BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao J, Ma H, Lv X, Yan T, Li N, Cao W, Wei Q. A novel electrochemical immunosensor using β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase as labels for ultrasensitive detection of alpha-fetoprotein. Analytica Chimica Acta 2015;893:49-56. [DOI: 10.1016/j.aca.2015.08.052] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Wu Y, Liu D, Guo J, Wang F. A molybdenum disulfide-reduced graphene oxide nanocomposite as an electrochemical sensing platform for detecting cyproterone acetate. New J Chem 2022;46:5385-92. [DOI: 10.1039/d1nj05225j] [Reference Citation Analysis]
2 Zhang Y, Zhang Z, Wang Z, Pan H, Lin Y, Chang D. Sensitive detection of prostate-specific antigen based on dual signal amplification of Fc@MgAl-LDH and NH2-MIL-101(Fe). Biosens Bioelectron 2021;190:113437. [PMID: 34171817 DOI: 10.1016/j.bios.2021.113437] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
3 Jiaul Haque A, Kwon J, Kim J, Kim G, Lee N, Ho Yoon Y, Yang H. Sensitive and Low‐background Electrochemical Immunosensor Employing Glucose Dehydrogenase and 1,10‐Phenanthroline‐5,6‐dione. Electroanalysis 2021;33:1877-85. [DOI: 10.1002/elan.202100079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Healy B, Yu T, C da Silva Alves D, Okeke C, Breslin CB. Cyclodextrins as Supramolecular Recognition Systems: Applications in the Fabrication of Electrochemical Sensors. Materials (Basel) 2021;14:1668. [PMID: 33800708 DOI: 10.3390/ma14071668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
5 Gómez-Graña S, Pérez-Juste J, Hervés P. Cyclodextrins and inorganic nanoparticles: Another tale of synergy. Adv Colloid Interface Sci 2021;288:102338. [PMID: 33383472 DOI: 10.1016/j.cis.2020.102338] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
6 Peng Y, Liu Q, Lu B, He T, Nichols F, Hu X, Huang T, Huang G, Guzman L, Ping Y, Chen S. Organically Capped Iridium Nanoparticles as High-Performance Bifunctional Electrocatalysts for Full Water Splitting in Both Acidic and Alkaline Media: Impacts of Metal–Ligand Interfacial Interactions. ACS Catal 2021;11:1179-88. [DOI: 10.1021/acscatal.0c03747] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
7 Shen G, Shen Y. Label-Free Electrochemical Immunosensor Based on β-Cyclodextrin-Functionalized Helical Carbon Nanotube and Ionic Liquid Containing Ferrocene and Aldehyde Groups. ACS Omega 2019;4:20252-6. [PMID: 31815227 DOI: 10.1021/acsomega.9b02559] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
8 Heiat M, Negahdary M. Sensitive diagnosis of alpha-fetoprotein by a label free nanoaptasensor designed by modified Au electrode with spindle-shaped gold nanostructure. Microchemical Journal 2019;148:456-66. [DOI: 10.1016/j.microc.2019.05.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
9 Liu W, Gan C, Chang W, Qileng A, Lei H, Liu Y. Double-integrated mimic enzymes for the visual screening of Microcystin-LR: Copper hydroxide nanozyme and G-quadruplex/hemin DNAzyme. Analytica Chimica Acta 2019;1054:128-36. [DOI: 10.1016/j.aca.2018.12.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
10 Shen Y, Shen G. Electrochemical impedimetric immunosensor based on host–guest interaction between β-cyclodextrin and ferrocene anchored to ionic liquid. Ionics 2019;25:3407-12. [DOI: 10.1007/s11581-019-02877-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
11 Wu Y, Liu Y, Li F, Zhou Y, Ding J, Li R. A novel approach based on magneto-electric torque sensor for non-contact biomarkers detection. Sensors and Actuators B: Chemical 2018;276:540-4. [DOI: 10.1016/j.snb.2018.08.083] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
12 Shelley H, Babu RJ. Role of Cyclodextrins in Nanoparticle-Based Drug Delivery Systems. Journal of Pharmaceutical Sciences 2018;107:1741-53. [DOI: 10.1016/j.xphs.2018.03.021] [Cited by in Crossref: 70] [Cited by in F6Publishing: 76] [Article Influence: 17.5] [Reference Citation Analysis]
13 Shi H, Zhang B, Liu S, Tan C, Tan Y, Jiang Y. A New Strategy Involving the Use of Peptides and Graphene Oxide for Fluorescence Turn-on Detection of Proteins. Sensors (Basel) 2018;18:E385. [PMID: 29382136 DOI: 10.3390/s18020385] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
14 Rivas GA, Rodríguez MC, Rubianes MD, Gutierrez FA, Eguílaz M, Dalmasso PR, Primo EN, Tettamanti C, Ramírez ML, Montemerlo A, Gallay P, Parrado C. Carbon nanotubes-based electrochemical (bio)sensors for biomarkers. Applied Materials Today 2017;9:566-88. [DOI: 10.1016/j.apmt.2017.10.005] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 9.6] [Reference Citation Analysis]
15 Chen J, Zhao G. A novel signal-on photoelectrochemical immunosensor for detection of alpha-fetoprotein by in situ releasing electron donor. Biosensors and Bioelectronics 2017;98:155-60. [DOI: 10.1016/j.bios.2017.06.047] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
16 Zhu X, Zhai Q, Gu W, Li J, Wang E. High-Sensitivity Electrochemiluminescence Probe with Molybdenum Carbides as Nanocarriers for α-Fetoprotein Sensing. Anal Chem 2017;89:12108-14. [DOI: 10.1021/acs.analchem.7b02701] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 10.8] [Reference Citation Analysis]
17 Zhao H, Bian S, Yang Y, Wu X. Chiroplasmonic assemblies of gold nanoparticles as a novel method for sensitive detection of alpha-fetoprotein. Microchim Acta 2017;184:1855-62. [DOI: 10.1007/s00604-017-2207-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
18 Huang Y, Tang C, Liu J, Cheng J, Si Z, Li T, Yang M. Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles. Microchim Acta 2017;184:855-61. [DOI: 10.1007/s00604-016-2069-z] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 5.2] [Reference Citation Analysis]
19 He B. A sandwich-type electrochemical biosensor for alpha-fetoprotein based on Au nanoparticles decorating a hollow molybdenum disulfide microbox coupled with a hybridization chain reaction. New J Chem 2017;41:11353-60. [DOI: 10.1039/c7nj02431b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
20 Wen W, Yan X, Zhu C, Du D, Lin Y. Recent Advances in Electrochemical Immunosensors. Anal Chem 2017;89:138-56. [PMID: 28105820 DOI: 10.1021/acs.analchem.6b04281] [Cited by in Crossref: 160] [Cited by in F6Publishing: 166] [Article Influence: 26.7] [Reference Citation Analysis]
21 Liu X, Liu P, Huo X, Liu X, Liu J. Preparation of TiO 2 nanosheet-carbon nanotube composite as immobilization platform for both primary and secondary antibodies in electrochemical immunoassay. Analytica Chimica Acta 2016;946:40-7. [DOI: 10.1016/j.aca.2016.10.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
22 Li S, Liu C, Yin G, Luo J, Zhang Z, Xie Y. Supramolecular imprinted electrochemical sensor for the neonicotinoid insecticide imidacloprid based on double amplification by Pt-In catalytic nanoparticles and a Bromophenol blue doped molecularly imprinted film. Microchim Acta 2016;183:3101-9. [DOI: 10.1007/s00604-016-1962-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
23 San L, Zeng D, Song S, Zuo X, Zhang H, Wang C, Wu J, Mi X. An electrochemical immunosensor for quantitative detection of ficolin-3. Nanotechnology 2016;27:254003. [PMID: 27183363 DOI: 10.1088/0957-4484/27/25/254003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]