BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Su B, Tang D, Tang J, Cui Y, Chen G. Multiarmed star-like platinum nanowires with multienzyme assembly for direct electronic determination of carcinoembryoninc antigen in serum. Biosens Bioelectron. 2011;30:229-234. [PMID: 21982336 DOI: 10.1016/j.bios.2011.09.017] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang H, He Q, Chen Y, Shen D, Xiao H, Eremin SA, Cui X, Zhao S. Platinum nanoflowers with peroxidase-like property in a dual immunoassay for dehydroepiandrosterone. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-04528-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
2 Zaidi SA, Shahzad F, Batool S. Progress in cancer biomarkers monitoring strategies using graphene modified support materials. Talanta 2020;210:120669. [PMID: 31987212 DOI: 10.1016/j.talanta.2019.120669] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
3 Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2020;206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Cited by in Crossref: 69] [Cited by in F6Publishing: 105] [Article Influence: 23.0] [Reference Citation Analysis]
4 Liu J, Shang Y, Zhu Q, Zhang X, Zheng J. A voltammetric immunoassay for the carcinoembryonic antigen using silver(I)-terephthalate metal-organic frameworks containing gold nanoparticles as a signal probe. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3638-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
5 Hasanzadeh M, Shadjou N. Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Microchim Acta 2017;184:389-414. [DOI: 10.1007/s00604-016-2066-2] [Cited by in Crossref: 65] [Cited by in F6Publishing: 52] [Article Influence: 13.0] [Reference Citation Analysis]
6 Zhao L, Li C, Qi H, Gao Q, Zhang C. Electrochemical lectin-based biosensor array for detection and discrimination of carcinoembryonic antigen using dual amplification of gold nanoparticles and horseradish peroxidase. Sensors and Actuators B: Chemical 2016;235:575-82. [DOI: 10.1016/j.snb.2016.05.136] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 6.3] [Reference Citation Analysis]
7 Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016;116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Cited by in Crossref: 424] [Cited by in F6Publishing: 332] [Article Influence: 70.7] [Reference Citation Analysis]
8 Zhu W, Wang Q, Ma H, Lv X, Wu D, Sun X, Du B, Wei Q. Single-step cycle pulse operation of the label-free electrochemiluminescence immunosensor based on branched polypyrrole for carcinoembryonic antigen detection. Sci Rep 2016;6:24599. [PMID: 27091590 DOI: 10.1038/srep24599] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
9 Lin J, Tang D. Glucometer-based signal readout for a portable low-cost electrochemical immunoassay using branched platinum nanowires. Anal Methods 2016;8:4069-74. [DOI: 10.1039/c6ay00897f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
10 Wang H, Yuan Y, Chai Y, Yuan R. Self-enhanced electrochemiluminescence immunosensor based on nanowires obtained by a green approach. Biosensors and Bioelectronics 2015;68:72-7. [DOI: 10.1016/j.bios.2014.12.016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
11 Qiumei C, Hongmei B, Zhaoxia Y, Liu J, Xi F. A reagentless electrochemical immunosensor based on probe immobilization and the layer-by-layer assembly technique for sensitive detection of tumor markers. Anal Methods 2015;7:9655-62. [DOI: 10.1039/c5ay01871d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
12 Xue S, Yi H, Yuan Y, Jing P, Xu W. A label-free and sensitive electrochemical aptasensor for thrombin based on the direct electron transfer of hemin and hemin@rGO nanosheets as the signal probe. Anal Methods 2015;7:8771-7. [DOI: 10.1039/c5ay02136g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
13 Burcu Bahadır E, Kemal Sezgintürk M. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015;132:162-74. [DOI: 10.1016/j.talanta.2014.08.063] [Cited by in Crossref: 119] [Cited by in F6Publishing: 86] [Article Influence: 17.0] [Reference Citation Analysis]
14 Gao Y, Xu J, Lu L, Zhu X, Wang W, Yang T, Zhang K, Yu Y. A label-free electrochemical immunosensor for carcinoembryonic antigen detection on a graphene platform doped with poly(3,4-ethylenedioxythiophene)/Au nanoparticles. RSC Adv 2015;5:86910-8. [DOI: 10.1039/c5ra16618g] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
15 Gao X, Zhao C, Yu T, Yang S, Ren Y, Wei D. Construction of a reusable multi-enzyme supramolecular device via disulfide bond locking. Chem Commun 2015;51:10131-3. [DOI: 10.1039/c5cc02544c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
16 Uliana CV, Riccardi CS, Yamanaka H. Diagnostic tests for hepatitis C: Recent trends in electrochemical immunosensor and genosensor analysis. World J Gastroenterol 2014; 20(42): 15476-15491 [PMID: 25400433 DOI: 10.3748/wjg.v20.i42.15476] [Cited by in CrossRef: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
17 Xu W, Wu Y, Yi H, Bai L, Chai Y, Yuan R. Porous platinum nanotubes modified with dendrimers as nanocarriers and electrocatalysts for sensitive electrochemical aptasensors based on enzymatic signal amplification. Chem Commun (Camb) 2014;50:1451-3. [PMID: 24351980 DOI: 10.1039/c3cc46725b] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
18 Lu W, Ge J, Tao L, Cao X, Dong J, Qian W. Large-scale synthesis of ultrathin Au-Pt nanowires assembled on thionine/graphene with high conductivity and sensitivity for electrochemical immunosensor. Electrochimica Acta 2014;130:335-43. [DOI: 10.1016/j.electacta.2014.03.065] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 5.1] [Reference Citation Analysis]
19 Zhang J, Yuan Y, biXie S, Chai Y, Yuan R. Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNA-PtNPs dendrimer as a synergetic signal amplification label. Biosens Bioelectron 2014;60:224-30. [PMID: 24813911 DOI: 10.1016/j.bios.2014.04.024] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
20 Wang H, Chai Y, Yuan R, Cao Y, Bai L. Highly enhanced electrochemiluminescent strategy for tumor biomarkers detection with in situ generation of l-homocysteine for signal amplification. Analytica Chimica Acta 2014;815:16-21. [DOI: 10.1016/j.aca.2014.01.040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
21 Zhou W, Su J, Chai Y, Yuan R, Xiang Y. Naked eye detection of trace cancer biomarkers based on biobarcode and enzyme-assisted DNA recycling hybrid amplifications. Biosensors and Bioelectronics 2014;53:494-8. [DOI: 10.1016/j.bios.2013.10.020] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
22 Sun A, Qi Q, Wang X, Bie P. Porous platinum nanotubes labeled with hemin/G-quadruplex based electrochemical aptasensor for sensitive thrombin analysis via the cascade signal amplification. Biosens Bioelectron 2014;57:16-21. [PMID: 24534575 DOI: 10.1016/j.bios.2014.01.040] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
23 Yang M, Chen Y, Xiang Y, Yuan R, Chai Y. In situ energy transfer quenching of quantum dot electrochemiluminescence for sensitive detection of cancer biomarkers. Biosensors and Bioelectronics 2013;50:393-8. [DOI: 10.1016/j.bios.2013.07.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
24 Que X, Chen X, Fu L, Lai W, Zhuang J, Chen G, Tang D. Platinum-catalyzed hydrogen evolution reaction for sensitive electrochemical immunoassay of tetracycline residues. Journal of Electroanalytical Chemistry 2013;704:111-7. [DOI: 10.1016/j.jelechem.2013.06.023] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
25 Gao Z, Xu M, Hou L, Chen G, Tang D. Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Analytica Chimica Acta 2013;776:79-86. [DOI: 10.1016/j.aca.2013.03.034] [Cited by in Crossref: 132] [Cited by in F6Publishing: 122] [Article Influence: 14.7] [Reference Citation Analysis]
26 Zhang Y, Dai W, Liu F, Li L, Li M, Ge S, Yan M, Yu J. Ultrasensitive electrochemiluminescent immunosensor based on dual signal amplification strategy of gold nanoparticles-dotted graphene composites and CdTe quantum dots coated silica nanoparticles. Anal Bioanal Chem 2013;405:4921-9. [DOI: 10.1007/s00216-013-6885-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
27 Lai Y, Bai J, Shi X, Zeng Y, Xian Y, Hou J, Jin L. Graphene oxide as nanocarrier for sensitive electrochemical immunoassay of clenbuterol based on labeling amplification strategy. Talanta 2013;107:176-82. [DOI: 10.1016/j.talanta.2013.01.002] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
28 Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal Chim Acta. 2013;758:1-18. [PMID: 23245891 DOI: 10.1016/j.aca.2012.10.060] [Cited by in Crossref: 295] [Cited by in F6Publishing: 239] [Article Influence: 29.5] [Reference Citation Analysis]
29 Lai W, Tang D, Que X, Zhuang J, Fu L, Chen G. Enzyme-catalyzed silver deposition on irregular-shaped gold nanoparticles for electrochemical immunoassay of alpha-fetoprotein. Analytica Chimica Acta 2012;755:62-8. [DOI: 10.1016/j.aca.2012.10.028] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.4] [Reference Citation Analysis]
30 Zhou J, Tang D, Hou L, Cui Y, Chen H, Chen G. Nanoplatinum-enclosed gold nanocores as catalytically promoted nanolabels for sensitive electrochemical immunoassay. Analytica Chimica Acta 2012;751:52-8. [DOI: 10.1016/j.aca.2012.09.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
31 Zhou J, Zhuang J, Miró M, Gao Z, Chen G, Tang D. Carbon nanospheres-promoted electrochemical immunoassay coupled with hollow platinum nanolabels for sensitivity enhancement. Biosensors and Bioelectronics 2012;35:394-400. [DOI: 10.1016/j.bios.2012.03.025] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 3.5] [Reference Citation Analysis]