BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jia H, Gao P, Ma H, Wu D, Du B, Wei Q. Preparation of Au–Pt nanostructures by combining top-down with bottom-up strategies and application in label-free electrochemical immunosensor for detection of NMP22. Bioelectrochemistry 2015;101:22-7. [DOI: 10.1016/j.bioelechem.2014.06.012] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Rong S, Zou L, Zhu Y, Zhang Z, Liu H, Zhang Y, Zhang H, Gao H, Guan H, Dong J, Guo Y, Liu F, Li X, Pan H, Chang D. 2D/3D material amplification strategy for disposable label-free electrochemical immunosensor based on rGO-TEPA@Cu-MOFs@SiO2@AgNPs composites for NMP22 detection. Microchemical Journal 2021;168:106410. [DOI: 10.1016/j.microc.2021.106410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Chanarsa S, Jakmunee J, Ounnunkad K. A Bifunctional Nanosilver-Reduced Graphene Oxide Nanocomposite for Label-Free Electrochemical Immunosensing. Front Chem 2021;9:631571. [PMID: 33996742 DOI: 10.3389/fchem.2021.631571] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Yu X, Li X, Zhang S, Jia Y, Xu Z, Li X, Chen Z, Li Y. Ultrasensitive electrochemical detection of neuron-specific enolase based on spiny core-shell Au/CuxO@CeO2 nanocubes. Bioelectrochemistry 2021;138:107693. [PMID: 33291001 DOI: 10.1016/j.bioelechem.2020.107693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
4 Liu J, Yu Q, Zhao G, Dou W. Ultramarine blue nanoparticles as a label for immunochromatographic on-site determination of ractopamine. Mikrochim Acta 2020;187:285. [PMID: 32322994 DOI: 10.1007/s00604-020-04270-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
5 Bollella P. Porous Gold: A New Frontier for Enzyme-Based Electrodes. Nanomaterials (Basel) 2020;10:E722. [PMID: 32290306 DOI: 10.3390/nano10040722] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
6 Jia Y, Li Y, Zhang S, Wang P, Liu Q, Dong Y. Mulberry-like Au@PtPd porous nanorods composites as signal amplifiers for sensitive detection of CEA. Biosensors and Bioelectronics 2020;149:111842. [DOI: 10.1016/j.bios.2019.111842] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
7 Wang A, Zhu X, Chen Y, Luo X, Xue Y, Feng J. Ultrasensitive label-free electrochemical immunoassay of carbohydrate antigen 15-3 using dendritic Au@Pt nanocrystals/ferrocene-grafted-chitosan for efficient signal amplification. Sensors and Actuators B: Chemical 2019;292:164-70. [DOI: 10.1016/j.snb.2019.04.128] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
8 Wang H, Ma Z, Han H. A novel impedance enhancer for amperometric biosensor based ultrasensitive detection of matrix metalloproteinase-2. Bioelectrochemistry 2019;130:107324. [PMID: 31295697 DOI: 10.1016/j.bioelechem.2019.06.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
9 Zhao S, Zhang Y, Ding S, Fan J, Luo Z, Liu K, Shi Q, Liu W, Zang G. A highly sensitive label-free electrochemical immunosensor based on AuNPs-PtNPs-MOFs for nuclear matrix protein 22 analysis in urine sample. Journal of Electroanalytical Chemistry 2019;834:33-42. [DOI: 10.1016/j.jelechem.2018.12.044] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
10 Tran DT, Hoa VH, Tuan LH, Kim NH, Lee JH. Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosensors and Bioelectronics 2018;119:134-40. [DOI: 10.1016/j.bios.2018.08.022] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
11 Lin X, Zhu S, Xia Q, Ma J, Fu Y. An ultrasensitive electrochemiluminescent d -alanine biosensor based on the synergetic catalysis of a hemin-functionalized composite and gold–platinum nanowires. Anal Methods 2018;10:84-90. [DOI: 10.1039/c7ay02483e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
12 Zhang X, Yang Z, Li C, Xie A, Shen Y. A novel porous tubular Co3O4: Self-assembly and excellent electrochemical performance as anode for lithium-ion batteries. Applied Surface Science 2017;403:294-301. [DOI: 10.1016/j.apsusc.2017.01.117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
13 Feng J, Li Y, Li M, Li F, Han J, Dong Y, Chen Z, Wang P, Liu H, Wei Q. A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. Biosensors and Bioelectronics 2017;91:441-8. [DOI: 10.1016/j.bios.2016.12.070] [Cited by in Crossref: 89] [Cited by in F6Publishing: 90] [Article Influence: 17.8] [Reference Citation Analysis]
14 Scherf KA, Ciccocioppo R, Pohanka M, Rimarova K, Opatrilova R, Rodrigo L, Kruzliak P. Biosensors for the Diagnosis of Celiac Disease: Current Status and Future Perspectives. Mol Biotechnol 2016;58:381-92. [PMID: 27130174 DOI: 10.1007/s12033-016-9940-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Raymundo-pereira PA, Shimizu FM, Coelho D, Piazzeta MH, Gobbi AL, Machado SA, Oliveira ON. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces. Biosensors and Bioelectronics 2016;86:369-76. [DOI: 10.1016/j.bios.2016.06.053] [Cited by in Crossref: 40] [Cited by in F6Publishing: 46] [Article Influence: 6.7] [Reference Citation Analysis]
16 Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016;116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Cited by in Crossref: 424] [Cited by in F6Publishing: 464] [Article Influence: 70.7] [Reference Citation Analysis]
17 Huo X, Liu X, Liu J, Sukumaran P, Alwarappan S, Wong DKY. Strategic Applications of Nanomaterials as Sensing Platforms and Signal Amplification Markers at Electrochemical Immunosensors. Electroanalysis 2016;28:1730-49. [DOI: 10.1002/elan.201600166] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 5.7] [Reference Citation Analysis]
18 Lee MH, Thomas JL, Chang YC, Tsai YS, Liu BD, Lin HY. Electrochemical sensing of nuclear matrix protein 22 in urine with molecularly imprinted poly(ethylene-co-vinyl alcohol) coated zinc oxide nanorod arrays for clinical studies of bladder cancer diagnosis. Biosens Bioelectron 2016;79:789-95. [PMID: 26774095 DOI: 10.1016/j.bios.2016.01.005] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 6.2] [Reference Citation Analysis]
19 Lim SA, Ahmed MU. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv 2016;6:24995-5014. [DOI: 10.1039/c6ra00333h] [Cited by in Crossref: 87] [Cited by in F6Publishing: 70] [Article Influence: 14.5] [Reference Citation Analysis]
20 Fominski V, Grigoriev S, Gnedovets A, Romanov R, Volosova M. Plume propagation and Pt film growth during shadow-masked pulsed laser deposition in a buffer Ar gas. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2015;343:52-61. [DOI: 10.1016/j.nimb.2014.11.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
21 Wang Y, Li Y, Ma H, Ren X, Cao W, Yan T, Wei Q. A label-free electrochemical immunosensor with a novel signal production and amplification strategy based on three-dimensional pine-like Au–Cu nanodendrites. RSC Adv 2015;5:31262-9. [DOI: 10.1039/c5ra03407h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]