [DOI: 10.1039/c9nj02749a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
86 Tao Y, Lin J, Zhang Z, Guo Q, Zuo J, Fan C, Lu B. Supersonic gas flow for preparation of ultrafine silicon powders and mechanochemical synthesis. R Soc Open Sci 2018;5:181432. [PMID: 30564425 DOI: 10.1098/rsos.181432] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
87 Tang P, Leung HT, Sun G. Colorimetric Detection of Carcinogenic Alkylating Fumigants on Nylon-6 Nanofibrous Membrane. Part I: Investigation of 4-( p-Nitrobenzyl)pyridine as a "New" Sensing Agent with Ultrahigh Sensitivity. Anal Chem 2018;90:14593-601. [PMID: 30468706 DOI: 10.1021/acs.analchem.8b04775] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
88 Patil VS, Lee MG, Yun J, Lee JS, Lim SH, Yi GR. Chemically Resistant Perfluoroalkoxy Nanoparticle-Packed Porous Substrates and Their Use in Colorimetric Sensor Arrays. Langmuir 2018;34:13014-24. [PMID: 30278141 DOI: 10.1021/acs.langmuir.8b02481] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
89 Bordbar MM, Hemmateenejad B, Tashkhourian J, Nami-Ana SF. An optoelectronic tongue based on an array of gold and silver nanoparticles for analysis of natural, synthetic and biological antioxidants. Mikrochim Acta 2018;185:493. [PMID: 30284031 DOI: 10.1007/s00604-018-3021-1] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
90 Zhou Y, Huang W, He Y. pH-Induced silver nanoprism etching-based multichannel colorimetric sensor array for ultrasensitive discrimination of thiols. Sensors and Actuators B: Chemical 2018;270:187-91. [DOI: 10.1016/j.snb.2018.05.025] [Cited by in Crossref: 63] [Cited by in F6Publishing: 50] [Article Influence: 12.6] [Reference Citation Analysis]
91 Tang P, Gomez MT, Leung HT, Sun G. Bio-inspired ultrasensitive colorimetric detection of methyl isothiocyanate on nylon-6 nanofibrous membrane: A comparison of biological thiol reactivities. J Hazard Mater 2019;362:375-82. [PMID: 30245405 DOI: 10.1016/j.jhazmat.2018.09.036] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
92 Xie Z, Ge H, Du J, Duan T, Yang G, He Y. Compartmentalizing Incompatible Tandem Reactions in Pickering Emulsions To Enable Visual Colorimetric Detection of Nitramine Explosives Using a Smartphone. Anal Chem 2018;90:11665-70. [DOI: 10.1021/acs.analchem.8b03331] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
93 Du J, Wang J, Huang W, Deng Y, He Y. Visible Light-Activatable Oxidase Mimic of 9-Mesityl-10-Methylacridinium Ion for Colorimetric Detection of Biothiols and Logic Operations. Anal Chem 2018;90:9959-65. [DOI: 10.1021/acs.analchem.8b02197] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 9.4] [Reference Citation Analysis]
94 Yu H, Long D, Huang W. Organic antifreeze discrimination by pattern recognition using nanoparticle array. Sensors and Actuators B: Chemical 2018;264:164-8. [DOI: 10.1016/j.snb.2018.02.180] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
95 Yan S, Lai X, Du G, Xiang Y. Identification of aminoglycoside antibiotics in milk matrix with a colorimetric sensor array and pattern recognition methods. Anal Chim Acta 2018;1034:153-60. [PMID: 30193629 DOI: 10.1016/j.aca.2018.06.004] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
96 Du J, Zhao M, Huang W, Deng Y, He Y. Visual colorimetric detection of tin(II) and nitrite using a molybdenum oxide nanomaterial-based three-input logic gate. Anal Bioanal Chem 2018;410:4519-26. [DOI: 10.1007/s00216-018-1109-4] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
97 Chen J, Huang Z, Meng H, Zhang L, Ji D, Liu J, Yu F, Qu L, Li Z. A facile fluorescence lateral flow biosensor for glutathione detection based on quantum dots-MnO2 nanocomposites. Sensors and Actuators B: Chemical 2018;260:770-7. [DOI: 10.1016/j.snb.2018.01.101] [Cited by in Crossref: 46] [Cited by in F6Publishing: 31] [Article Influence: 9.2] [Reference Citation Analysis]
98 Ma Y, Li Y, Ma K, Wang Z. Optical colorimetric sensor arrays for chemical and biological analysis. Sci China Chem 2018;61:643-55. [DOI: 10.1007/s11426-017-9224-3] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 6.6] [Reference Citation Analysis]
99 Ji D, Du Y, Meng H, Zhang L, Huang Z, Hu Y, Li J, Yu F, Li Z. A novel colorimetric strategy for sensitive and rapid sensing of ascorbic acid using cobalt oxyhydroxide nanoflakes and 3,3′,5,5′-tetramethylbenzidine. Sensors and Actuators B: Chemical 2018;256:512-9. [DOI: 10.1016/j.snb.2017.10.070] [Cited by in Crossref: 65] [Cited by in F6Publishing: 54] [Article Influence: 13.0] [Reference Citation Analysis]
100 Huang W, Zhou Y, Du J, Deng Y, He Y. Versatile Visual Logic Operations Based on Plasmonic Switching in Label-Free Molybdenum Oxide Nanomaterials. Anal Chem 2018;90:2384-8. [DOI: 10.1021/acs.analchem.7b05097] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
101 Huang W, Xie Z, Deng Y, He Y. 3,3′,5,5′-tetramethylbenzidine-based quadruple-channel visual colorimetric sensor array for highly sensitive discrimination of serum antioxidants. Sensors and Actuators B: Chemical 2018;254:1057-60. [DOI: 10.1016/j.snb.2017.08.005] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 10.8] [Reference Citation Analysis]
102 Bang J, Park H, Choi WI, Sung D, Lee JH, Lee KY, Kim S. Sensitive detection of dengue virus NS1 by highly stable affibody-functionalized gold nanoparticles. New J Chem 2018;42:12607-14. [DOI: 10.1039/c8nj02244e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
103 Zhao M, Tao Y, Huang W, He Y. Reversible pH switchable oxidase-like activities of MnO 2 nanosheets for a visual molecular majority logic gate. Phys Chem Chem Phys 2018;20:28644-8. [DOI: 10.1039/c8cp05660a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
104 He L, Lu Y, Wang F, Jing W, Chen Y, Liu Y. Colorimetric sensing of silver ions based on glutathione-mediated MnO2 nanosheets. Sensors and Actuators B: Chemical 2018;254:468-74. [DOI: 10.1016/j.snb.2017.07.131] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
105 Mandal J, Ghorai P, Brandão P, Pal K, Karmakar P, Saha A. An aminoquinoline based biocompatible fluorescent and colourimetric pH sensor designed for cancer cell discrimination. New J Chem 2018;42:19818-26. [DOI: 10.1039/c8nj04753g] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
106 Abbasi-moayed S, Golmohammadi H, Bigdeli A, Hormozi-nezhad MR. A rainbow ratiometric fluorescent sensor array on bacterial nanocellulose for visual discrimination of biothiols. Analyst 2018;143:3415-24. [DOI: 10.1039/c8an00637g] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 7.6] [Reference Citation Analysis]
107 He L, Wang F, Chen Y, Liu Y. Rapid and sensitive colorimetric detection of ascorbic acid in food based on the intrinsic oxidase-like activity of MnO 2 nanosheets. Luminescence 2018;33:145-52. [DOI: 10.1002/bio.3384] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 6.2] [Reference Citation Analysis]
108 Fan D, Shang C, Gu W, Wang E, Dong S. Introducing Ratiometric Fluorescence to MnO2 Nanosheet-Based Biosensing: A Simple, Label-Free Ratiometric Fluorescent Sensor Programmed by Cascade Logic Circuit for Ultrasensitive GSH Detection. ACS Appl Mater Interfaces 2017;9:25870-7. [PMID: 28696093 DOI: 10.1021/acsami.7b07369] [Cited by in Crossref: 133] [Cited by in F6Publishing: 135] [Article Influence: 22.2] [Reference Citation Analysis]
109 Wang F, Lu Y, Jing W, He L, Gao X, Liu Y. Lab-on-nanoparticle as a multidimensional device for colorimetric discrimination of proteins. Microchim Acta 2017;184:3265-71. [DOI: 10.1007/s00604-017-2351-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
110 Tang Y, Lai W, Zhang J, Tang D. Competitive photometric and visual ELISA for aflatoxin B1 based on the inhibition of the oxidation of ABTS. Microchim Acta 2017;184:2387-94. [DOI: 10.1007/s00604-017-2268-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]