BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee MH, Thomas JL, Chang YC, Tsai YS, Liu BD, Lin HY. Electrochemical sensing of nuclear matrix protein 22 in urine with molecularly imprinted poly(ethylene-co-vinyl alcohol) coated zinc oxide nanorod arrays for clinical studies of bladder cancer diagnosis. Biosens Bioelectron 2016;79:789-95. [PMID: 26774095 DOI: 10.1016/j.bios.2016.01.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
Number Citing Articles
1 Lee M, Lin C, Sharma PS, Thomas JL, Lin C, Iskierko Z, Borowicz P, Lin C, Kutner W, Yang C, Lin H. Peptide Selection of MMP-1 for Electrochemical Sensing with Epitope-Imprinted Poly(TPARA-co-EDOT)s. Biosensors 2022;12:1018. [DOI: 10.3390/bios12111018] [Reference Citation Analysis]
2 Ashrafizadeh M, Zarrabi A, Karimi‐maleh H, Taheriazam A, Mirzaei S, Hashemi M, Hushmandi K, Makvandi P, Nazarzadeh Zare E, Sharifi E, Goel A, Wang L, Ren J, Nuri Ertas Y, Kumar AP, Wang Y, Rabiee N, Sethi G, Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10353] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Sohrabi H, Bolandi N, Hemmati A, Eyvazi S, Ghasemzadeh S, Baradaran B, Oroojalian F, Reza Majidi M, de la Guardia M, Mokhtarzadeh A. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchemical Journal 2022;177:107248. [DOI: 10.1016/j.microc.2022.107248] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
4 Zhao Y, Tao Y, Huang Q, Huang J, Kuang J, Gu R, Zeng P, Li H, Liang H, Liu H. Electrochemical Biosensor Employing Bi2S3 Nanocrystals-Modified Electrode for Bladder Cancer Biomarker Detection. Chemosensors 2022;10:48. [DOI: 10.3390/chemosensors10020048] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
5 Ensafi AA, Kazemifard N, Jamei HR. Molecularly imprinted biosensors for sensitive detection of biomarkers. The Detection of Biomarkers 2022. [DOI: 10.1016/b978-0-12-822859-3.00019-5] [Reference Citation Analysis]
6 Wei X, Bian F, Zhang H, Wang H, Zhu Y. Multiplex assays of bladder cancer protein markers with magnetic structural color hydrogel microcarriers based on microfluidics. Sensors and Actuators B: Chemical 2021;346:130464. [DOI: 10.1016/j.snb.2021.130464] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
7 Lee MH, Thomas JL, Li JA, Chen JR, Wang TL, Lin HY. Synthesis of Multifunctional Nanoparticles for the Combination of Photodynamic Therapy and Immunotherapy. Pharmaceuticals (Basel) 2021;14:508. [PMID: 34073468 DOI: 10.3390/ph14060508] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Li D, Wu C, Tang X, Zhang Y, Wang T. Electrochemical Sensors Applied for In vitro Diagnosis. Chem Res Chin Univ 2021;37:803-22. [DOI: 10.1007/s40242-021-0387-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
9 Jing W, Cui X, Kong F, Wei W, Li Y, Fan L, Li X. Fe–N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants. Analyst 2021;146:207-12. [DOI: 10.1039/d0an01447h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
10 Aydın EB, Aydın M, Sezgintürk MK. Immunosensors Based on the Technology of Molecular Imprinted Polymers. Molecular Imprinting for Nanosensors and Other Sensing Applications 2021. [DOI: 10.1016/b978-0-12-822117-4.00006-x] [Reference Citation Analysis]
11 Nemčeková K, Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. Mater Sci Eng C Mater Biol Appl 2021;120:111751. [PMID: 33545892 DOI: 10.1016/j.msec.2020.111751] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
12 Lee MH, Thomas JL, Su ZL, Yeh WK, Monzel AS, Bolognin S, Schwamborn JC, Yang CH, Lin HY. Epitope imprinting of alpha-synuclein for sensing in Parkinson's brain organoid culture medium. Biosens Bioelectron 2021;175:112852. [PMID: 33288425 DOI: 10.1016/j.bios.2020.112852] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
13 Li Y, Zeng B, Yang Y, Liang H, Yang Y, Yuan Q. Design of high stability thin-film transistor biosensor for the diagnosis of bladder cancer. Chinese Chemical Letters 2020;31:1387-91. [DOI: 10.1016/j.cclet.2020.03.043] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
14 Yang Y, Zeng B, Li Y, Liang H, Yang Y, Yuan Q. Construction of MoS2 field effect transistor sensor array for the detection of bladder cancer biomarkers. Sci China Chem 2020;63:997-1003. [DOI: 10.1007/s11426-020-9743-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
15 Tian L, Ma Y, Li M, Tang Q, Miao L, Geng B, He L. Biomimetic synthesis of all-inclusive organic-inorganic nanospheres for enhanced electrochemical immunoassay. Chinese Chemical Letters 2020;31:1159-61. [DOI: 10.1016/j.cclet.2019.10.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Hsu YP, Yang HW, Li NS, Chen YT, Pang HH, Pang ST. Instrument-Free Detection of FXYD3 Using Vial-Based Immunosensor for Earlier and Faster Urothelial Carcinoma Diagnosis. ACS Sens 2020;5:928-35. [PMID: 32162907 DOI: 10.1021/acssensors.9b02013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Zhang X, Chen Z, Zuo X. Chloroauric Acid/Silver Nanoparticle Colorimetric Sensors for Antioxidant Discrimination Based on a Honeycomb Ag-Au Nanostructure. ACS Sustainable Chem Eng 2020;8:3922-8. [DOI: 10.1021/acssuschemeng.9b07523] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
18 Lee MH, Thomas JL, Su ZL, Zhang ZX, Lin CY, Huang YS, Yang CH, Lin HY. Doping of transition metal dichalcogenides in molecularly imprinted conductive polymers for the ultrasensitive determination of 17β-estradiol in eel serum. Biosens Bioelectron 2020;150:111901. [PMID: 31767344 DOI: 10.1016/j.bios.2019.111901] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
19 Li S, Li K, Li X, Chen Z. Colorimetric Electronic Tongue for Rapid Discrimination of Antioxidants Based on the Oxidation Etching of Nanotriangular Silver by Metal Ions. ACS Appl Mater Interfaces 2019;11:37371-8. [PMID: 31538470 DOI: 10.1021/acsami.9b14522] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
20 Zhuge W, Tan X, Zhang R, Li H, Zheng G. Fluorescent and colorimetric immunoassay of nuclear matrix protein 22 enhanced by porous Pd nanoparticles. Chinese Chemical Letters 2019;30:1307-9. [DOI: 10.1016/j.cclet.2019.02.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
21 Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Progress in Polymer Science 2019;90:1-34. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Cited by in Crossref: 332] [Cited by in F6Publishing: 217] [Article Influence: 110.7] [Reference Citation Analysis]
22 Li X, Kong C, Chen Z. Colorimetric Sensor Arrays for Antioxidant Discrimination Based on the Inhibition of the Oxidation Reaction between 3,3′,5,5′-Tetramethylbenzidine and Hydrogen Peroxides. ACS Appl Mater Interfaces 2019;11:9504-9. [DOI: 10.1021/acsami.8b18548] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
23 Zhao S, Zhang Y, Ding S, Fan J, Luo Z, Liu K, Shi Q, Liu W, Zang G. A highly sensitive label-free electrochemical immunosensor based on AuNPs-PtNPs-MOFs for nuclear matrix protein 22 analysis in urine sample. Journal of Electroanalytical Chemistry 2019;834:33-42. [DOI: 10.1016/j.jelechem.2018.12.044] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
24 Li J, Li M, Yang B. Strategies to improve the sensitivity of molecularly imprinted sensors. Smart Polymer Catalysts and Tunable Catalysis. Elsevier; 2019. pp. 149-75. [DOI: 10.1016/b978-0-12-811840-5.00007-1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Han S, Su L, Zhai M, Ma L, Liu S, Teng Y. A molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cells. J Mater Sci 2019;54:3331-41. [DOI: 10.1007/s10853-018-3023-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
26 Alizadeh N, Salimi A. Ultrasensitive Bioaffinity Electrochemical Sensors: Advances and New Perspectives. Electroanalysis 2018;30:2803-40. [DOI: 10.1002/elan.201800598] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
27 Liu W, Wu S, Liu B, Wei C. CMOS electrochemical measurement circuit for biomolecular detection. International Journal of Electronics 2018;105:1467-1486. [DOI: 10.1080/00207217.2018.1460872] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
28 Yang B, Fu C, Li J, Xu G. Frontiers in highly sensitive molecularly imprinted electrochemical sensors: Challenges and strategies. TrAC Trends in Analytical Chemistry 2018;105:52-67. [DOI: 10.1016/j.trac.2018.04.011] [Cited by in Crossref: 66] [Cited by in F6Publishing: 45] [Article Influence: 16.5] [Reference Citation Analysis]
29 He MH, Chen L, Zheng T, Tu Y, He Q, Fu HL, Lin JC, Zhang W, Shu G, He L, Yuan ZX. Potential Applications of Nanotechnology in Urological Cancer. Front Pharmacol 2018;9:745. [PMID: 30038573 DOI: 10.3389/fphar.2018.00745] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
30 Niu Z, Zhang W, Yu C, Zhang J, Wen Y. Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. TrAC Trends in Analytical Chemistry 2018;102:123-46. [DOI: 10.1016/j.trac.2018.02.005] [Cited by in Crossref: 92] [Cited by in F6Publishing: 94] [Article Influence: 23.0] [Reference Citation Analysis]
31 Lee M, Thomas JL, Liao C, Jurcevic S, Crnogorac-jurcevic T, Lin H. Epitope recognition of peptide-imprinted polymers for Regenerating protein 1 (REG1). Separation and Purification Technology 2018;192:213-9. [DOI: 10.1016/j.seppur.2017.09.071] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
32 Duquesne I, Weisbach L, Aziz A, Kluth LA, Xylinas E; Young Academic Urologist Urothelial Carcinoma Group of the European Association of Urology. The contemporary role and impact of urine-based biomarkers in bladder cancer. Transl Androl Urol 2017;6:1031-42. [PMID: 29354490 DOI: 10.21037/tau.2017.11.29] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
33 Luo S, Thomas JL, Guo H, Liao W, Lee M, Lin H. Electrosynthesis of Nanostructured, Imprinted Poly(hydroxymethyl 3,4-ethylenedioxythiophene) for the Ultrasensitive Electrochemical Detection of Urinary Progesterone. ChemistrySelect 2017;2:7935-9. [DOI: 10.1002/slct.201701469] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
34 Wang D, Zhao X, Gu Z. Advanced optoelectronic nanodevices and nanomaterials for sensing inside single living cell. Optics Communications 2017;395:3-15. [DOI: 10.1016/j.optcom.2016.03.047] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
35 Huang W, Deng Y, He Y. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosensors and Bioelectronics 2017;91:89-94. [DOI: 10.1016/j.bios.2016.12.028] [Cited by in Crossref: 110] [Cited by in F6Publishing: 110] [Article Influence: 22.0] [Reference Citation Analysis]
36 Selvolini G, Marrazza G. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination. Sensors (Basel) 2017;17:E718. [PMID: 28353669 DOI: 10.3390/s17040718] [Cited by in Crossref: 88] [Cited by in F6Publishing: 90] [Article Influence: 17.6] [Reference Citation Analysis]
37 Lee M, Thomas JL, Liao C, Jurcevic S, Crnogorac-jurcevic T, Lin H. Polymers imprinted with three REG1B peptides for electrochemical determination of Regenerating Protein 1B, a urinary biomarker for pancreatic ductal adenocarcinoma. Microchim Acta 2017;184:1773-80. [DOI: 10.1007/s00604-017-2169-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
38 Lee M, Thomas JL, Shih C, Lin C, Lin S, Chen W, Lin H. The potential use of glucose oxidase-imprinted polymer-coated electrodes for biofuel cells. New J Chem 2017;41:14646-51. [DOI: 10.1039/c7nj02049j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
39 Wen L, Tan X, Sun Q, Svec F, Lv Y. “Smart” molecularly imprinted monoliths for the selective capture and easy release of proteins: Other Techniques. J Sep Science 2016;39:3267-73. [DOI: 10.1002/jssc.201600576] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
40 Wu D, Wang Y, Zhang Y, Ma H, Yan T, Du B, Wei Q. Sensitive Electrochemical Immunosensor for Detection of Nuclear Matrix Protein-22 based on NH2-SAPO-34 Supported Pd/Co Nanoparticles. Sci Rep 2016;6:24551. [PMID: 27086763 DOI: 10.1038/srep24551] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
41 Liu W, Liu B, Wei C. A Multi-Channel Electrochemical Measurement System for Biomolecular Detection. IEICE Trans Electron 2016;E99.C:1295-1303. [DOI: 10.1587/transele.e99.c.1295] [Reference Citation Analysis]
42 Lee M, O'hare D, Guo H, Yang C, Lin H. Electrochemical sensing of urinary progesterone with molecularly imprinted poly(aniline-co-metanilic acid)s. J Mater Chem B 2016;4:3782-7. [DOI: 10.1039/c6tb00760k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]