BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Y, Deng J, Fang L, Yu K, Huang H, Jiang L, Liang W, Zheng J. A novel electrochemical DNA biosensor based on HRP-mimicking hemin/G-quadruplex wrapped GOx nanocomposites as tag for detection of Escherichia coli O157:H7. Biosens Bioelectron 2015;63:1-6. [PMID: 25048446 DOI: 10.1016/j.bios.2014.07.012] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Bai Z, Xu X, Wang C, Wang T, Sun C, Liu S, Li D. A Comprehensive Review of Detection Methods for Escherichia coli O157:H7. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116646] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Babaie P, Saadati A, Hasanzadeh M. Recent progress and challenges on the bioassay of pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2021;109:548-71. [PMID: 32924292 DOI: 10.1002/jbm.b.34723] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
3 Zhang C, Zhang H, Wu P, Zhang X, Liu J. Suppressing the background activity of hemin for boosting the sensitivity of DNAzyme-based biosensors by SYBR Green I. Biosens Bioelectron 2020;169:112603. [PMID: 32947082 DOI: 10.1016/j.bios.2020.112603] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
4 Razmi N, Hasanzadeh M, Willander M, Nur O. Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview. Biosensors (Basel) 2020;10:E54. [PMID: 32443629 DOI: 10.3390/bios10050054] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
5 Wu Q, Zhang Y, Yang Q, Yuan N, Zhang W. Review of Electrochemical DNA Biosensors for Detecting Food Borne Pathogens. Sensors (Basel) 2019;19:E4916. [PMID: 31718098 DOI: 10.3390/s19224916] [Cited by in Crossref: 11] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
6 Li D, Li C, Liang A, Jiang Z. SERS and fluorescence dual-mode sensing trace hemin and K+ based on G-quarplex/hemin DNAzyme catalytic amplification. Sensors and Actuators B: Chemical 2019;297:126799. [DOI: 10.1016/j.snb.2019.126799] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
7 Li Y, Liu H, Huang H, Deng J, Fang L, Luo J, Zhang S, Huang J, Liang W, Zheng J. A sensitive electrochemical strategy via multiple amplification reactions for the detection of E. coli O157: H7. Biosens Bioelectron 2020;147:111752. [PMID: 31630033 DOI: 10.1016/j.bios.2019.111752] [Cited by in Crossref: 20] [Cited by in F6Publishing: 28] [Article Influence: 6.7] [Reference Citation Analysis]
8 Darabdhara G, Das MR, Singh SP, Rengan AK, Szunerits S, Boukherroub R. Ag and Au nanoparticles/reduced graphene oxide composite materials: Synthesis and application in diagnostics and therapeutics. Adv Colloid Interface Sci 2019;271:101991. [PMID: 31376639 DOI: 10.1016/j.cis.2019.101991] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 17.0] [Reference Citation Analysis]
9 Bilkiss M, Shiddiky MJA, Ford R. Advanced Diagnostic Approaches for Necrotrophic Fungal Pathogens of Temperate Legumes With a Focus on Botrytis spp. Front Microbiol 2019;10:1889. [PMID: 31474966 DOI: 10.3389/fmicb.2019.01889] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
10 Hu M, Wang Y, Yang J, Sun Y, Xing G, Deng R, Hu X, Zhang G. Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH2/AuPt. Biosens Bioelectron 2019;142:111554. [PMID: 31382098 DOI: 10.1016/j.bios.2019.111554] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
11 Shekari Z, Zare HR, Falahati A. Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Mikrochim Acta 2019;186:530. [PMID: 31302781 DOI: 10.1007/s00604-019-3572-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
12 Pei Q, Song X, Liu S, Wang J, Leng X, Cui X, Yu J, Wang Y, Huang J. A facile signal-on electrochemical DNA sensing platform for ultrasensitive detection of pathogenic bacteria based on Exo III-assisted autonomous multiple-cycle amplification. Analyst 2019;144:3023-9. [PMID: 30900712 DOI: 10.1039/c9an00036d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
13 Liu F, Li T, Zhang L, Xiang G, Jiang D, Tu D, Liu L, Li Y, Liu C, Pu X. PAMAM/polyhedral nanogold-modified probes with DNAase catalysis for the amperometric electrochemical detection of metastasis-associated lung adenocarcinoma transcript 1. J Biol Eng 2019;13:21. [PMID: 30886644 DOI: 10.1186/s13036-019-0149-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
14 Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, Ibrahim F, Leo BF. Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Critical Reviews in Analytical Chemistry 2019;49:510-33. [DOI: 10.1080/10408347.2018.1561243] [Cited by in Crossref: 26] [Cited by in F6Publishing: 34] [Article Influence: 8.7] [Reference Citation Analysis]
15 Jaiswal N, Pandey CM, Soni A, Tiwari I, Rosillo-lopez M, Salzmann CG, Malhotra BD, Sumana G. Electrochemical genosensor based on carboxylated graphene for detection of water-borne pathogen. Sensors and Actuators B: Chemical 2018;275:312-21. [DOI: 10.1016/j.snb.2018.07.055] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
16 Zhou C, Zou H, Sun C, Ren D, Chen J, Li Y. Signal amplification strategies for DNA-based surface plasmon resonance biosensors. Biosensors and Bioelectronics 2018;117:678-89. [DOI: 10.1016/j.bios.2018.06.062] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
17 Zou Y, Liang J, She Z, Kraatz HB. Gold nanoparticles-based multifunctional nanoconjugates for highly sensitive and enzyme-free detection of E.coli K12. Talanta 2019;193:15-22. [PMID: 30368284 DOI: 10.1016/j.talanta.2018.09.068] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
18 Jin X, Zhou L, Zhu B, Jiang X, Zhu N. Silver-dendrimer nanocomposites as oligonucleotide labels for electrochemical stripping detection of DNA hybridization. Biosens Bioelectron 2018;107:237-43. [PMID: 29477124 DOI: 10.1016/j.bios.2018.02.033] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
19 Chen Z, Chengjun S, Zewei L, Kunping L, Xijian Y, Haimin Z, Yongxin L, Yixiang D. Fiber optic biosensor for detection of genetically modified food based on catalytic hairpin assembly reaction and nanocomposites assisted signal amplification. Sensors and Actuators B: Chemical 2018;254:956-65. [DOI: 10.1016/j.snb.2017.07.174] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
20 Qi M, Huang J, Wei H, Cao C, Feng S, Guo Q, Goldys EM, Li R, Liu G. Graphene Oxide Thin Film with Dual Function Integrated into a Nanosandwich Device for in Vivo Monitoring of Interleukin-6. ACS Appl Mater Interfaces 2017;9:41659-68. [PMID: 29119789 DOI: 10.1021/acsami.7b10753] [Cited by in Crossref: 27] [Cited by in F6Publishing: 35] [Article Influence: 5.4] [Reference Citation Analysis]
21 Aghaei R, Mazloum-ardakani M, Abdollahi-alibeik M, Moshtaghioun SM, Rezaeipoor-anari A, Haghighijoo Z, Zamani L. A new electrochemical biosensor based on telomeric G-quadruplex DNA: In silico and experimental study of dihydropyridine derivatives potential effect on telomerase inhibition. Journal of Electroanalytical Chemistry 2017;796:24-32. [DOI: 10.1016/j.jelechem.2017.04.055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
22 Zhao Y, He J, Niu Y, Chen J, Wu J, Yu C. A new sight for detecting the ADRB1 gene mutation to guide a therapeutic regimen for hypertension based on a CeO 2 -doped nanoprobe. Biosensors and Bioelectronics 2017;92:402-9. [DOI: 10.1016/j.bios.2016.10.087] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
23 Medlin LK, Orozco J. Molecular Techniques for the Detection of Organisms in Aquatic Environments, with Emphasis on Harmful Algal Bloom Species. Sensors (Basel) 2017;17:E1184. [PMID: 28531156 DOI: 10.3390/s17051184] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 7.8] [Reference Citation Analysis]
24 Cheng D, Yang L, Li X, Zhou J, Chen Q, Yan S, Li N, Chu M, Dong Y, Xie Z, Zhang C. An Electrochemical DNA Sensing Platform Using Carboxyl Functionalized Graphene as the Electrode Modified Material. J Electrochem Soc 2017;164:H345-51. [DOI: 10.1149/2.0951706jes] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
25 Alizadeh N, Hallaj R, Salimi A. A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification. Biosens Bioelectron 2017;94:184-92. [PMID: 28284078 DOI: 10.1016/j.bios.2017.02.039] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 12.8] [Reference Citation Analysis]
26 Li Y, Xiong Y, Fang L, Jiang L, Huang H, Deng J, Liang W, Zheng J. An Electrochemical Strategy using Multifunctional Nanoconjugates for Efficient Simultaneous Detection of Escherichia coli O157: H7 and Vibrio cholerae O1. Theranostics 2017;7:935-44. [PMID: 28382165 DOI: 10.7150/thno.17544] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
27 Aghaei F, Seifati SM, Nasirizadeh N. Development of a DNA biosensor for the detection of phenylketonuria based on a screen-printed gold electrode and hematoxylin. Anal Methods 2017;9:966-73. [DOI: 10.1039/c6ay02853e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
28 Du Y, Dong S. Nucleic Acid Biosensors: Recent Advances and Perspectives. Anal Chem 2017;89:189-215. [PMID: 28105831 DOI: 10.1021/acs.analchem.6b04190] [Cited by in Crossref: 202] [Cited by in F6Publishing: 214] [Article Influence: 33.7] [Reference Citation Analysis]
29 Ye Y, Gao J, Zhuang H, Zheng H, Sun H, Ye Y, Xu X, Cao X. Electrochemical gene sensor based on a glassy carbon electrode modified with hemin-functionalized reduced graphene oxide and gold nanoparticle-immobilized probe DNA. Microchim Acta 2017;184:245-52. [DOI: 10.1007/s00604-016-1999-9] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
30 Yang T, Huang H, Zhu F, Lin Q, Zhang L, Liu J. Recent Progresses in Nanobiosensing for Food Safety Analysis. Sensors (Basel) 2016;16:E1118. [PMID: 27447636 DOI: 10.3390/s16071118] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
31 Xu M, Wang R, Li Y. An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes. Analyst 2016;141:5441-9. [PMID: 27358917 DOI: 10.1039/c6an00873a] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 7.0] [Reference Citation Analysis]
32 Izadi Z, Sheikh-zeinoddin M, Ensafi AA, Soleimanian-zad S. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosensors and Bioelectronics 2016;80:582-9. [DOI: 10.1016/j.bios.2016.02.032] [Cited by in Crossref: 58] [Cited by in F6Publishing: 56] [Article Influence: 9.7] [Reference Citation Analysis]
33 Miao X, Yang C, Leung CH, Ma DL. Application of iridium(III) complex in label-free and non-enzymatic electrochemical detection of hydrogen peroxide based on a novel "on-off-on" switch platform. Sci Rep 2016;6:25774. [PMID: 27170211 DOI: 10.1038/srep25774] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
34 Wang Q, Li Q, Yang X, Wang K, Du S, Zhang H, Nie Y. Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA. Biosensors and Bioelectronics 2016;77:1001-7. [DOI: 10.1016/j.bios.2015.10.091] [Cited by in Crossref: 95] [Cited by in F6Publishing: 95] [Article Influence: 15.8] [Reference Citation Analysis]
35 Zhang X, Shen J, Ma H, Jiang Y, Huang C, Han E, Yao B, He Y. Optimized dendrimer-encapsulated gold nanoparticles and enhanced carbon nanotube nanoprobes for amplified electrochemical immunoassay of E. coli in dairy product based on enzymatically induced deposition of polyaniline. Biosens Bioelectron 2016;80:666-73. [PMID: 26908184 DOI: 10.1016/j.bios.2016.02.043] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
36 Gu CJ, Kong FY, Chen ZD, Fan DH, Fang HL, Wang W. Reduced graphene oxide-Hemin-Au nanohybrids: Facile one-pot synthesis and enhanced electrocatalytic activity towards the reduction of hydrogen peroxide. Biosens Bioelectron 2016;78:300-7. [PMID: 26638039 DOI: 10.1016/j.bios.2015.11.035] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
37 He Z, Zang S, Liu Y, He Y, Lei H. A multi-walled carbon nanotubes-poly(l-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosensors and Bioelectronics 2015;73:85-92. [DOI: 10.1016/j.bios.2015.05.054] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 8.1] [Reference Citation Analysis]
38 Yang L, Li X, Li X, Yan S, Ren Y, Wang M, Liu P, Dong Y, Zhang C. [Cu(phen)2](2+) acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor. Anal Biochem 2016;492:56-62. [PMID: 26403602 DOI: 10.1016/j.ab.2015.09.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
39 Yang Y, Kang M, Fang S, Wang M, He L, Zhao J, Zhang H, Zhang Z. Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sensors and Actuators B: Chemical 2015;214:63-9. [DOI: 10.1016/j.snb.2015.02.127] [Cited by in Crossref: 86] [Cited by in F6Publishing: 76] [Article Influence: 12.3] [Reference Citation Analysis]
40 Liu F, Xiang G, Jiang D, Zhang L, Chen X, Liu L, Luo F, Li Y, Liu C, Pu X. Ultrasensitive strategy based on PtPd nanodendrite/nano-flower-like@GO signal amplification for the detection of long non-coding RNA. Biosens Bioelectron 2015;74:214-21. [PMID: 26143461 DOI: 10.1016/j.bios.2015.06.021] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
41 Li F, Yu Z, Qu H, Zhang G, Yan H, Liu X, He X. A highly sensitive and specific electrochemical sensing method for robust detection of Escherichia coli lac Z gene sequence. Biosensors and Bioelectronics 2015;68:78-82. [DOI: 10.1016/j.bios.2014.12.050] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
42 Xia N, Liu L, Sun Z, Zhou B. Nanocomposites of Graphene with Ferrocene or Hemin: Preparation and Application in Electrochemical Sensing. Journal of Nanomaterials 2015;2015:1-9. [DOI: 10.1155/2015/892674] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
43 Liu F, Xiang G, Zhang L, Jiang D, Liu L, Li Y, Liu C, Pu X. A novel label free long non-coding RNA electrochemical biosensor based on green l -cysteine electrodeposition and Au–Rh hollow nanospheres as tags. RSC Adv 2015;5:51990-9. [DOI: 10.1039/c5ra07904g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
44 Wang Q, Song Y, Xie H, Chai Y, Yuan Y, Yuan R. l -Cysteine induced hemin/G-quadruplex concatemers electrocatalytic amplification with Pt–Pd supported on fullerene as a nanocarrier for sensing the spore wall protein of Nosema bombycis. Chem Commun 2015;51:1255-8. [DOI: 10.1039/c4cc07753a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]