BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Raymundo-pereira PA, Shimizu FM, Coelho D, Piazzeta MH, Gobbi AL, Machado SA, Oliveira ON. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces. Biosensors and Bioelectronics 2016;86:369-76. [DOI: 10.1016/j.bios.2016.06.053] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhao Y, Huang J, Huang Q, Tao Y, Gu R, Li H, Liu H. Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection. Nano Res 2022. [DOI: 10.1007/s12274-022-5138-0] [Reference Citation Analysis]
2 de Campos AM, Silva RR, Calegaro ML, Raymundo-pereira PA. Design and Fabrication of Flexible Copper Sensor Decorated with Bismuth Micro/Nanodentrites to Detect Lead and Cadmium in Noninvasive Samples of Sweat. Chemosensors 2022;10:446. [DOI: 10.3390/chemosensors10110446] [Reference Citation Analysis]
3 Zhou D, Song W, Zhang S, Chen L, Ge G. Au@bovine serum albumin nanoparticle-based acid-resistant nanozyme quartz crystal microbalance sensing of urine glucose. RSC Adv 2022;12:29727-33. [PMID: 36321095 DOI: 10.1039/d2ra04707a] [Reference Citation Analysis]
4 Sharma A, Agrawal A, Pandey G, Kumar S, Awasthi K, Awasthi A. Carbon Nano-Onion-Decorated ZnO Composite-Based Enzyme-Less Electrochemical Biosensing Approach for Glucose. ACS Omega. [DOI: 10.1021/acsomega.2c04730] [Reference Citation Analysis]
5 Deng Y, Liu L, Li J, Gao L. Sensors Based on the Carbon Nanotube Field-Effect Transistors for Chemical and Biological Analyses. Biosensors 2022;12:776. [DOI: 10.3390/bios12100776] [Reference Citation Analysis]
6 You Q, Zhuang L, Chang Z, Ge M, Mei Q, Yang L, Dong WF. Hierarchical Au nanoarrays functionalized 2D Ti2CTx MXene membranes for the detection of exosomes isolated from human lung carcinoma cells. Biosens Bioelectron 2022;216:114647. [PMID: 36029661 DOI: 10.1016/j.bios.2022.114647] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Rajendran J, Sundramoorthy AK, Ganapathy D, Atchudan R, Habila MA, Nallaswamy D. 2D MXene/Graphene Nanocomposite Preparation and Its Electrochemical Performance Towards the Identification of Nicotine Level in Human Saliva. Journal of Hazardous Materials 2022. [DOI: 10.1016/j.jhazmat.2022.129705] [Reference Citation Analysis]
8 Orzari LO, Assumpção MHMT, Nandenha J, Neto AO, Junior LHM, Bergamini M, Janegitz BC. Pd, Ag and Bi carbon-supported electrocatalysts as electrochemical multifunctional materials for ethanol oxidation and dopamine determination. Electrochimica Acta 2022. [DOI: 10.1016/j.electacta.2022.140932] [Reference Citation Analysis]
9 Asgari Kheirabadi Z, Rabbani M, Samiei Foroushani M. Green Fabrication of Nonenzymatic Glucose Sensor Using Multi-Walled Carbon Nanotubes Decorated with Copper (II) Oxide Nanoparticles for Tear Fluid Analysis. Appl Biochem Biotechnol 2022. [PMID: 35488956 DOI: 10.1007/s12010-022-03936-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Dong S, Guo L, Chen Y, Zhang Z, Yang Z, Xiang M. Three-dimensional loofah sponge derived amorphous carbon−graphene aerogel via one-pot synthesis for high-performance electrochemical sensor for hydrogen peroxide and dopamine. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.116236] [Reference Citation Analysis]
11 Brazaca LC, Imamura AH, Gomes NO, Almeida MB, Scheidt DT, Raymundo-Pereira PA, Oliveira ON Jr, Janegitz BC, Machado SAS, Carrilho E. Electrochemical immunosensors using electrodeposited gold nanostructures for detecting the S proteins from SARS-CoV and SARS-CoV-2. Anal Bioanal Chem 2022. [PMID: 35169906 DOI: 10.1007/s00216-022-03956-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
12 Pereira AR, Melo AFAA, Crespilho FN, Oliveira ON. Combining Polymers, Nanomaterials, and Biomolecules: Nanostructured Films with Functional Properties and Applications. Molecular Architectonics and Nanoarchitectonics 2022. [DOI: 10.1007/978-981-16-4189-3_19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tutel Y, Koylan S, Tunca S, Unalan HE. Nanometer-Thick Mn:NiO and Co:NiO Films for High Performance Nonenzymatic Biosensors. ACS Appl Nano Mater 2021;4:13871-83. [DOI: 10.1021/acsanm.1c03221] [Reference Citation Analysis]
14 Moncer F, Adhoum N, Catak D, Monser L. Electrochemical sensor based on MIP for highly sensitive detection of 5-hydroxyindole-3-acetic acid carcinoid cancer biomarker in human biological fluids. Anal Chim Acta 2021;1181:338925. [PMID: 34556226 DOI: 10.1016/j.aca.2021.338925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Öndeş B, Evli S, Uygun M, Aktaş Uygun D. Boron nitride nanosheet modified label-free electrochemical immunosensor for cancer antigen 125 detection. Biosens Bioelectron 2021;191:113454. [PMID: 34171737 DOI: 10.1016/j.bios.2021.113454] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
16 Wang Q, Liu Y, Campillo-Brocal JC, Jiménez-Quero A, Crespo GA, Cuartero M. Electrochemical biosensor for glycine detection in biological fluids. Biosens Bioelectron 2021;182:113154. [PMID: 33773381 DOI: 10.1016/j.bios.2021.113154] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
17 Lipińska W, Siuzdak K, Karczewski J, Dołęga A, Grochowska K. Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode. Sensors and Actuators B: Chemical 2021;330:129409. [DOI: 10.1016/j.snb.2020.129409] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
18 Pfeffer C, Liang Y, Grothe H, Wolf B, Brederlow R. Towards Easy-to-Use Bacteria Sensing: Modeling and Simulation of a New Environmental Impedimetric Biosensor in Fluids. Sensors (Basel) 2021;21:1487. [PMID: 33670022 DOI: 10.3390/s21041487] [Reference Citation Analysis]
19 Yao X, Zhang Y, Jin W, Hu Y, Cui Y. Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors. Sensors (Basel) 2021;21:995. [PMID: 33540641 DOI: 10.3390/s21030995] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
20 Murphy M, Theyagarajan K, Thenmozhi K, Senthilkumar S. Direct electrochemistry of covalently immobilized hemoglobin on a naphthylimidazolium butyric acid ionic liquid/MWCNT matrix. Colloids Surf B Biointerfaces 2021;199:111540. [PMID: 33383549 DOI: 10.1016/j.colsurfb.2020.111540] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
21 Koyappayil A, Lee MH. Ultrasensitive Materials for Electrochemical Biosensor Labels. Sensors (Basel) 2020;21:E89. [PMID: 33375629 DOI: 10.3390/s21010089] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
22 Anastasiadi RM, Berti F, Colomban S, Tavagnacco C, Navarini L, Resmini M. Simultaneous Quantification of Antioxidants Paraxanthine and Caffeine in Human Saliva by Electrochemical Sensing for CYP1A2 Phenotyping. Antioxidants (Basel) 2020;10:E10. [PMID: 33374269 DOI: 10.3390/antiox10010010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Raymundo-pereira PA, de Oliveira Pedro R, Carr O, Melendez ME, Gobbi AL, Helena de Oliveira Piazzetta M, Carvalho AL, Reis RM, Miranda PB, Oliveira ON. Influence of the Molecular Orientation and Ionization of Self-Assembled Monolayers in Biosensors: Application to Genosensors of Prostate Cancer Antigen 3. J Phys Chem C 2021;125:498-506. [DOI: 10.1021/acs.jpcc.0c09055] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
24 Falk M, Psotta C, Cirovic S, Shleev S. Non-Invasive Electrochemical Biosensors Operating in Human Physiological Fluids. Sensors (Basel) 2020;20:E6352. [PMID: 33171750 DOI: 10.3390/s20216352] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
25 González-Fuentes FJ, Molina GA, Silva R, López-Miranda JL, Esparza R, Hernandez-Martinez AR, Estevez M. Developing a CNT-SPE Sensing Platform Based on Green Synthesized AuNPs, Using Sargassum sp. Sensors (Basel) 2020;20:E6108. [PMID: 33121053 DOI: 10.3390/s20216108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
26 Wu L, Zhang M, Zhu L, Li J, Li Z, Xie W. Nanozyme-linked immunosorbent assay for porcine circovirus type 2 antibody using HAuCl4/H2O2 coloring system. Microchemical Journal 2020;157:105079. [DOI: 10.1016/j.microc.2020.105079] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Long L, Liu H, Liu X, Chen L, Wang S, Liu C, Dong S, Jia J. Co-embedded N-doped hierarchical carbon arrays with boosting electrocatalytic activity for in situ electrochemical detection of H2O2. Sensors and Actuators B: Chemical 2020;318:128242. [DOI: 10.1016/j.snb.2020.128242] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
28 Lee S, Lee YJ, Kim JH, Lee G. Electrochemical Detection of H2O2 Released from Prostate Cancer Cells Using Pt Nanoparticle-Decorated rGO–CNT Nanocomposite-Modified Screen-Printed Carbon Electrodes. Chemosensors 2020;8:63. [DOI: 10.3390/chemosensors8030063] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
29 Xue Q, Li Z, Wang Q, Pan W, Chang Y, Duan X. Nanostrip flexible microwave enzymatic biosensor for noninvasive epidermal glucose sensing. Nanoscale Horiz 2020;5:934-43. [PMID: 32301449 DOI: 10.1039/d0nh00098a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
30 Luo Y, Wang Q, Li J, Xu F, Sun L, Bu Y, Zou Y, Kraatz H, Rosei F. Tunable hierarchical surfaces of CuO derived from metal–organic frameworks for non-enzymatic glucose sensing. Inorg Chem Front 2020;7:1512-25. [DOI: 10.1039/d0qi00104j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
31 Bibi N, Awan IT, Awan AT. New Adsorption-Based Biosensors for Cancer Detections and Role of Nano-medicine in Its Prognosis and Inhibition. 'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine 2020. [DOI: 10.1007/978-981-15-1067-0_5] [Reference Citation Analysis]
32 Coyle VE, Kandjani AE, Field MR, Hartley P, Chen M, Sabri YM, Bhargava SK. Co3O4 needles on Au honeycomb as a non-invasive electrochemical biosensor for glucose in saliva. Biosensors and Bioelectronics 2019;141:111479. [DOI: 10.1016/j.bios.2019.111479] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
33 Zou B, Cheng H, Tu Y. An electrochemiluminescence immunosensor for myoglobin using an indium tin oxide glass electrode modified with gold nanoparticles and platinum nanowires. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3703-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
34 Das P, Maity PP, Ganguly S, Ghosh S, Baral J, Bose M, Choudhary S, Gangopadhyay S, Dhara S, Das AK, Banerjee S, Das NC. Biocompatible carbon dots derived from κ-carrageenan and phenyl boronic acid for dual modality sensing platform of sugar and its anti-diabetic drug release behavior. International Journal of Biological Macromolecules 2019;132:316-29. [DOI: 10.1016/j.ijbiomac.2019.03.224] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
35 Orzari LO, Cristina de Freitas R, Aparecida de Araujo Andreotti I, Gatti A, Janegitz BC. A novel disposable self-adhesive inked paper device for electrochemical sensing of dopamine and serotonin neurotransmitters and biosensing of glucose. Biosens Bioelectron 2019;138:111310. [PMID: 31103014 DOI: 10.1016/j.bios.2019.05.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
36 de Araujo Andreotti IA, Orzari LO, Camargo JR, Faria RC, Marcolino-junior LH, Bergamini MF, Gatti A, Janegitz BC. Disposable and flexible electrochemical sensor made by recyclable material and low cost conductive ink. Journal of Electroanalytical Chemistry 2019;840:109-16. [DOI: 10.1016/j.jelechem.2019.03.059] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 15.3] [Reference Citation Analysis]
37 dos Santos Pereira T, Mauruto de Oliveira GC, Santos FA, Raymundo-pereira PA, Oliveira ON, Janegitz BC. Use of zein microspheres to anchor carbon black and hemoglobin in electrochemical biosensors to detect hydrogen peroxide in cosmetic products, food and biological fluids. Talanta 2019;194:737-44. [DOI: 10.1016/j.talanta.2018.10.068] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
38 Na W, Lee J, Jun J, Kim W, Kim YK, Jang J. Highly sensitive copper nanowire conductive electrode for nonenzymatic glucose detection. Journal of Industrial and Engineering Chemistry 2019;69:358-63. [DOI: 10.1016/j.jiec.2018.09.050] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
39 Rinaldi AL, Rodríguez-castellón E, Sobral S, Carballo R. Application of a nickel hydroxide gold nanoparticles screen-printed electrode for impedimetric sensing of glucose in artificial saliva. Journal of Electroanalytical Chemistry 2019;832:209-16. [DOI: 10.1016/j.jelechem.2018.11.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
40 Graboski AM, Ballen SC, Galvagni E, Lazzari T, Manzoli A, Shimizu FM, Steffens J, Steffens C. Aroma detection using a gas sensor array with different polyaniline films. Anal Methods 2019;11:654-60. [DOI: 10.1039/c8ay02389a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
41 Martucci DH, Todão FR, Shimizu FM, Fukudome TM, Schwarz SDF, Carrilho E, Gobbi AL, Oliveira ON, Lima RS. Auxiliary electrode oxidation for naked-eye electrochemical determinations in microfluidics: Towards on-the-spot applications. Electrochimica Acta 2018;292:125-35. [DOI: 10.1016/j.electacta.2018.08.133] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
42 Zou W, Ye C, Wang Y, Li W, Huang X. A hybrid ratiometric probe for glucose detection based on synchronous responses to fluorescence quenching and resonance light scattering enhancement of boronic acid functionalized carbon dots. Sensors and Actuators B: Chemical 2018;271:54-63. [DOI: 10.1016/j.snb.2018.05.115] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 10.0] [Reference Citation Analysis]
43 Graboski AM, Galvagni E, Manzoli A, Shimizu FM, Zakrzevski CA, Weschenfelder TA, Steffens J, Steffens C. Lab-made electronic-nose with polyaniline sensor array used in classification of different aromas in gummy candies. Food Res Int 2018;113:309-15. [PMID: 30195525 DOI: 10.1016/j.foodres.2018.07.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
44 Raymundo-pereira PA, Baccarin M, Oliveira ON, Janegitz BC. Thin Films and Composites Based on Graphene for Electrochemical Detection of Biologically-relevant Molecules. Electroanalysis 2018;30:1888-96. [DOI: 10.1002/elan.201800283] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
45 Li Y, He J, Chen J, Niu Y, Zhao Y, Zhang Y, Yu C. A dual-type responsive electrochemical immunosensor for quantitative detection of PCSK9 based on n-C60-PdPt/N-GNRs and Pt-poly (methylene blue) nanocomposites. Biosensors and Bioelectronics 2018;101:7-13. [DOI: 10.1016/j.bios.2017.09.043] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
46 Campos AM, Raymundo-pereira PA, Mendonça CD, Calegaro ML, Machado SAS, Oliveira ON. Size Control of Carbon Spherical Shells for Sensitive Detection of Paracetamol in Sweat, Saliva, and Urine. ACS Appl Nano Mater 2018;1:654-61. [DOI: 10.1021/acsanm.7b00139] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
47 Raymundo-pereira PA, Campos AM, Mendonça CD, Calegaro ML, Machado SA, Oliveira ON. Printex 6L Carbon Nanoballs used in Electrochemical Sensors for Simultaneous Detection of Emerging Pollutants Hydroquinone and Paracetamol. Sensors and Actuators B: Chemical 2017;252:165-74. [DOI: 10.1016/j.snb.2017.05.121] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
48 Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017;117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Cited by in Crossref: 405] [Cited by in F6Publishing: 414] [Article Influence: 81.0] [Reference Citation Analysis]
49 Thapa A, Soares AC, Soares JC, Awan IT, Volpati D, Melendez ME, Fregnani JHTG, Carvalho AL, Oliveira ON Jr. Carbon Nanotube Matrix for Highly Sensitive Biosensors To Detect Pancreatic Cancer Biomarker CA19-9. ACS Appl Mater Interfaces 2017;9:25878-86. [PMID: 28696659 DOI: 10.1021/acsami.7b07384] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 10.8] [Reference Citation Analysis]
50 Shi Y, Feng J, Chen S, Tu G, Chen J, Wang A. Simple synthesis of hierarchical AuPt alloy nanochains for construction of highly sensitive hydrazine and nitrite sensors. Materials Science and Engineering: C 2017;75:1317-25. [DOI: 10.1016/j.msec.2017.03.041] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
51 Tabasi A, Noorbakhsh A, Sharifi E. Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens Bioelectron 2017;95:117-23. [PMID: 28433858 DOI: 10.1016/j.bios.2017.04.020] [Cited by in Crossref: 90] [Cited by in F6Publishing: 73] [Article Influence: 18.0] [Reference Citation Analysis]
52 Li Y, Ye Y, Fan Y, Zhou J, Jia L, Tang B, Wang X. Silver Nanoprism-Loaded Eggshell Membrane: A Facile Platform for In Situ SERS Monitoring of Catalytic Reactions. Crystals 2017;7:45. [DOI: 10.3390/cryst7020045] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
53 Joshi N, da Silva LF, Jadhav H, M'peko J, Millan Torres BB, Aguir K, Mastelaro VR, Oliveira ON. One-step approach for preparing ozone gas sensors based on hierarchical NiCo 2 O 4 structures. RSC Adv 2016;6:92655-62. [DOI: 10.1039/c6ra18384k] [Cited by in Crossref: 91] [Cited by in F6Publishing: 92] [Article Influence: 15.2] [Reference Citation Analysis]