BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shi J, Chen Z, Wang L, Wang B, Xu L, Hou L, Zhang Z. A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging. Acta Biomater 2016;29:282-97. [PMID: 26485168 DOI: 10.1016/j.actbio.2015.10.027] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 5.9] [Reference Citation Analysis]
Number Citing Articles
1 Shi J, Liu W, Fu Y, Yin N, Zhang H, Chang J, Zhang Z. “US-detonated nano bombs” facilitate targeting treatment of resistant breast cancer. Journal of Controlled Release 2018;274:9-23. [DOI: 10.1016/j.jconrel.2018.01.030] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
2 Beik J, Khateri M, Khosravi Z, Kamrava SK, Kooranifar S, Ghaznavi H, Shakeri-zadeh A. Gold nanoparticles in combinatorial cancer therapy strategies. Coordination Chemistry Reviews 2019;387:299-324. [DOI: 10.1016/j.ccr.2019.02.025] [Cited by in Crossref: 83] [Cited by in F6Publishing: 39] [Article Influence: 27.7] [Reference Citation Analysis]
3 Li Z, Zhang Y, Zhu R, Wen G, Dong C, Li H. Self-assembled palladium nanoflowers supported on fullerene: Electrochemical catalytic performance for the reduction of 4-nitrophenol. Electrochemistry Communications 2019;104:106484. [DOI: 10.1016/j.elecom.2019.106484] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
4 Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 2017;5:901-52. [DOI: 10.1039/c7bm00008a] [Cited by in Crossref: 104] [Cited by in F6Publishing: 30] [Article Influence: 20.8] [Reference Citation Analysis]
5 Jiang BP, Zhou B, Lin Z, Liang H, Shen XC. Recent Advances in Carbon Nanomaterials for Cancer Phototherapy. Chemistry 2019;25:3993-4004. [PMID: 30328167 DOI: 10.1002/chem.201804383] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 19.7] [Reference Citation Analysis]
6 Shi J, Su Y, Liu W, Chang J, Zhang Z. A nanoliposome-based photoactivable drug delivery system for enhanced cancer therapy and overcoming treatment resistance. Int J Nanomedicine 2017;12:8257-75. [PMID: 29180864 DOI: 10.2147/IJN.S143776] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]
7 Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses. Int J Mol Sci 2016;17:E1440. [PMID: 27589733 DOI: 10.3390/ijms17091440] [Cited by in Crossref: 86] [Cited by in F6Publishing: 67] [Article Influence: 14.3] [Reference Citation Analysis]
8 Sandoval J, Ventura-sobrevilla J, Boone-villa D, Ramos-gonzález R, Velázquez M, Silva-belmares Y, Cobos-puc L, Aguilar C. Carbon nanomaterials as pharmaceutic forms for sustained and controlled delivery systems. Nanomaterials for Drug Delivery and Therapy. Elsevier; 2019. pp. 403-34. [DOI: 10.1016/b978-0-12-816505-8.00003-5] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang X, Cong H, Yu B, Chen Q. Recent Advances of Water-Soluble Fullerene Derivatives in Biomedical Applications. MROC 2018;16:92-9. [DOI: 10.2174/1570193x15666180712114405] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Huang YC, Lei KF, Liaw JW, Tsai SW. The influence of laser intensity activated plasmonic gold nanoparticle-generated photothermal effects on cellular morphology and viability: a real-time, long-term tracking and monitoring system. Photochem Photobiol Sci 2019;18:1419-29. [PMID: 30946422 DOI: 10.1039/c9pp00054b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
11 Feng Q, Zhang Y, Zhang W, Hao Y, Wang Y, Zhang H, Hou L, Zhang Z. Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy. Acta Biomater 2017;49:402-13. [PMID: 27890732 DOI: 10.1016/j.actbio.2016.11.035] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 9.0] [Reference Citation Analysis]
12 Das S, Tiwari M, Mondal D, Sahoo BR, Tiwari DK. Growing tool-kit of photosensitizers for clinical and non-clinical applications. J Mater Chem B 2020;8:10897-940. [PMID: 33165483 DOI: 10.1039/d0tb02085k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Wang H, Zhu W, Huang Y, Li Z, Jiang Y, Xie Q. Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomaterialia 2017;61:88-100. [DOI: 10.1016/j.actbio.2017.04.017] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
14 Sokolov IL, Cherkasov VR, Tregubov AA, Buiucli SR, Nikitin MP. Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochim Biophys Acta Gen Subj 2017;1861:1530-44. [PMID: 28130158 DOI: 10.1016/j.bbagen.2017.01.027] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 8.2] [Reference Citation Analysis]
15 Patel KD, Singh RK, Kim H. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz 2019;6:434-69. [DOI: 10.1039/c8mh00966j] [Cited by in Crossref: 108] [Cited by in F6Publishing: 3] [Article Influence: 36.0] [Reference Citation Analysis]
16 Fu X, Wang X, Zhou S, Zhang Y. IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy. Int J Nanomedicine 2017;12:3751-66. [PMID: 28553112 DOI: 10.2147/IJN.S113963] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 2.4] [Reference Citation Analysis]
17 Sabounchei SJ, Sayadi M, Hashemi A, Salehzadeh S, Maleki F, Nematollahi D, Mokhtari B, Hosseinzadeh L. New Pd/Pt-[60]fullerene complexes of phosphorus ylides as anticancer agents: Cytotoxic investigation and DFT calculations. Journal of Organometallic Chemistry 2018;860:49-58. [DOI: 10.1016/j.jorganchem.2018.02.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
18 Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano 2020;14:3075-95. [PMID: 32078303 DOI: 10.1021/acsnano.9b08142] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 15.5] [Reference Citation Analysis]
19 Si P, Shi J, Zhang P, Wang C, Chen H, Mi X, Chu W, Zhai B, Li W. MUC-1 recognition-based activated drug nanoplatform improves doxorubicin chemotherapy in breast cancer. Cancer Lett 2020;472:165-74. [PMID: 31857156 DOI: 10.1016/j.canlet.2019.12.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Lin JT, Ye QB, Yang QJ, Wang GH. Hierarchical bioresponsive nanocarriers for codelivery of curcumin and doxorubicin. Colloids Surf B Biointerfaces 2019;180:93-101. [PMID: 31035057 DOI: 10.1016/j.colsurfb.2019.04.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
21 Yu Y, Yang T, Sun T. New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine (Lond) 2020;15:1127-45. [PMID: 32329396 DOI: 10.2217/nnm-2019-0395] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
22 Hamblin MR. Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem Photobiol Sci 2018;17:1515-33. [PMID: 30043032 DOI: 10.1039/c8pp00195b] [Cited by in Crossref: 41] [Cited by in F6Publishing: 7] [Article Influence: 10.3] [Reference Citation Analysis]
23 Myrgorodska I, Jenkinson-Finch M, Moreno-Tortolero RO, Mann S, Gobbo P. A Novel Acid-Degradable PEG Crosslinker for the Fabrication of pH-Responsive Soft Materials. Macromol Rapid Commun 2021;42:e2100102. [PMID: 33749064 DOI: 10.1002/marc.202100102] [Reference Citation Analysis]
24 Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS Nano 2021;15:2099-142. [PMID: 33497197 DOI: 10.1021/acsnano.0c09382] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
25 Shao J, Huang P, Chen Q, Zheng Q. Nano adamantane-conjugated BODIPY for lipase affinity and light driven antibacterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020;234:118252. [DOI: 10.1016/j.saa.2020.118252] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong K, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019;119:9559-656. [DOI: 10.1021/acs.chemrev.9b00099] [Cited by in Crossref: 135] [Cited by in F6Publishing: 92] [Article Influence: 45.0] [Reference Citation Analysis]
27 Yang Y, Zhu D, Liu Y, Jiang B, Jiang W, Yan X, Fan K. Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale 2020;12:13548-57. [PMID: 32555859 DOI: 10.1039/d0nr02800b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 19.0] [Reference Citation Analysis]
28 Larue L, Ben Mihoub A, Youssef Z, Colombeau L, Acherar S, André JC, Arnoux P, Baros F, Vermandel M, Frochot C. Using X-rays in photodynamic therapy: an overview. Photochem Photobiol Sci 2018;17:1612-50. [DOI: 10.1039/c8pp00112j] [Cited by in Crossref: 47] [Cited by in F6Publishing: 22] [Article Influence: 11.8] [Reference Citation Analysis]
29 Youssef Z, Vanderesse R, Colombeau L, Baros F, Roques-Carmes T, Frochot C, Wahab H, Toufaily J, Hamieh T, Acherar S, Gazzali AM. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nanotechnol 2017;8:6. [PMID: 29104699 DOI: 10.1186/s12645-017-0032-2] [Cited by in Crossref: 47] [Cited by in F6Publishing: 30] [Article Influence: 9.4] [Reference Citation Analysis]
30 Ren X, Lin J, Wang X, Liu X, Meng E, Zhang R, Sang Y, Zhang Z. Photoactivatable RNAi for cancer gene therapy triggered by near-infrared-irradiated single-walled carbon nanotubes. Int J Nanomedicine 2017;12:7885-96. [PMID: 29138556 DOI: 10.2147/IJN.S141882] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
31 Mahan MM, Doiron AL. Gold Nanoparticles as X-Ray, CT, and Multimodal Imaging Contrast Agents: Formulation, Targeting, and Methodology. Journal of Nanomaterials 2018;2018:1-15. [DOI: 10.1155/2018/5837276] [Cited by in Crossref: 46] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
32 Minaei SE, Khoei S, Khoee S, Vafashoar F, Mahabadi VP. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Materials Science and Engineering: C 2019;101:575-87. [DOI: 10.1016/j.msec.2019.04.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
33 Feng Q, Zhang W, Li Y, Yang X, Hao Y, Zhang H, Li W, Hou L, Zhang Z. An intelligent NIR-responsive chelate copper-based anticancer nanoplatform for synergistic tumor targeted chemo-phototherapy. Nanoscale 2017;9:15685-95. [DOI: 10.1039/c7nr05003h] [Cited by in Crossref: 23] [Cited by in F6Publishing: 1] [Article Influence: 4.6] [Reference Citation Analysis]
34 Zhao W, Wei J, Zhang P, Chen J, Kong J, Sun L, Xiong H, Möhwald H. Self-Assembled ZnO Nanoparticle Capsules for Carrying and Delivering Isotretinoin to Cancer Cells. ACS Appl Mater Interfaces 2017;9:18474-81. [DOI: 10.1021/acsami.7b02542] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
35 Zhang Y, Wu M, Wu M, Zhu J, Zhang X. Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS Omega 2018;3:9126-45. [PMID: 31459047 DOI: 10.1021/acsomega.8b01071] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
36 Yan Y, Zhang K, Wang H, Liu W, Zhang Z, Liu J, Shi J. A fullerene based hybrid nanoparticle facilitates enhanced photodynamic therapy via changing light source and oxygen consumption. Colloids Surf B Biointerfaces 2020;186:110700. [PMID: 31821968 DOI: 10.1016/j.colsurfb.2019.110700] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]