BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ferreira Soares DC, Domingues SC, Viana DB, Tebaldi ML. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed Pharmacother 2020;131:110695. [PMID: 32920512 DOI: 10.1016/j.biopha.2020.110695] [Cited by in Crossref: 36] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu M, Gao T, Jiang L, Li S, Shi B, Li F. Enhancing the biopharmaceutical attributes of atorvastatin calcium using polymeric and lipid-polymer hybrid nanoparticles: An approach for atherosclerosis treatment. Biomed Pharmacother 2023;159:114261. [PMID: 36689837 DOI: 10.1016/j.biopha.2023.114261] [Reference Citation Analysis]
2 Manoswini M, Majumdar AG, Pany B, Sahu BR, Mohanty PS. Rapid detections of food pathogens using metal, semiconducting nanoparticles, and their hybrids: a review. emergent mater 2023. [DOI: 10.1007/s42247-022-00441-4] [Reference Citation Analysis]
3 Cerda-sumbarda YD, Zizumbo-lopez A, Licea-claverie A. Nanomaterials. Phytochemical Nanodelivery Systems as Potential Biopharmaceuticals 2023. [DOI: 10.1016/b978-0-323-90390-5.00008-6] [Reference Citation Analysis]
4 Dali P, Shende P. Self-Assembled Lipid Polymer Hybrid Nanoparticles Using Combinational Drugs for Migraine Via Intranasal Route. AAPS PharmSciTech 2022;24:20. [DOI: 10.1208/s12249-022-02479-3] [Reference Citation Analysis]
5 Ahamad Said MN, Hasbullah NA, Rosdi MRH, Musa MS, Rusli A, Ariffin A, Shafiq MD. Polymerization and Applications of Poly(methyl methacrylate)-Graphene Oxide Nanocomposites: A Review. ACS Omega 2022;7:47490-503. [PMID: 36591191 DOI: 10.1021/acsomega.2c04483] [Reference Citation Analysis]
6 Qian X, Xia C, Chen X, Li Q, Li D. Self-assembled amphiphilic copolymers-doxorubicin conjugated nanoparticles for gastric cancer therapy with low in vivo toxicity and high efficacy. J Biomater Sci Polym Ed 2022;33:2202-19. [PMID: 35924948 DOI: 10.1080/09205063.2022.2100024] [Reference Citation Analysis]
7 Tian L, Li X, Ji H, Yu Q, Yang M, Guo L, Huang L, Gao W. Melanin-like nanoparticles: advances in surface modification and tumour photothermal therapy. J Nanobiotechnol 2022;20:485. [DOI: 10.1186/s12951-022-01698-x] [Reference Citation Analysis]
8 Manko N, Starykovych M, Mitina N, Volianiuk K, Wang L, Jin M, Liu K, Panchuk R, Klyuchivska O, Zaichenko A, Kit Y, Stoika R. Covalent Conjugate of Ser-Pro-Cys Tripeptide with PEGylated Comb-Like Polymer as Novel Killer of Human Tumor Cells. ACS Omega 2022. [DOI: 10.1021/acsomega.2c03611] [Reference Citation Analysis]
9 Zhang N, Xiong G, Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotechnol 2022;10:1001572. [PMID: 36619393 DOI: 10.3389/fbioe.2022.1001572] [Reference Citation Analysis]
10 Elhassan E, Devnarain N, Mohammed M, Govender T, Omolo CA. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. Journal of Controlled Release 2022;351:598-622. [DOI: 10.1016/j.jconrel.2022.09.052] [Reference Citation Analysis]
11 Elsawy MA, Mostafa MH. Antimicrobial Applications of Nanoparticles. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch19] [Reference Citation Analysis]
12 Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022;14:1817. [DOI: 10.3390/pharmaceutics14091817] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Durmus S, Ozay O. Synthesis and characterization of methacrylic acid based amphoteric hydrogels: use as a dual drug delivery system. Journal of Macromolecular Science, Part A. [DOI: 10.1080/10601325.2022.2107933] [Reference Citation Analysis]
14 Ni J, Mi Y, Wang B, Zhu Y, Ding Y, Ding Y, Li X. Naturally Equipped Urinary Exosomes Coated Poly (2−ethyl−2−oxazoline)−Poly (D, L−lactide) Nanocarriers for the Pre−Clinical Translation of Breast Cancer. Bioengineering 2022;9:363. [DOI: 10.3390/bioengineering9080363] [Reference Citation Analysis]
15 Yang C, Yang J, Lu A, Gong J, Yang Y, Lin X, Li M, Xu H. Nanoparticles in ocular applications and their potential toxicity. Front Mol Biosci 2022;9:931759. [DOI: 10.3389/fmolb.2022.931759] [Reference Citation Analysis]
16 Nguyen TN, Park J. Intratympanic drug delivery systems to treat inner ear impairments. J Pharm Investig . [DOI: 10.1007/s40005-022-00586-8] [Reference Citation Analysis]
17 Liu H, Zhao X, Bai Y, Xie H, Yang Z, Wang Y, Chen Y, Luo Y, Ma M, Lu W, Ma J, Yang T, Jin B, Ding P. Amphiphilic cationic triblock polymers for p53-mediated triple-negative breast cancer gene therapy. Materials & Design 2022;219:110758. [DOI: 10.1016/j.matdes.2022.110758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Marques MS, Lima LA, Poletto F, Contri RV, Kulkamp Guerreiro IC. Nanotechnology for the treatment of paediatric diseases: A review. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103628] [Reference Citation Analysis]
19 Eller MJ, Sandoval JM, Verkhoturov SV, Schweikert EA. Nanoprojectile Secondary Ion Mass Spectrometry for Nanometrology of Nanoparticles and Their Interfaces. Anal Chem 2022. [PMID: 35594187 DOI: 10.1021/acs.analchem.2c00303] [Reference Citation Analysis]
20 Wang Z, Xu S, Xia H, Liu Y, Li B, Liang Y, Li Z. A cationic cyclodextrin derivative-lipid hybrid nanoparticles for gene delivery effectively promotes stability and transfection efficiency. Drug Dev Ind Pharm 2022;:1-15. [PMID: 35410574 DOI: 10.1080/03639045.2022.2059499] [Reference Citation Analysis]
21 Tang L, Xiao Q, Yin Y, Mei Y, Li J, Xu L, Gao H, Wang W. An enzyme-responsive and NIR-triggered lipid-polymer hybrid nanoplatform for synergistic photothermal/chemo cancer therapy. Biomater Sci 2022. [PMID: 35383799 DOI: 10.1039/d2bm00216g] [Reference Citation Analysis]
22 Feitosa RC, Ishikawa ESA, Silva MFAD, Silva-júnior AAD, Oliveira-nascimento L. Five decades of doxycycline: Does nanotechnology improve its properties? International Journal of Pharmaceutics 2022;618:121655. [DOI: 10.1016/j.ijpharm.2022.121655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zaharescu T, Varca G. Radiation modified polymers for medical applications. Radiation Physics and Chemistry 2022. [DOI: 10.1016/j.radphyschem.2022.110043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Minó A, Cinelli G, Paventi G, Testa G, Passaro F, Lopez F, Ambrosone L. Poly(Lactic-co-glycolic) Acid and Phospholipids Hybrid Nanoparticles for Regeneration of Biological Tissue. ChemEngineering 2022;6:10. [DOI: 10.3390/chemengineering6010010] [Reference Citation Analysis]
25 Kamali H, Nosrati R, Malaekeh-nikouei B. Nanostructures and their associated challenges for drug delivery. Hybrid Nanomaterials for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-85754-3.00015-0] [Reference Citation Analysis]
26 Krueger B, Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA, Frazier T, Galbreath S, Goswami T, Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA, Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA, Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA. Therapeutic efficacies of nano carriers and dissolution kinetics. J Pharm Biopharm Res 2022;4:296-317. [DOI: 10.25082/jpbr.2022.02.002] [Reference Citation Analysis]
27 Paul S, Hmar EBL, Pathak H, Sharma HK. An overview on nanocarriers. Nanocarriers for Drug-Targeting Brain Tumors 2022. [DOI: 10.1016/b978-0-323-90773-6.00004-x] [Reference Citation Analysis]
28 De R, Mahata MK, Song YH, Kim K. Nanobody-Based Delivery Systems for Diagnosis and Therapeutic Applications. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-031-12658-1_8] [Reference Citation Analysis]
29 Tade RS, Patil PO, Nangare SN, Patil AG, More MP, Deshmuk PK, Khan ZG, Pandey A, Boddu S, Patil DR, Mutalik S, Patil AM, Wakode S, Bari SB. Polymer-Based Nanoplatforms for Targeting Breast Cancer. Environmental Chemistry for a Sustainable World 2022. [DOI: 10.1007/978-3-031-14848-4_14] [Reference Citation Analysis]
30 Zain M, Yasmeen H, Yadav SS, Amir S, Bilal M, Shahid A, Khurshid M. Applications of nanotechnology in biological systems and medicine. Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood 2022. [DOI: 10.1016/b978-0-12-823971-1.00019-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Metanawin S, Metanawin T. Fabrication of hybrid polystyrene–titanium dioxide with enhanced dye degradation and antimicrobial properties: investigation of the effect of triethylene glycol dimethacrylate on photocatalytic activity. Polymer International. [DOI: 10.1002/pi.6346] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 El-Kholy AI, Abdel Fadeel D, Nasr M, El-Sherbiny I, Fadel M. (Rose Bengal)/(Eosin Yellow)-Gold-Polypyrrole Hybrids: A Design for Dual Photo-Active Nano-System with Ultra-High Loading Capacity. Drug Des Devel Ther 2021;15:5011-23. [PMID: 34938068 DOI: 10.2147/DDDT.S338922] [Reference Citation Analysis]
33 Martins JP, Figueiredo P, Wang S, Espo E, Celi E, Martins B, Kemell M, Moslova K, Mäkilä E, Salonen J, Kostiainen MA, Celia C, Cerullo V, Viitala T, Sarmento B, Hirvonen J, Santos HA. Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioact Mater 2022;9:299-315. [PMID: 34820572 DOI: 10.1016/j.bioactmat.2021.08.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
34 Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao C. Lipid Nanoparticles for Drug Delivery. Advanced NanoBiomed Research 2022;2:2100109. [DOI: 10.1002/anbr.202100109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
35 Li S, Xu Z, Alrobaian M, Afzal O, Kazmi I, Almalki WH, Altamimi ASA, Al-Abbasi FA, Alharbi KS, Altowayan WM, Singh T, Akhter MH, Gupta M, Rahman M, Beg S. EGF-functionalized lipid-polymer hybrid nanoparticles of 5-fluorouracil and sulforaphane with enhanced bioavailability and anticancer activity against colon carcinoma. Biotechnol Appl Biochem 2021. [PMID: 34775646 DOI: 10.1002/bab.2279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
36 Jayash SN, Cooper PR, Shelton RM, Kuehne SA, Poologasundarampillai G. Novel Chitosan-Silica Hybrid Hydrogels for Cell Encapsulation and Drug Delivery. Int J Mol Sci 2021;22:12267. [PMID: 34830145 DOI: 10.3390/ijms222212267] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Lozano Chamizo L, Luengo Morato Y, Ovejero Paredes K, Contreras Caceres R, Filice M, Marciello M. Ionotropic Gelation-Based Synthesis of Chitosan-Metal Hybrid Nanoparticles Showing Combined Antimicrobial and Tissue Regenerative Activities. Polymers (Basel) 2021;13:3910. [PMID: 34833209 DOI: 10.3390/polym13223910] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021;:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
39 Lebedev VT, Török G, Kulvelis YV, Bolshkova OI, Yevlampieva NP, Soroka MA, Fomin EV, Vul AY, Garg S. Diamond-based nanostructures with metal-organic molecules. Soft Materials. [DOI: 10.1080/1539445x.2021.1992425] [Reference Citation Analysis]
40 Silva LB, Castro KADF, Botteon CEA, Oliveira CLP, da Silva RS, Marcato PD. Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy. Front Bioeng Biotechnol 2021;9:679128. [PMID: 34604182 DOI: 10.3389/fbioe.2021.679128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Jung Y, Kim D. Recent advances in hybrid system of porous silicon nanoparticles and biocompatible polymers for biomedical applications. Biomed Eng Lett 2021;11:171-81. [PMID: 34350046 DOI: 10.1007/s13534-021-00194-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 Fernández M, Orozco J. Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers (Basel) 2021;13:2464. [PMID: 34372067 DOI: 10.3390/polym13152464] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
43 Tefas LR, Barbălată C, Tefas C, Tomuță I. Salinomycin-Based Drug Delivery Systems: Overcoming the Hurdles in Cancer Therapy. Pharmaceutics 2021;13:1120. [PMID: 34452081 DOI: 10.3390/pharmaceutics13081120] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
44 Hong W, Gao Y, Lou B, Ying S, Wu W, Ji X, Yu N, Jiao Y, Wang H, Zhou X, Li A, Guo F, Yang G. Curcumin-Loaded Hybrid Nanoparticles: Microchannel-Based Preparation and Antitumor Activity in a Mouse Model. Int J Nanomedicine 2021;16:4147-59. [PMID: 34168445 DOI: 10.2147/IJN.S303829] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
45 Persano F, Gigli G, Leporatti S. Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. Nano Ex 2021;2:012006. [DOI: 10.1088/2632-959x/abeb4b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
46 Lishchynskyi O, Stetsyshyn Y, Raczkowska J, Awsiuk K, Orzechowska B, Abalymov A, Skirtach AG, Bernasik A, Nastyshyn S, Budkowski A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines. Materials (Basel) 2021;14:1417. [PMID: 33804043 DOI: 10.3390/ma14061417] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
47 Manikandan S, Subbaiya R, Saravanan M, Barabadi H, Arulvel R. Emerging Theragnostic Metal-Based Nanomaterials to Combat Cancer. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-74330-7_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Uehara T, Fujiwara J. Numerical Evaluation of the Surface Energy of Polyhedral Nanoparticles. MSA 2020;11:837-850. [DOI: 10.4236/msa.2020.1112055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]