BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou J, Zhuang J, Miró M, Gao Z, Chen G, Tang D. Carbon nanospheres-promoted electrochemical immunoassay coupled with hollow platinum nanolabels for sensitivity enhancement. Biosensors and Bioelectronics 2012;35:394-400. [DOI: 10.1016/j.bios.2012.03.025] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Fu C, Wang Y, Tian X, Wu Y, Cao H, Li Y, Jung YM. Horseradish peroxidase-repeat assay based on tyramine signal amplification for highly sensitive H2O2 detection by surface-enhanced Raman scattering. Analyst 2021;146:7320-6. [PMID: 34762076 DOI: 10.1039/d1an01705e] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Lin S, Zhong J, Chi Y, Chen Y, Khan MS, Shen J. Colorimetric immunosensor based on glassy carbon microspheres test strips for the detection of prostate-specific antigen. Mikrochim Acta 2021;188:366. [PMID: 34617126 DOI: 10.1007/s00604-021-04907-w] [Reference Citation Analysis]
3 Huang Z, Lin Q, Yang B, Ye X, Chen H, Weng W, Kong J. Cascade signal amplification for sensitive detection of exosomes by integrating tyramide and surface-initiated enzymatic polymerization. Chem Commun (Camb) 2020;56:12793-6. [PMID: 32966397 DOI: 10.1039/d0cc04881j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
4 Asadian E, Ghalkhani M, Shahrokhian S. Electrochemical sensing based on carbon nanoparticles: A review. Sensors and Actuators B: Chemical 2019;293:183-209. [DOI: 10.1016/j.snb.2019.04.075] [Cited by in Crossref: 100] [Cited by in F6Publishing: 89] [Article Influence: 33.3] [Reference Citation Analysis]
5 Lin S, Zheng D, Li A, Chi Y. Black oxidized 3,3',5,5'-tetramethylbenzidine nanowires (oxTMB NWs) for enhancing Pt nanoparticle-based strip immunosensing. Anal Bioanal Chem 2019;411:4063-71. [PMID: 30972472 DOI: 10.1007/s00216-019-01745-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
6 Cao Y, Mo G, Feng J, He X, Tang L, Yu C, Deng B. Based on ZnSe quantum dots labeling and single particle mode ICP-MS coupled with sandwich magnetic immunoassay for the detection of carcinoembryonic antigen in human serum. Analytica Chimica Acta 2018;1028:22-31. [DOI: 10.1016/j.aca.2018.04.039] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 6.5] [Reference Citation Analysis]
7 Pei LZ, Wei T, Lin N, Zhang H, Fan CG. Bismuth Tellurate Nanospheres and Electrochemical Behaviors of L-Cysteine at the Nanospheres Modified Electrode. Russ J Electrochem 2018;54:84-91. [DOI: 10.1134/s102319351711012x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
8 Ghorbanizamani F, Timur S. Ionic Liquids from Biocompatibility and Electrochemical Aspects toward Applying in Biosensing Devices. Anal Chem 2017;90:640-8. [DOI: 10.1021/acs.analchem.7b03596] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
9 Liu X, Huo X, Liu P, Tang Y, Xu J, Ju H. TiO 2 nanowire arrays modified with a simultaneous “etching, doping and deposition” technique for ultrasensitive amperometric immunosensing. Biosensors and Bioelectronics 2017;92:171-8. [DOI: 10.1016/j.bios.2017.02.019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
10 Yang Z, Lan Q, Li J, Wu J, Tang Y, Hu X. Efficient streptavidin-functionalized nitrogen-doped graphene for the development of highly sensitive electrochemical immunosensor. Biosensors and Bioelectronics 2017;89:312-8. [DOI: 10.1016/j.bios.2016.09.026] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 9.4] [Reference Citation Analysis]
11 Song Y, Shen Y, Chen J, Song Y, Gong C, Wang L. A pH-Dependent Electrochemical Immunosensor Based on Integrated Macroporous Carbon Electrode for Assay of Carcinoembryonic Antigen. Electrochimica Acta 2016;211:297-304. [DOI: 10.1016/j.electacta.2016.06.063] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
12 Yáñez-sedeño P, González-cortés A, Agüí L, Pingarrón JM. Uncommon Carbon Nanostructures for the Preparation of Electrochemical Immunosensors. Electroanalysis 2016;28:1679-91. [DOI: 10.1002/elan.201600154] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
13 Zhang Y, Li J, Wang Z, Ma H, Wu D, Cheng Q, Wei Q. Label-free electrochemical immunosensor based on enhanced signal amplification between Au@Pd and CoFe2O4/graphene nanohybrid. Sci Rep 2016;6:23391. [PMID: 26987503 DOI: 10.1038/srep23391] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 4.2] [Reference Citation Analysis]
14 Qiu Z, Tang D, Shu J, Chen G, Tang D. Enzyme-triggered formation of enzyme-tyramine concatamers on nanogold-functionalized dendrimer for impedimetric detection of Hg(II) with sensitivity enhancement. Biosensors and Bioelectronics 2016;75:108-15. [DOI: 10.1016/j.bios.2015.08.026] [Cited by in Crossref: 41] [Cited by in F6Publishing: 50] [Article Influence: 6.8] [Reference Citation Analysis]
15 Anik Ü, Timur S. Towards the electrochemical diagnosis of cancer: nanomaterial-based immunosensors and cytosensors. RSC Adv 2016;6:111831-41. [DOI: 10.1039/c6ra23686c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
16 Xu T, Zhang H, Li X, Xie Z, Li X. Enzyme-triggered tyramine-enzyme repeats on prussian blue-gold hybrid nanostructures for highly sensitive electrochemical immunoassay of tissue polypeptide antigen. Biosensors and Bioelectronics 2015;73:167-73. [DOI: 10.1016/j.bios.2015.05.057] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
17 Wu D, Ma H, Zhang Y, Jia H, Yan T, Wei Q. Corallite-like Magnetic Fe 3 O 4 @MnO 2 @Pt Nanocomposites as Multiple Signal Amplifiers for the Detection of Carcinoembryonic Antigen. ACS Appl Mater Interfaces 2015;7:18786-93. [DOI: 10.1021/acsami.5b05443] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
18 Gao Z, Xu M, Lu M, Chen G, Tang D. Urchin-like (gold core)@(platinum shell) nanohybrids: A highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosensors and Bioelectronics 2015;70:194-201. [DOI: 10.1016/j.bios.2015.03.039] [Cited by in Crossref: 88] [Cited by in F6Publishing: 96] [Article Influence: 12.6] [Reference Citation Analysis]
19 Li F, Gan S, Han D, Niu L. Graphene-Based Nanohybrids for Advanced Electrochemical Sensing. Electroanalysis 2015;27:2098-115. [DOI: 10.1002/elan.201500217] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
20 Stefan-van Staden R, Comnea-stancu IR, Surdu-bob CC, Stanciu-gavan C. Pattern recognition of neuron specific enolase and carcinoembryonic antigen in whole blood samples: SIMULTANEOUS ASSAY OF CEA AND NSE. J Mol Recognit 2015;28:103-7. [DOI: 10.1002/jmr.2433] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
21 Xu W, Wu Y, Yi H, Bai L, Chai Y, Yuan R. Porous platinum nanotubes modified with dendrimers as nanocarriers and electrocatalysts for sensitive electrochemical aptasensors based on enzymatic signal amplification. Chem Commun (Camb) 2014;50:1451-3. [PMID: 24351980 DOI: 10.1039/c3cc46725b] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
22 Sundramoorthy AK, Gunasekaran S. Applications of graphene in quality assurance and safety of food. TrAC Trends in Analytical Chemistry 2014;60:36-53. [DOI: 10.1016/j.trac.2014.04.015] [Cited by in Crossref: 65] [Cited by in F6Publishing: 48] [Article Influence: 8.1] [Reference Citation Analysis]
23 Zhou J, Tang J, Chen G, Tang D. Layer-by-layer multienzyme assembly for highly sensitive electrochemical immunoassay based on tyramine signal amplification strategy. Biosensors and Bioelectronics 2014;54:323-8. [DOI: 10.1016/j.bios.2013.11.032] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 5.5] [Reference Citation Analysis]
24 Liu Y, Wei M. Development of acetylcholinesterase biosensor based on platinum–carbon aerogels composite for determination of organophosphorus pesticides. Food Control 2014;36:49-54. [DOI: 10.1016/j.foodcont.2013.08.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
25 Li C, Fan S, Yin C, Zhang N, Du S, Zhao H. Carboxylic silica nanosheet–platinum nanoparticle modified glass carbon electrodes for pesticide detection. Anal Methods 2014;6:1914-21. [DOI: 10.1039/c3ay42305k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
26 Jiang L, Yuan R, Chai Y, Yuan Y, Bai L, Wang Y. An ultrasensitive electrochemical aptasensor for thrombin based on the triplex-amplification of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme and horseradish peroxidase decorated FeTe nanorods. Analyst 2013;138:1497-503. [PMID: 23340527 DOI: 10.1039/c2an36772f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
27 Lin D, Wu J, Ju H, Yan F. Signal amplification for electrochemical immunosensing by in situ assembly of host–guest linked gold nanorod superstructure on immunocomplex. Biosensors and Bioelectronics 2013;45:195-200. [DOI: 10.1016/j.bios.2013.01.070] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
28 Gao Z, Xu M, Hou L, Chen G, Tang D. Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Analytica Chimica Acta 2013;776:79-86. [DOI: 10.1016/j.aca.2013.03.034] [Cited by in Crossref: 132] [Cited by in F6Publishing: 140] [Article Influence: 14.7] [Reference Citation Analysis]
29 Han J, Zhuo Y, Chai Y, Yuan R, Xiang Y, Zhu Q, Liao N. Multi-labeled functionalized C₆₀ nanohybrid as tracing tag for ultrasensitive electrochemical aptasensing. Biosens Bioelectron 2013;46:74-9. [PMID: 23506946 DOI: 10.1016/j.bios.2013.02.020] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
30 Zhang B, Tang D, Goryacheva IY, Niessner R, Knopp D. Anodic-Stripping Voltammetric Immunoassay for Ultrasensitive Detection of Low-Abundance Proteins Using Quantum Dot Aggregated Hollow Microspheres. Chem Eur J 2013;19:2496-503. [DOI: 10.1002/chem.201203131] [Cited by in Crossref: 85] [Cited by in F6Publishing: 83] [Article Influence: 9.4] [Reference Citation Analysis]
31 Tang D, Cui Y, Chen G. Nanoparticle-based immunoassays in the biomedical field. Analyst 2013;138:981. [DOI: 10.1039/c2an36500f] [Cited by in Crossref: 81] [Cited by in F6Publishing: 81] [Article Influence: 9.0] [Reference Citation Analysis]
32 Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal Chim Acta. 2013;758:1-18. [PMID: 23245891 DOI: 10.1016/j.aca.2012.10.060] [Cited by in Crossref: 295] [Cited by in F6Publishing: 297] [Article Influence: 29.5] [Reference Citation Analysis]
33 Lai W, Tang D, Que X, Zhuang J, Fu L, Chen G. Enzyme-catalyzed silver deposition on irregular-shaped gold nanoparticles for electrochemical immunoassay of alpha-fetoprotein. Analytica Chimica Acta 2012;755:62-8. [DOI: 10.1016/j.aca.2012.10.028] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.4] [Reference Citation Analysis]
34 Zhou J, Tang D, Hou L, Cui Y, Chen H, Chen G. Nanoplatinum-enclosed gold nanocores as catalytically promoted nanolabels for sensitive electrochemical immunoassay. Analytica Chimica Acta 2012;751:52-8. [DOI: 10.1016/j.aca.2012.09.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]