BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal Chim Acta. 2013;758:1-18. [PMID: 23245891 DOI: 10.1016/j.aca.2012.10.060] [Cited by in Crossref: 295] [Cited by in F6Publishing: 297] [Article Influence: 29.5] [Reference Citation Analysis]
Number Citing Articles
1 Das D, Basu S, Ray S, Koppayithodi S, Hazra B, Bandyopadhyay S, Saha A, Sen K. Generation of selenium nanoparticles under γ-Irradiation for optical sensing of Carcinoembryonic antigen. Journal of Molecular Liquids 2022;361:119597. [DOI: 10.1016/j.molliq.2022.119597] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Chen MY, Lang JY, Bai CC, Yu SS, Kong XJ, Dong LY, Wang XH. Construction of PEGylated boronate-affinity-oriented imprinting magnetic nanoparticles for ultrasensitive detection of ellagic acid from beverages. Anal Bioanal Chem 2022. [PMID: 35831534 DOI: 10.1007/s00216-022-04213-1] [Reference Citation Analysis]
3 Margiana R, Hammid AT, Ahmad I, Alsaikhan F, Turki Jalil A, Tursunbaev F, Umar F, Romero Parra RM, Fakri Mustafa Y. Current Progress in Aptasensor for Ultra-Low Level Monitoring of Parkinson's Disease Biomarkers. Crit Rev Anal Chem 2022;:1-16. [PMID: 35754381 DOI: 10.1080/10408347.2022.2091920] [Reference Citation Analysis]
4 Liang X, Lin Z, Li L, Tang D, Kong J. Ratiometric fluorescence enzyme-linked immunosorbent assay based on carbon dots@SiO2@CdTe quantum dots with dual functionalities for alpha-fetoprotein. Analyst 2022;147:2851-8. [PMID: 35621880 DOI: 10.1039/d2an00691j] [Reference Citation Analysis]
5 Tajik S, Beitollahi H, Torkzadeh-mahani M. Electrochemical immunosensor for the detection of anti-thyroid peroxidase antibody by gold nanoparticles and ionic liquid-modified carbon paste electrode. J Nanostruct Chem. [DOI: 10.1007/s40097-022-00496-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
6 Li L, Liang D, Guo W, Tang D, Zeng Y. New Insights on Potentiometric Immunosensor at Carbon Fiber Microelectrode for Alpha‐Fetoprotein in Hepatocellular Carcinoma. Electroanalysis 2022;34:976-80. [DOI: 10.1002/elan.202100213] [Reference Citation Analysis]
7 Nasrollahpour H, Khalilzadeh B, Naseri A, Yousefi H, Erk N, Rahbarghazi R. Electrochemical biosensors for stem cell analysis; applications in diagnostics, differentiation and follow-up. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116696] [Reference Citation Analysis]
8 Sabrowski W, Dreymann N, Möller A, Czepluch D, Albani PP, Theodoridis D, Menger MM. The use of high-affinity polyhistidine binders as masking probes for the selection of an NDM-1 specific aptamer. Sci Rep 2022;12:7936. [PMID: 35562409 DOI: 10.1038/s41598-022-12062-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Evtugyn G, Porfireva A, Tsekenis G, Oravczova V, Hianik T. Electrochemical Aptasensors for Antibiotics Detection: Recent Achievements and Applications for Monitoring Food Safety. Sensors (Basel) 2022;22:3684. [PMID: 35632093 DOI: 10.3390/s22103684] [Reference Citation Analysis]
10 Jin C, Wu Z, Molinski J, Zhou J, Ren Y, Zhang JX. Plasmonic nanosensors for point-of-care biomarker detection. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Kim HJ, Ahn H, Kim H, Park D, Lee JS, Lee BC, Kim J, Yoon DS, Hwang KS. Nanoparticle-based multiplex biosensor utilising dual dielectrophoretic forces for clinical diagnosis of Alzheimer’s disease. Sensors and Actuators B: Chemical 2022;355:131288. [DOI: 10.1016/j.snb.2021.131288] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Sharma P, Suleman S, Farooqui A, Ali W, Narang J, Malode SJ, Shetti NP. Analytical Methods for Ebola Virus Detection. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107333] [Reference Citation Analysis]
13 Wang Y, Li L, Li H, Peng Y, Fu L. A fluorometric sandwich biosensor based on rationally imprinted magnetic particles and aptamer modified carbon dots for the detection of tropomyosin in seafood products. Food Control 2022;132:108552. [DOI: 10.1016/j.foodcont.2021.108552] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Pérez-fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339658] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
15 Zhao Y, Wen Y, Hu X, Zhang B, Lvova L. A Colorimetric Immunoassay Based on g-C3N4@Fe3O4 Nanocomposite for Detection of Carcinoembryonic Antigen. Journal of Analytical Methods in Chemistry 2022;2022:1-7. [DOI: 10.1155/2022/6966470] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Arshavsky‐graham S, Heuer C, Jiang X, Segal E. Aptasensors versus immunosensors—Which will prevail? Engineering in Life Sciences. [DOI: 10.1002/elsc.202100148] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Zhu J, Dou L, Shao S, Kou J, Yu X, Wen K, Wang Z, Yu W. An Automated and Highly Sensitive Chemiluminescence Immunoassay for Diagnosing Mushroom Poisoning. Front Chem 2021;9:813219. [PMID: 35004629 DOI: 10.3389/fchem.2021.813219] [Reference Citation Analysis]
18 Doménech-Carbó MT, Doménech-Carbó A. Spot tests: past and present. ChemTexts 2022;8:4. [PMID: 34976574 DOI: 10.1007/s40828-021-00152-z] [Reference Citation Analysis]
19 Wang Y, Hong Y, Wang M, Zhu Y. Multifunctional Nanolabels Based on Polydopamine Nanospheres for Sensitive Alpha Fetoprotein Electrochemical Detection. ACS Appl Nano Mater 2022;5:1588-99. [DOI: 10.1021/acsanm.1c04326] [Reference Citation Analysis]
20 Cai F, Tang D, Wang J, Lin Y. Biomimetic -mineralized multifunctional nanoflowers for anodic-stripping voltammetric immunoassay of rehabilitation-related proteins. Analyst 2021;147:80-6. [PMID: 34846386 DOI: 10.1039/d1an01934a] [Reference Citation Analysis]
21 Jing L, Xie C, Li Q, Yang M, Li S, Li H, Xia F. Electrochemical Biosensors for the Analysis of Breast Cancer Biomarkers: From Design to Application. Anal Chem 2021. [PMID: 34854296 DOI: 10.1021/acs.analchem.1c04475] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
22 Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Sagadevan S, Shahnavaz Z, Simarani K, Johan MR. Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: Advances, challenges, and opportunities. Crit Rev Clin Lab Sci 2021;:1-22. [PMID: 34851806 DOI: 10.1080/10408363.2021.1997898] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Feng K, Li T, Ye C, Gao X, Yang T, Liang X, Yue X, Ding S, Dong Q, Yang M, Xiong C, Huang G, Zhang J. A label-free electrochemical immunosensor for rapid detection of salmonella in milk by using CoFe-MOFs-graphene modified electrode. Food Control 2021;130:108357. [DOI: 10.1016/j.foodcont.2021.108357] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
24 Hussain MH, Fook LP, Sanira Putri MK, Tan HL, Abu Bakar NF, Radacsi N. Advances on ultra-sensitive electrospun nanostructured electrochemical and colorimetric sensors for diabetes mellitus detection. Nano Materials Science 2021;3:321-43. [DOI: 10.1016/j.nanoms.2021.05.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
25 Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021;50:13012-89. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Soleymani J, Azizi S, Abbaspour-ravasjani S, Hasanzadeh M, Hossein Somi M, Jouyban A. Glycoprotein-based bioimaging of HeLa cancer cells by folate receptor and folate decorated graphene quantum dots. Microchemical Journal 2021;170:106732. [DOI: 10.1016/j.microc.2021.106732] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
27 Kim SJ, Dixon AS, Owen SC. Split-enzyme immunoassay to monitor EGFR-HER2 heterodimerization on cell surfaces. Acta Biomater 2021;135:225-33. [PMID: 34496282 DOI: 10.1016/j.actbio.2021.08.055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Chang Z, Zhang C, Yao B. Novel dual-sensitization electrochemiluminescence immunosensor using photopermeable Ru(bpy)3 2+ -doped chitosan/SiO2 nanoparticles as labels and chitosan-decorated Nafion/MWNTs composites as enhancer. Luminescence 2021. [PMID: 34633751 DOI: 10.1002/bio.4146] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Hu J, Shen Z, Tan L, Yuan J, Gan N. Electrochemical aptasensor for simultaneous detection of foodborne pathogens based on a double stirring bars-assisted signal amplification strategy. Sensors and Actuators B: Chemical 2021;345:130337. [DOI: 10.1016/j.snb.2021.130337] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Zhang J, Tang D. 4-Nitrophenol-Loaded Magnetic Mesoporous Silica Hybrid Materials for Spectrometric Aptasensing of Carcinoembryonic Antigen. Micromachines (Basel) 2021;12:1138. [PMID: 34683189 DOI: 10.3390/mi12101138] [Reference Citation Analysis]
31 Fan Y, Guo Y, Shi S, Ma J. An electrochemical immunosensor based on reduced graphene oxide/multiwalled carbon nanotubes/thionine/gold nanoparticle nanocomposites for the sensitive testing of follicle-stimulating hormone. Anal Methods 2021;13:3821-8. [PMID: 34373870 DOI: 10.1039/d1ay01032h] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
32 Nawaz N, Abu Bakar NK, Muhammad Ekramul Mahmud HN, Jamaludin NS. Molecularly imprinted polymers-based DNA biosensors. Anal Biochem 2021;630:114328. [PMID: 34363786 DOI: 10.1016/j.ab.2021.114328] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
33 Melo AMA, Furtado RF, de Fatima Borges M, Biswas A, Cheng HN, Alves CR. Performance of an amperometric immunosensor assembled on carboxymethylated cashew gum for Salmonella detection. Microchemical Journal 2021;167:106268. [DOI: 10.1016/j.microc.2021.106268] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
34 Soleimanian A, Khalilzadeh B, Mahdipour M, Aref AR, Kalbasi A, Bazaz SR, Warkiani ME, Rashidi MR, Mahdavi M. An Efficient Graphene Quantum Dots-Based Electrochemical Cytosensor for the Sensitive Recognition of CD123 in Acute Myeloid Leukemia Cells. IEEE Sensors J 2021;21:16451-63. [DOI: 10.1109/jsen.2021.3079224] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
35 Ma X, Deng D, Xia N, Hao Y, Liu L. Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine. Nanomaterials (Basel) 2021;11:1757. [PMID: 34361143 DOI: 10.3390/nano11071757] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
36 Lu D, Zhu DZ, Gan H, Yao Z, Fu Q, Zhang X(. Prospects and challenges of using electrochemical immunosensors as an alternative detection method for SARS-CoV-2 wastewater-based epidemiology. Science of The Total Environment 2021;777:146239. [DOI: 10.1016/j.scitotenv.2021.146239] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
37 Sharma A, Majdinasab M, Khan R, Li Z, Hayat A, Marty JL. Nanomaterials in fluorescence-based biosensors: Defining key roles. Nano-Structures & Nano-Objects 2021;27:100774. [DOI: 10.1016/j.nanoso.2021.100774] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Li L, Liang D, Guo W, Tang D, Zeng Y. Antibody‐invertase Cross‐linkage Nanoparticles: A New Signal Tag for Point‐of‐Care Immunoassay of Alpha‐fetoprotein for Hepatocellular Carcinoma with Personal Glucometer. Electroanalysis 2022;34:246-51. [DOI: 10.1002/elan.202100212] [Reference Citation Analysis]
39 Takaloo S, Moghimi Zand M. Wearable electrochemical flexible biosensors: With the focus on affinity biosensors. Sensing and Bio-Sensing Research 2021;32:100403. [DOI: 10.1016/j.sbsr.2021.100403] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
40 Ni E, Fang Y, Ma F, Ge G, Wu J, Wang Y, Lin Y, Xie H. A one-step potentiometric immunoassay for plasma cardiac troponin I using an antibody-functionalized bis-MPA-COOH dendrimer as a competitor with improved sensitivity. Anal Methods 2020;12:2914-21. [PMID: 32930214 DOI: 10.1039/d0ay00680g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
41 Yola ML, Atar N, Özcan N. A novel electrochemical lung cancer biomarker cytokeratin 19 fragment antigen 21-1 immunosensor based on Si3N4/MoS2 incorporated MWCNTs and core-shell type magnetic nanoparticles. Nanoscale 2021;13:4660-9. [PMID: 33620353 DOI: 10.1039/d1nr00244a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
42 Jia W, Wang Z, Lu Z, Ding B, Li Z, Xu D. The discovery of lactoferrin dual aptamers through surface plasmon resonance imaging combined with a bioinformation analysis. Analyst 2020;145:6298-306. [PMID: 32940261 DOI: 10.1039/d0an01513j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Chang Z, Xu Y, Shen Y. Ultrasensitive Electrochemical Immunoassay for Prostate Specific Antigen (PSA) Based Upon Silver-Functionalized Polyethyleneimine (PEI)–Silica Nanoparticles (NPs). Analytical Letters 2022;55:68-84. [DOI: 10.1080/00032719.2021.1916752] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
44 Livas D, Trachioti M, Banou S, Angelopoulou M, Economou A, Prodromidis M, Petrou P, Kakabakos S, Kokkinos C. 3D printed microcell featuring a disposable nanocomposite Sb/Sn immunosensor for quantum dot-based electrochemical determination of adulteration of ewe/goat’s cheese with cow’s milk. Sensors and Actuators B: Chemical 2021;334:129614. [DOI: 10.1016/j.snb.2021.129614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
45 Li N, Shen M, Xu Y. A Portable Microfluidic System for Point-of-Care Detection of Multiple Protein Biomarkers. Micromachines (Basel) 2021;12:347. [PMID: 33804983 DOI: 10.3390/mi12040347] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
46 Olvera D, Monaghan MG. Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 2021;170:396-424. [PMID: 32987096 DOI: 10.1016/j.addr.2020.09.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
47 Esrafili A, Wagner A, Inamdar S, Acharya AP. Covalent Organic Frameworks for Biomedical Applications. Adv Healthc Mater 2021;10:e2002090. [PMID: 33475260 DOI: 10.1002/adhm.202002090] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 27.0] [Reference Citation Analysis]
48 Zhang J, Zhang X, Wei X, Xue Y, Wan H, Wang P. Recent advances in acoustic wave biosensors for the detection of disease-related biomarkers: A review. Anal Chim Acta 2021;1164:338321. [PMID: 33992219 DOI: 10.1016/j.aca.2021.338321] [Cited by in Crossref: 5] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
49 Biswas S, Lan Q, Xie Y, Sun X, Wang Y. Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT. ACS Appl Mater Interfaces 2021;13:3295-302. [DOI: 10.1021/acsami.0c14946] [Cited by in Crossref: 17] [Cited by in F6Publishing: 32] [Article Influence: 17.0] [Reference Citation Analysis]
50 Duan H, Chen X, Wu Y, Leng Y, Huang X, Xiong Y. Integrated nanoparticle size with membrane porosity for improved analytical performance in sandwich immunochromatographic assay. Anal Chim Acta 2021;1141:136-43. [PMID: 33248647 DOI: 10.1016/j.aca.2020.10.041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
51 Mobed A, Kohansal F, Ahmadalipour A, Hasanzadeh M, Zargari F. Bioconjugation of 2-arachidonoyl glycerol (2-AG) biotinylated antibody with gold nano-flowers toward immunosensing of 2-AG in human plasma samples: A novel immuno-platform for the screening of immunomodulation and neuroprotection using biosensing. Anal Methods 2021;13:311-21. [DOI: 10.1039/d0ay02135k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
52 Castaño-guerrero Y, Moreira FT, Sousa-castillo A, Correa-duarte MA, Sales M. SERS and electrochemical impedance spectroscopy immunoassay for carcinoembryonic antigen. Electrochimica Acta 2021;366:137377. [DOI: 10.1016/j.electacta.2020.137377] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
53 Ma F, Ge G, Fang Y, Ni E, Su Y, Cai F, Xie H. Prussian blue-doped PAMAM dendrimer nanospheres for electrochemical immunoassay of human plasma cardiac troponin I without enzymatic amplification. New J Chem 2021;45:9621-8. [DOI: 10.1039/d1nj01506k] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Peng L, Lin CJ, Shi L, Cai F. Magnetic mesoporous CoFe 2 O 4 labels reacted with TMB for use in a sandwiched photothermal immunoassay for thyroglobulin. New J Chem 2021;45:21538-42. [DOI: 10.1039/d1nj04897j] [Reference Citation Analysis]
55 Chen G, Liu C, Wu W. Electrochemical immunosensor for serum parathyroid hormone using voltammetric techniques and a portable simulator. Analytica Chimica Acta 2021;1143:84-92. [DOI: 10.1016/j.aca.2020.11.045] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
56 Zhang J, Lin J, Zheng T, Jiang Y, Luo S, Lin Y, Zhang Z. DNAzyme concatemer-catalyzed precipitation on an interdigitated micro-comb electrode for capacitance immunosensing of interleukin-6 with rolling circle amplification. New J Chem 2021;45:915-22. [DOI: 10.1039/d0nj05507g] [Reference Citation Analysis]
57 Sahu SS, Stiller C, Gomero EP, Nagy Á, Karlström AE, Linnros J, Dev A. Electrokinetic sandwich assay and DNA mediated charge amplification for enhanced sensitivity and specificity. Biosens Bioelectron 2021;176:112917. [PMID: 33421763 DOI: 10.1016/j.bios.2020.112917] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
58 Karimzadeh Z, Hasanzadeh M, Isildak I, Khalilzadeh B. Multiplex bioassaying of cancer proteins and biomacromolecules: Nanotechnological, structural and technical perspectives. Int J Biol Macromol 2020;165:3020-39. [PMID: 33122068 DOI: 10.1016/j.ijbiomac.2020.10.191] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
59 Islam T, Hasan MM, Awal A, Nurunnabi M, Ahammad AJS. Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point-of-Care Testing. Molecules 2020;25:E5787. [PMID: 33302537 DOI: 10.3390/molecules25245787] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
60 Liu P, Tan J, Tan Q, Xu L, He T, Lv Q. Application of Carbon Nanoparticles in Tracing Lymph Nodes and Locating Tumors in Colorectal Cancer: A Concise Review. Int J Nanomedicine 2020;15:9671-81. [PMID: 33293812 DOI: 10.2147/IJN.S281914] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
61 Xia N, Huang Y, Zhao Y, Wang F, Liu L, Sun Z. Electrochemical biosensors by in situ dissolution of self-assembled nanolabels into small monomers on electrode surface. Sensors and Actuators B: Chemical 2020;325:128777. [DOI: 10.1016/j.snb.2020.128777] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
62 Shabani E, Abdekhodaie MJ, Mousavi SA, Taghipour F. ZnO nanoparticle/nanorod-based label-free electrochemical immunoassay for rapid detection of MMP-9 biomarker. Biochemical Engineering Journal 2020;164:107772. [DOI: 10.1016/j.bej.2020.107772] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
63 Ye R, Xu H, Gu J, Chen H. Bioinspired synthesis of protein-posnjakite organic-inorganic nanobiohybrid for biosensing applications. Anal Chim Acta 2021;1143:31-6. [PMID: 33384127 DOI: 10.1016/j.aca.2020.11.026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
64 Chen Y, Li B, Lyu P, Kwok HF, Ge L, Wu Q. Boronate ester bond-based potentiometric aptasensor for screening carcinoembryonic antigen-glycoprotein using nanometer-sized CaCO3 with ion-selective electrode. Anal Bioanal Chem 2021;413:1073-80. [PMID: 33230701 DOI: 10.1007/s00216-020-03067-9] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
65 Sharafeldin M, Davis JJ. Point of Care Sensors for Infectious Pathogens. Anal Chem 2021;93:184-97. [DOI: 10.1021/acs.analchem.0c04677] [Cited by in Crossref: 9] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
66 Pilan L. Tailoring the performance of electrochemical biosensors based on carbon nanomaterials via aryldiazonium electrografting. Bioelectrochemistry 2021;138:107697. [PMID: 33486222 DOI: 10.1016/j.bioelechem.2020.107697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
67 Hendrickson OD, Zvereva EA, Vostrikova NL, Chernukha IM, Dzantiev BB, Zherdev AV. Lateral flow immunoassay for sensitive detection of undeclared chicken meat in meat products. Food Chem 2021;344:128598. [PMID: 33229162 DOI: 10.1016/j.foodchem.2020.128598] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
68 Dong H, Zhao Q, Li J, Xiang Y, Liu H, Guo Y, Yang Q, Sun X. Broad-spectrum electrochemical immunosensor based on one-step electrodeposition of AuNP-Abs and Prussian blue nanocomposite for organophosphorus pesticide detection. Bioprocess Biosyst Eng 2021;44:585-94. [PMID: 33161490 DOI: 10.1007/s00449-020-02472-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
69 Chi L, Xu C, Li S, Wang X, Tang D, Xue F. Thionine-doped nanometer-sized silica conjugated with phenylboronic acid: An innovative recognition/signal element for voltammetric aptasensing of colorectal cancer-related carcinoembryonic antigen. Analytica Chimica Acta 2020;1136:91-8. [DOI: 10.1016/j.aca.2020.08.029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
70 Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal Bioanal Chem 2021;413:727-62. [PMID: 33094369 DOI: 10.1007/s00216-020-03002-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
71 An J, Huynh K, Ha Y, Jung HS, Kim H, Kim D, Kim J, Pham X, Kim D, Ho J, Lee S, Lee H, Jeong DH, Jun B, Jin X. Surface Modification of a Stable CdSeZnS/ZnS Alloy Quantum Dot for Immunoassay. Journal of Nanomaterials 2020;2020:1-9. [DOI: 10.1155/2020/4937049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Zhi L, Sun A. Platinum nanozyme-encapsulated poly(amidoamine) dendrimer for voltammetric immunoassay of pro-gastrin-releasing peptide. Analytica Chimica Acta 2020;1134:106-14. [DOI: 10.1016/j.aca.2020.08.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
73 Mobed A, Hasanzadeh M. Biosensing: The best alternative for conventional methods in detection of Alzheimer's disease biomarkers. International Journal of Biological Macromolecules 2020;161:59-71. [DOI: 10.1016/j.ijbiomac.2020.05.257] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
74 Bian L, Zhao H, He C, Fang H, Chen Z, Lin L, Ye K, Wu Y, Lin G. A time-resolved fluoroimmunoassay for assessing rabies antibody titers in the sera of vaccinated human subjects. Biologicals 2020;68:54-9. [PMID: 32868168 DOI: 10.1016/j.biologicals.2020.08.008] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
75 He H, Sun T, Liu W, Xu Z, Han Z, Zhao L, Wu X, Ning B, Bai J. Highly sensitive detection of salbutamol by ALP-mediated plasmonic ELISA based on controlled growth of AgNPs. Microchemical Journal 2020;156:104804. [DOI: 10.1016/j.microc.2020.104804] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
76 Mahmoudi T, Shirdel B, Mansoori B, Baradaran B. Dual sensitivity enhancement in gold nanoparticle‐based lateral flow immunoassay for visual detection of carcinoembryonic antigen. Analytical Science Advances 2020;1:161-72. [DOI: 10.1002/ansa.202000023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
77 Zhan Y, Yang S, Luo F, Guo L, Zeng Y, Qiu B, Lin Z. Emission Wavelength Switchable Carbon Dots Combined with Biomimetic Inorganic Nanozymes for a Two-Photon Fluorescence Immunoassay. ACS Appl Mater Interfaces 2020;12:30085-94. [DOI: 10.1021/acsami.0c06240] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
78 Sadighbayan D, Tohidkia MR, Mehdipour T, Hasanzadeh M, Yari Khosroushahi A. Bio-assay of the non-amidated progastrin-derived peptide (G17-Gly) using the tailor-made recombinant antibody fragment and phage display method: a biomedical analysis. Anal Methods 2020;12:2735-46. [PMID: 32930305 DOI: 10.1039/d0ay00627k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
79 Sadasivam M, Sakthivel A, Nagesh N, Hansda S, Veerapandian M, Alwarappan S, Manickam P. Magnetic bead-amplified voltammetric detection for carbohydrate antigen 125 with enzyme labels using aptamer-antigen-antibody sandwiched assay. Sensors and Actuators B: Chemical 2020;312:127985. [DOI: 10.1016/j.snb.2020.127985] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
80 Cai X, Lv F, Lai G, Fu L, Lin CT, Yu A. Dually enhanced homogenous synthesis of molybdophosphate by hybridization chain reaction and enzyme nanotags for the electrochemical bioassay of carcinoembryonic antigen. Mikrochim Acta 2020;187:361. [PMID: 32468206 DOI: 10.1007/s00604-020-04342-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
81 Van Gool A, Corrales F, Čolović M, Krstić D, Oliver-Martos B, Martínez-Cáceres E, Jakasa I, Gajski G, Brun V, Kyriacou K, Burzynska-Pedziwiatr I, Wozniak LA, Nierkens S, Pascual García C, Katrlik J, Bojic-Trbojevic Z, Vacek J, Llorente A, Antohe F, Suica V, Suarez G, t'Kindt R, Martin P, Penque D, Martins IL, Bodoki E, Iacob BC, Aydindogan E, Timur S, Allinson J, Sutton C, Luider T, Wittfooth S, Sammar M. Analytical techniques for multiplex analysis of protein biomarkers. Expert Rev Proteomics 2020;17:257-73. [PMID: 32427033 DOI: 10.1080/14789450.2020.1763174] [Cited by in Crossref: 9] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
82 Liu X, Yue T, Qi K, Qiu Y, Guo X. Porous graphene based electrochemical immunosensor using Cu3(BTC)2 metal-organic framework as nonenzymatic label. Talanta 2020;217:121042. [PMID: 32498912 DOI: 10.1016/j.talanta.2020.121042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
83 Guo Y, Jiang N, Zhang L, Yin M. Green synthesis of gold nanoparticles from Fritillaria cirrhosa and its anti-diabetic activity on Streptozotocin induced rats. Arabian Journal of Chemistry 2020;13:5096-106. [DOI: 10.1016/j.arabjc.2020.02.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
84 Dong L, Yin L, Tian G, Wang Y, Pei H, Wu Q, Cheng W, Ding S, Xia Q. An enzyme-free ultrasensitive electrochemical immunosensor for calprotectin detection based on PtNi nanoparticles functionalized 2D Cu-metal organic framework nanosheets. Sensors and Actuators B: Chemical 2020;308:127687. [DOI: 10.1016/j.snb.2020.127687] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
85 Harrison ET, Wang YC, Carter L, Castner DG. Characterizing protein G B1 orientation and its effect on immunoglobulin G antibody binding using XPS, ToF-SIMS, and quartz crystal microbalance with dissipation monitoring. Biointerphases 2020;15:021002. [PMID: 32168986 DOI: 10.1116/1.5142560] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
86 Deng L, Lai G, Fu L, Lin CT, Yu A. Enzymatic deposition of gold nanoparticles at vertically aligned carbon nanotubes for electrochemical stripping analysis and ultrasensitive immunosensing of carcinoembryonic antigen. Analyst 2020;145:3073-80. [PMID: 32142088 DOI: 10.1039/c9an02633a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
87 Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020;20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Cited by in Crossref: 21] [Cited by in F6Publishing: 32] [Article Influence: 10.5] [Reference Citation Analysis]
88 Bhattarai P, Hameed S. Basics of Biosensors and Nanobiosensors. In: Wu A, Khan WS, editors. Nanobiosensors. Wiley; 2020. pp. 1-22. [DOI: 10.1002/9783527345137.ch1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Han X, Lin S, Li Y, Cheng C, Han X. Near-infrared photothermal immunoassay for pancreatic cancer biomarker CA 19-9 on a digital thermometer. Analytica Chimica Acta 2020;1098:117-24. [DOI: 10.1016/j.aca.2019.11.027] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
90 Kurdekar AD, Sai Manohar C, Chunduri LAA, Haleyurgirisetty MK, Hewlett IK, Kamisetti V. Computational design and clinical demonstration of a copper nanocluster based universal immunosensor for sensitive diagnostics. Nanoscale Adv 2020;2:304-14. [DOI: 10.1039/c9na00503j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
91 Zhao X, Wang N, Chen H, Bai L, Xu H, Wang W, Yang H, Wei D, Yang L, Cheng Z. Preparation of a novel sandwich-type electrochemical immunosensor for AFP detection based on an ATRP and click chemistry technique. Polym Chem 2020;11:900-8. [DOI: 10.1039/c9py01279f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
92 Xie S, Li B, Lyu P, Kwok HF, Ge L, Wu Q. A new voltammetric immunosensing platform for prostate-specific antigen based on the Cu( ii )-pyrophosphate ion chelation reaction. New J Chem 2020;44:3820-3. [DOI: 10.1039/c9nj05514b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
93 Gao L, Yang Q, Wu P, Li F. Recent advances in nanomaterial-enhanced enzyme-linked immunosorbent assays. Analyst 2020;145:4069-78. [DOI: 10.1039/d0an00597e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
94 Sheta SM, El-sheikh SM, Osman DI, Salem AM, Ali OI, Harraz FA, Shousha WG, Shoeib MA, Shawky SM, Dionysiou DD. A novel HCV electrochemical biosensor based on a polyaniline@Ni-MOF nanocomposite. Dalton Trans 2020;49:8918-26. [DOI: 10.1039/d0dt01408g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
95 Zhi L, Sun A, Tang D. In situ amplified photothermal immunoassay for neuron-specific enolase with enhanced sensitivity using Prussian blue nanoparticle-loaded liposomes. Analyst 2020;145:4164-72. [DOI: 10.1039/d0an00417k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
96 Huang J, Huang C, Zhong W, Lin Y. A magneto-controlled microfluidic device for voltammetric immunoassay of carbohydrate antigen-125 with silver–polypyrrole nanotags. Anal Methods 2020;12:4211-9. [DOI: 10.1039/d0ay01225d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Luo J, Li T, Yang M. Detection protein biomarker with gold nanoparticles functionalized hollow mesoporous Prussian blue nanoparticles as electrochemical probes. Chinese Chemical Letters 2020;31:202-4. [DOI: 10.1016/j.cclet.2019.05.051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
98 Soleymani J, Hasanzadeh M, Shadjou N, Somi MH, Jouyban A. Spectrofluorimetric cytosensing of colorectal cancer cells using terbium-doped dendritic fibrous nano-silica functionalized by folic acid: A novel optical cytosensor for cancer detection. J Pharm Biomed Anal 2020;180:113077. [PMID: 31884393 DOI: 10.1016/j.jpba.2019.113077] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
99 Ozer T, Geiss BJ, Henry CS. Review-Chemical and Biological Sensors for Viral Detection. J Electrochem Soc 2020;167:037523. [PMID: 32287357 DOI: 10.1149/2.0232003JES] [Cited by in Crossref: 38] [Cited by in F6Publishing: 60] [Article Influence: 12.7] [Reference Citation Analysis]
100 Lu N, Ling L, Guan T, Wang L, Wang D, Zhou J, Ruan T, Shen X, Li X, Sun Y, Lei H. Broad-specificity ELISA with a heterogeneous strategy for sensitive detection of microcystins and nodularin. Toxicon 2020;175:44-8. [PMID: 32056695 DOI: 10.1016/j.toxicon.2019.12.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
101 Bajpai VK, Oh C, Khan I, Haldorai Y, Gandhi S, Lee H, Song X, Kim M, Upadhyay A, Chen L, Huh YS, Han YK, Shukla S. Fluorescent immunoliposomal nanovesicles for rapid multi-well immuno-biosensing of histamine in fish samples. Chemosphere 2020;243:125404. [PMID: 31995871 DOI: 10.1016/j.chemosphere.2019.125404] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
102 Kannan P, Chen J, Su F, Guo Z, Huang Y. Faraday-Cage-Type Electrochemiluminescence Immunoassay: A Rise of Advanced Biosensing Strategy. Anal Chem 2019;91:14792-802. [PMID: 31692335 DOI: 10.1021/acs.analchem.9b04503] [Cited by in Crossref: 26] [Cited by in F6Publishing: 37] [Article Influence: 8.7] [Reference Citation Analysis]
103 Dai S, Zhou Y, Dai P, Cheng G, He P, Fang Y. The Split Primer Ligation‐triggered 8‐17 DNAzyme Assisted Cascade Rolling Circle Amplification for High Specific Detection of Liver Cancer‐involved mRNAs: TK1 and c‐myc. Electroanalysis 2020;32:554-60. [DOI: 10.1002/elan.201900539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
104 Adeyemi JO, Elemike EE, Onwudiwe DC, Singh M. Bio-inspired synthesis and cytotoxic evaluation of silver-gold bimetallic nanoparticles using Kei-Apple (Dovyalis caffra) fruits. Inorganic Chemistry Communications 2019;109:107569. [DOI: 10.1016/j.inoche.2019.107569] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
105 Wu S, Tan H, Wang C, Wang J, Sheng S. A Colorimetric Immunoassay Based on Coordination Polymer Composite for the Detection of Carcinoembryonic Antigen. ACS Appl Mater Interfaces 2019;11:43031-8. [DOI: 10.1021/acsami.9b18472] [Cited by in Crossref: 19] [Cited by in F6Publishing: 31] [Article Influence: 6.3] [Reference Citation Analysis]
106 Pothipor C, Wiriyakun N, Putnin T, Ngamaroonchote A, Jakmunee J, Ounnunkad K, Laocharoensuk R, Aroonyadet N. Highly sensitive biosensor based on graphene–poly (3-aminobenzoic acid) modified electrodes and porous-hollowed-silver-gold nanoparticle labelling for prostate cancer detection. Sensors and Actuators B: Chemical 2019;296:126657. [DOI: 10.1016/j.snb.2019.126657] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
107 Xiong X, Zhang Y, Wang Y, Sha H, Jia N. One-step electrochemiluminescence immunoassay for breast cancer biomarker CA 15-3 based on Ru(bpy)62+-coated UiO-66-NH2 metal-organic framework. Sensors and Actuators B: Chemical 2019;297:126812. [DOI: 10.1016/j.snb.2019.126812] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
108 Huang X, Chen Q, Pan W, Hu J, Yao Y. Assessing the Mass Sensitivity for Different Electrode Materials Commonly Used in Quartz Crystal Microbalances (QCMs). Sensors (Basel) 2019;19:E3968. [PMID: 31540039 DOI: 10.3390/s19183968] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
109 Vijayakumar S. Eco-friendly synthesis of gold nanoparticles using fruit extracts and in vitro anticancer studies. Journal of Saudi Chemical Society 2019;23:753-61. [DOI: 10.1016/j.jscs.2018.12.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
110 Chen J, Xue H, Chen Q, Lin Y, Tang D, Zheng J. Enzyme-conjugated hybridization chain reaction for magneto-controlled immunoassay of squamous cell carcinoma antigen with pH meter. Chinese Chemical Letters 2019;30:1631-4. [DOI: 10.1016/j.cclet.2019.03.045] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
111 Zhang L, Zhang J, Zhu D. Biosynthesis of gold nanoparticles and their application in effective pain management in combination with T. coriacea leaf extract for patients in nursing care. Mater Res Express 2019;6:105033. [DOI: 10.1088/2053-1591/ab3689] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
112 Kim SS, Lee Y, Shin HS, Lee JH. Highly sensitive chemiluminescence enzyme immunoassay for the quantification of carcinoembryonic antigen in the presence of an enhancer and a stabilizer. Journal of Immunological Methods 2019;471:18-26. [DOI: 10.1016/j.jim.2019.05.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
113 Filik H, Avan AA. Nanostructures for nonlabeled and labeled electrochemical immunosensors: Simultaneous electrochemical detection of cancer markers: A review. Talanta 2019;205:120153. [PMID: 31450406 DOI: 10.1016/j.talanta.2019.120153] [Cited by in Crossref: 35] [Cited by in F6Publishing: 49] [Article Influence: 11.7] [Reference Citation Analysis]
114 Zhang B, Ding H, Chen Q, Wang T, Zhang K. Prussian blue nanoparticle-labeled aptasensing platform on graphene oxide for voltammetric detection of α-fetoprotein in hepatocellular carcinoma with target recycling. Analyst 2019;144:4858-64. [PMID: 31294738 DOI: 10.1039/c9an01029g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
115 Lee Y, Kim SS, Lee JH. Chemiluminescent dual-enzyme immunoassays capable of simultaneously quantifying carbohydrate antigen 19–9 and carcinoma embryonic antigen in a sample. Analytica Chimica Acta 2019;1060:88-96. [DOI: 10.1016/j.aca.2019.01.048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
116 Xia N, Deng D, Yang S, Hao Y, Wang L, Liu Y, An C, Han Q, Liu L. Electrochemical immunosensors with protease as the signal label for the generation of peptide-Cu(II) complexes as the electrocatalysts toward water oxidation. Sensors and Actuators B: Chemical 2019;291:113-9. [DOI: 10.1016/j.snb.2019.04.063] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
117 Jeon YS, Shin HM, Kim YJ, Nam DY, Park BC, Yoo E, Kim HR, Kim YK. Metallic Fe-Au Barcode Nanowires as a Simultaneous T Cell Capturing and Cytokine Sensing Platform for Immunoassay at the Single-Cell Level. ACS Appl Mater Interfaces 2019;11:23901-8. [PMID: 31187614 DOI: 10.1021/acsami.9b06535] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
118 Zhao J, Wang S, Lu S, Liu G, Sun J, Yang X. Fluorometric and Colorimetric Dual-Readout Immunoassay Based on an Alkaline Phosphatase-Triggered Reaction. Anal Chem 2019;91:7828-34. [PMID: 31124658 DOI: 10.1021/acs.analchem.9b01553] [Cited by in Crossref: 26] [Cited by in F6Publishing: 41] [Article Influence: 8.7] [Reference Citation Analysis]
119 Teepoo S, Promta A, Phapugrangkul P. A Competitive Colorimetric Immunosensor for Detection of Tyramine in Fish Samples. Food Anal Methods 2019;12:1886-94. [DOI: 10.1007/s12161-019-01534-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
120 Vargis VS, Jayachandran Priya C, Surendran H, Punathil Vasu S, Nair B, Thekkedath Gopalakrishnan SB. Gold nanoparticles decorated reduced graphene oxide nanolabel for voltammetric immunosensing. IET Nanobiotechnol 2019;13:107-13. [PMID: 31051439 DOI: 10.1049/iet-nbt.2018.5150] [Reference Citation Analysis]
121 Ge L, Li B, Xu H, Pu W, Kwok HF. Backfilling rolling cycle amplification with enzyme-DNA conjugates on antibody for portable electrochemical immunoassay with glucometer readout. Biosensors and Bioelectronics 2019;132:210-6. [DOI: 10.1016/j.bios.2019.02.051] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
122 Hamidaddin MA, AlRabiah H, Darwish IA. Development and comparative evaluation of two immunoassay platforms for bioanalysis of crizotinib: A potent drug used for the treatment of non-small cell lung cancer. Talanta 2019;201:217-25. [PMID: 31122414 DOI: 10.1016/j.talanta.2019.04.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
123 Sedighi A, Krull UJ. Enhanced Immunoassay Using a Rotating Paper Platform for Quantitative Determination of Low Abundance Protein Biomarkers. Anal Chem 2019;91:5371-9. [PMID: 30915836 DOI: 10.1021/acs.analchem.9b00502] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
124 Guo J, Wang Y, Zhao M. A self-activated nanobiocatalytic cascade system based on an enzyme-inorganic hybrid nanoflower for colorimetric and visual detection of glucose in human serum. Sensors and Actuators B: Chemical 2019;284:45-54. [DOI: 10.1016/j.snb.2018.12.102] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
125 Xu J, Shi M, Huang H, Hu K, Chen W, Huang Y, Zhao S. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection. Analyst 2018;143:3918-25. [PMID: 30043777 DOI: 10.1039/c8an01032c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
126 El-Said WA, Choi JW. High selective spectroelectrochemical biosensor for HCV-RNA detection based on a specific peptide nucleic acid. Spectrochim Acta A Mol Biomol Spectrosc 2019;217:288-93. [PMID: 30952095 DOI: 10.1016/j.saa.2019.03.115] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
127 Idris AO, Mabuba N, Arotiba OA. An Exfoliated Graphite-Based Electrochemical Immunosensor on a Dendrimer/Carbon Nanodot Platform for the Detection of Carcinoembryonic Antigen Cancer Biomarker. Biosensors (Basel) 2019;9:E39. [PMID: 30857164 DOI: 10.3390/bios9010039] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
128 Chen C, Wang P, Yen Y, Lin H, Fan Y, Wu S, Chen C. Fast analysis of ketamine using a colorimetric immunosorbent assay on a paper-based analytical device. Sensors and Actuators B: Chemical 2019;282:251-8. [DOI: 10.1016/j.snb.2018.11.071] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
129 Hu J, Huang X. QCM Mass Sensitivity Analysis Based on Finite Element Method. IEEE Trans Appl Supercond 2019;29:1-4. [DOI: 10.1109/tasc.2018.2886811] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
130 Zhang L, Xie X, Yuan Y, Chai Y, Yuan R. FeS 2 −AuNPs Nanocomposite as Mimicking Enzyme for Constructing Signal‐off Sandwich‐type Electrochemical Immunosensor Based on Electroactive Nickel Hexacyanoferrate as Matrix. Electroanalysis 2019;31:1019-25. [DOI: 10.1002/elan.201800827] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
131 Chinnadayyala SR, Park J, Le HTN, Santhosh M, Kadam AN, Cho S. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosensors and Bioelectronics 2019;126:68-81. [DOI: 10.1016/j.bios.2018.10.038] [Cited by in Crossref: 73] [Cited by in F6Publishing: 86] [Article Influence: 24.3] [Reference Citation Analysis]
132 Rafique B, Iqbal M, Mehmood T, Shaheen MA. Electrochemical DNA biosensors: a review. SR 2019;39:34-50. [DOI: 10.1108/sr-08-2017-0156] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
133 Cho S, Lee SM, Shin HY, Kim MS, Seo YH, Cho YK, Lee J, Lee SP, Kim MI. Highly sensitive colorimetric detection of allergies based on an immunoassay using peroxidase-mimicking nanozymes. Analyst 2018;143:1182-7. [PMID: 29405213 DOI: 10.1039/c7an01866e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
134 Zhuang W, Li Y, Weng X, Guo H, Zhang Y, Yang Y, Fan C. Sensitive and portable electrochemical immunoassay for lipoprotein-associated phospholipase A 2 using BSA-doped CaCO 3 nanospheres to regulate pH readout. Anal Methods 2019;11:1631-8. [DOI: 10.1039/c8ay02800a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
135 Liang J, Wang J, Zhang L, Wang S, Yao C, Zhang Z. Glucose oxidase-loaded liposomes for in situ amplified signal of electrochemical immunoassay on a handheld pH meter. New J Chem 2019;43:1372-9. [DOI: 10.1039/c8nj05637d] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
136 Li B, Pu W, Xu H, Ge L, Kwok HF, Hu L. Magneto-controlled flow-injection device for electrochemical immunoassay of alpha-fetoprotein on magnetic beads using redox-active ferrocene derivative polymer nanospheres. Analyst 2019;144:1433-41. [DOI: 10.1039/c8an01978a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
137 Liang Y, Zhao X, Wang N, Wang J, Chen H, Bai L, Wang W. A label-free immunosensor based on PHEMA/graphene oxide nanocomposite for simultaneous electrochemical determination of alpha fetoprotein. RSC Adv 2019;9:17187-93. [DOI: 10.1039/c9ra02565k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
138 Xue H, Zheng J, Chen Q, Wang Q, Lin Y, Chen J. Ag + -coordinated oligonucleotides on gold nanoparticles for anodic-stripping voltammetric immunoassay of cancer antigen 125 for cervical carcinoma. Anal Methods 2019;11:2976-82. [DOI: 10.1039/c9ay00875f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
139 Kim HS, Lee SH, Choi I. On-chip plasmonic immunoassay based on targeted assembly of gold nanoplasmonic particles. Analyst 2019;144:2820-6. [DOI: 10.1039/c8an02489h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
140 Liu J, Quan L, Yu X, Wang L. Quantitative detection of procalcitonin using an electrochemical immunosensor based on MoO 3 /Au@rGO nanocomposites. Analyst 2019;144:6968-74. [DOI: 10.1039/c9an01721f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
141 Mo X, Wu Z, Huang J, Zhao G, Dou W. A sensitive and regenerative electrochemical immunosensor for quantitative detection of Escherichia coli O157:H7 based on stable polyaniline coated screen-printed carbon electrode and rGO-NR-Au@Pt. Anal Methods 2019;11:1475-82. [DOI: 10.1039/c8ay02594k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
142 Zhuang W, Li Y, Chen J, Liu W, Huang H. Copper nanocluster-labeled hybridization chain reaction for potentiometric immunoassay of matrix metalloproteinase-7 in acute kidney injury and renal cancer. Anal Methods 2019;11:2597-604. [DOI: 10.1039/c9ay00681h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
143 Tang D, Ren J, Lu M. Multiplexed electrochemical immunoassay for two immunoglobulin proteins based on Cd and Cu nanocrystals. Analyst 2017;142:4794-800. [PMID: 29159345 DOI: 10.1039/c7an01459g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
144 Guo P, Wang Y, Chen Z, Jin T, Fu L, Lin CT, Lai G. Voltammetric immunoassay of human IgG based on the release of cadmium(II) from CdS nanocrystals deposited on mesoporous silica nanospheres. Mikrochim Acta 2018;186:15. [PMID: 30542980 DOI: 10.1007/s00604-018-3142-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
145 Ollanik AJ, Oguntoye IO, Hartfield GZ, Escarra MD. Highly Sensitive, Affordable, and Adaptable Refractive Index Sensing with Silicon‐Based Dielectric Metasurfaces. Adv Mater Technol 2019;4:1800567. [DOI: 10.1002/admt.201800567] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
146 Chen H, Chen C, Bai S, Gao Y, Metcalfe G, Cheng W, Zhu Y. Multiplexed detection of cancer biomarkers using a microfluidic platform integrating single bead trapping and acoustic mixing techniques. Nanoscale 2018;10:20196-206. [PMID: 30256377 DOI: 10.1039/c8nr06367b] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
147 Samadi Pakchin P, Ghanbari H, Saber R, Omidi Y. Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker. Biosensors and Bioelectronics 2018;122:68-74. [DOI: 10.1016/j.bios.2018.09.016] [Cited by in Crossref: 79] [Cited by in F6Publishing: 94] [Article Influence: 19.8] [Reference Citation Analysis]
148 Zhou Q, Tang D. Catalytic hairpin assembly-mediated surface charge density on the electrode for sensitive potentiometric detection of microRNA-21 in IgA-nephropathy. Biochemical Engineering Journal 2018;140:9-16. [DOI: 10.1016/j.bej.2018.09.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
149 Zhang Y, Pan D, Zhou Q, Zhao J, Pan N, Zhang Y, Wang LX, Shen Y. An enzyme cascade-based electrochemical immunoassay using a polydopamine-carbon nanotube nanocomposite for signal amplification. J Mater Chem B 2018;6:8180-7. [PMID: 32254937 DOI: 10.1039/c8tb02659a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
150 Tan X, David A, Day J, Tang H, Dixon ER, Zhu H, Chen YC, Khaing Oo MK, Shikanov A, Fan X. Rapid Mouse Follicle Stimulating Hormone Quantification and Estrus Cycle Analysis Using an Automated Microfluidic Chemiluminescent ELISA System. ACS Sens 2018;3:2327-34. [PMID: 30335974 DOI: 10.1021/acssensors.8b00641] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
151 Xiao P, Ke Y, Lu J, Huang Z, Zhu X, Wei B, Huang L. Photoluminescence immunoassay based on grapefruit peel-extracted carbon quantum dots encapsulated into silica nanospheres for p53 protein. Biochemical Engineering Journal 2018;139:109-16. [DOI: 10.1016/j.bej.2018.08.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
152 Lara S, Perez-Potti A. Applications of Nanomaterials for Immunosensing. Biosensors (Basel) 2018;8:E104. [PMID: 30388865 DOI: 10.3390/bios8040104] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
153 Chen Y, Yuan PX, Wang AJ, Luo X, Xue Y, Zhang L, Feng JJ. A novel electrochemical immunosensor for highly sensitive detection of prostate-specific antigen using 3D open-structured PtCu nanoframes for signal amplification. Biosens Bioelectron 2019;126:187-92. [PMID: 30415153 DOI: 10.1016/j.bios.2018.10.057] [Cited by in Crossref: 81] [Cited by in F6Publishing: 100] [Article Influence: 20.3] [Reference Citation Analysis]
154 Alizadeh N, Salimi A. Ultrasensitive Bioaffinity Electrochemical Sensors: Advances and New Perspectives. Electroanalysis 2018;30:2803-40. [DOI: 10.1002/elan.201800598] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
155 Hamidaddin MA, AlRabiah H, Darwish IA. Development and validation of generic heterogeneous fluoroimmunoassay for bioanalysis of bevacizumab and cetuximab monoclonal antibodies used for cancer immunotherapy. Talanta 2018;188:562-9. [PMID: 30029413 DOI: 10.1016/j.talanta.2018.05.091] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
156 Aranda PR, Messina GA, Bertolino FA, Pereira SV, Fernández Baldo MA, Raba J. Nanomaterials in fluorescent laser-based immunosensors: Review and applications. Microchemical Journal 2018;141:308-23. [DOI: 10.1016/j.microc.2018.05.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
157 Kim SH, Nam O, Jin E, Gu MB. A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding. Biosens Bioelectron 2019;123:160-6. [PMID: 30139622 DOI: 10.1016/j.bios.2018.08.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
158 Arya SK, Estrela P. Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. Sensors (Basel) 2018;18:E2010. [PMID: 29932161 DOI: 10.3390/s18072010] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
159 Mohammadi S, Salimi A, Hamd-Ghadareh S, Fathi F, Soleimani F. A FRET immunosensor for sensitive detection of CA 15-3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Anal Biochem 2018;557:18-26. [PMID: 29908158 DOI: 10.1016/j.ab.2018.06.008] [Cited by in Crossref: 40] [Cited by in F6Publishing: 54] [Article Influence: 10.0] [Reference Citation Analysis]
160 Rizwan M, Elma S, Lim SA, Ahmed MU. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosensors and Bioelectronics 2018;107:211-7. [DOI: 10.1016/j.bios.2018.02.037] [Cited by in Crossref: 74] [Cited by in F6Publishing: 73] [Article Influence: 18.5] [Reference Citation Analysis]
161 Zhang D, Li W, Ma Z. Improved sandwich-format electrochemical immunosensor based on “smart” SiO2@polydopamine nanocarrier. Biosensors and Bioelectronics 2018;109:171-6. [DOI: 10.1016/j.bios.2018.03.027] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
162 Kirbay FO, Yalcinkaya EE, Atik G, Evren G, Unal B, Demirkol DO, Timur S. Biofunctionalization of PAMAM-montmorillonite decorated poly (Ɛ-caprolactone)-chitosan electrospun nanofibers for cell adhesion and electrochemical cytosensing. Biosensors and Bioelectronics 2018;109:286-94. [DOI: 10.1016/j.bios.2018.03.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
163 Huang X, Bai Q, Pan W, Hu J. Quartz Crystal Microbalance with Approximately Uniform Sensitivity Distribution. Anal Chem 2018;90:6367-70. [PMID: 29730932 DOI: 10.1021/acs.analchem.8b01529] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
164 Zhang X, Li Y, Lv H, Feng J, Gao Z, Wang P, Dong Y, Liu Q, Zhao Z. Sandwich-type electrochemical immunosensor based on Au@Ag supported on functionalized phenolic resin microporous carbon spheres for ultrasensitive analysis of α-fetoprotein. Biosensors and Bioelectronics 2018;106:142-8. [DOI: 10.1016/j.bios.2018.02.001] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 12.3] [Reference Citation Analysis]
165 Abd Muain MF, Cheo KH, Omar MN, Amir Hamzah AS, Lim HN, Salleh AB, Tan WS, Ahmad Tajudin A. Gold nanoparticle-decorated reduced-graphene oxide targeting anti hepatitis B virus core antigen. Bioelectrochemistry 2018;122:199-205. [PMID: 29660648 DOI: 10.1016/j.bioelechem.2018.04.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
166 Zhang D, Li W, Wang H, Ma Z. A novel immunoprobe composed of reduced graphene oxide-hemin-thionin-Au nanohybrid for ultrasensitive detection of tumor marker. Sensors and Actuators B: Chemical 2018;258:141-7. [DOI: 10.1016/j.snb.2017.11.085] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
167 Gu X, She Z, Ma T, Tian S, Kraatz H. Electrochemical detection of carcinoembryonic antigen. Biosensors and Bioelectronics 2018;102:610-6. [DOI: 10.1016/j.bios.2017.12.014] [Cited by in Crossref: 61] [Cited by in F6Publishing: 67] [Article Influence: 15.3] [Reference Citation Analysis]
168 Lahtinen S, Lyytikäinen A, Sirkka N, Päkkilä H, Soukka T. Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid) coated upconverting nanoparticles by adding free poly(acrylic acid). Microchim Acta 2018;185. [DOI: 10.1007/s00604-018-2756-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
169 Huang JY, Lin HT, Chen TH, Chen CA, Chang HT, Chen CF. Signal Amplified Gold Nanoparticles for Cancer Diagnosis on Paper-Based Analytical Devices. ACS Sens 2018;3:174-82. [PMID: 29282979 DOI: 10.1021/acssensors.7b00823] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 13.3] [Reference Citation Analysis]
170 Liang J, Zhang Z, Zhao H, Wan S, Zhai X, Zhou J, Liang R, Deng Q, Wu Y, Lin G. Simple and rapid monitoring of doxorubicin using streptavidin-modified microparticle-based time-resolved fluorescence immunoassay. RSC Adv 2018;8:15621-31. [DOI: 10.1039/c8ra01807c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
171 Ben Ismail M, de la Serna E, Ruiz-vega G, García-berrocoso T, Montaner J, Zourob M, Othmane A, Baldrich E. Using magnetic beads and signal amplifiers to produce short and simple immunoassays: Application to MMP-9 detection in plasma samples. Analytica Chimica Acta 2018;999:144-54. [DOI: 10.1016/j.aca.2017.11.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
172 Sharma A, Kumar A, Khan R. A highly sensitive amperometric immunosensor probe based on gold nanoparticle functionalized poly (3, 4-ethylenedioxythiophene) doped with graphene oxide for efficient detection of aflatoxin B 1. Synthetic Metals 2018;235:136-44. [DOI: 10.1016/j.synthmet.2017.12.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
173 Gandhi S, Banga I, Maurya PK, Eremin SA. A gold nanoparticle-single-chain fragment variable antibody as an immunoprobe for rapid detection of morphine by dipstick. RSC Adv 2018;8:1511-8. [DOI: 10.1039/c7ra12810j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
174 Lee SY, Lin M, Lee A, Park YI. Lanthanide-Doped Nanoparticles for Diagnostic Sensing. Nanomaterials (Basel) 2017;7:E411. [PMID: 29168770 DOI: 10.3390/nano7120411] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
175 Felix FS, Angnes L. Electrochemical immunosensors - A powerful tool for analytical applications. Biosens Bioelectron 2018;102:470-8. [PMID: 29182930 DOI: 10.1016/j.bios.2017.11.029] [Cited by in Crossref: 206] [Cited by in F6Publishing: 228] [Article Influence: 41.2] [Reference Citation Analysis]
176 Nanda SS, Kim MJ, Kim K, Papaefthymiou GC, Selvan ST, Yi DK. Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications. Colloids and Surfaces B: Biointerfaces 2017;159:644-54. [DOI: 10.1016/j.colsurfb.2017.08.026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
177 Chen D, Zhang X, Zhu L, Liu C, Li Z. Single Microbead-Anchored Fluorescent Immunoassay (SMFIA): A Facile and Versatile Platform Allowing Simultaneous Detection of Multiple Antigens. Chem Asian J 2017;12:2894-8. [DOI: 10.1002/asia.201701245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
178 Teradal NL, Jelinek R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater 2017;6. [PMID: 28777502 DOI: 10.1002/adhm.201700574] [Cited by in Crossref: 88] [Cited by in F6Publishing: 76] [Article Influence: 17.6] [Reference Citation Analysis]
179 Lin G, Chen S, Zhao H, Liang J, Deng Q, Liang R, Guo X, Chen Z, Chen B, Liu T, Wu Y. A time-resolved fluoroimmunoassay to assay the rabies virus glycoprotein: application for estimation of human rabies vaccine potency. Sci Rep 2017;7:7288. [PMID: 28779162 DOI: 10.1038/s41598-017-07687-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
180 Forsyth R, Devadoss A, Guy OJ. Graphene Field Effect Transistors for Biomedical Applications: Current Status and Future Prospects. Diagnostics (Basel) 2017;7:E45. [PMID: 28933752 DOI: 10.3390/diagnostics7030045] [Cited by in Crossref: 30] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
181 Pakchin PS, Nakhjavani SA, Saber R, Ghanbari H, Omidi Y. Recent advances in simultaneous electrochemical multi-analyte sensing platforms. TrAC Trends in Analytical Chemistry 2017;92:32-41. [DOI: 10.1016/j.trac.2017.04.010] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 6.4] [Reference Citation Analysis]
182 Yavas O, Svedendahl M, Dobosz P, Sanz V, Quidant R. On-a-chip Biosensing Based on All-Dielectric Nanoresonators. Nano Lett 2017;17:4421-6. [DOI: 10.1021/acs.nanolett.7b01518] [Cited by in Crossref: 93] [Cited by in F6Publishing: 101] [Article Influence: 18.6] [Reference Citation Analysis]
183 Li D, Wang C, Sun G, Senapati S, Chang HC. A shear-enhanced CNT-assembly nanosensor platform for ultra-sensitive and selective protein detection. Biosens Bioelectron 2017;97:143-9. [PMID: 28587929 DOI: 10.1016/j.bios.2017.05.053] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
184 Li Y, Wu J, Zhang C, Chen Y, Wang Y, Xie M. Manganese dioxide nanoparticle-based colorimetric immunoassay for the detection of alpha-fetoprotein. Microchim Acta 2017;184:2767-74. [DOI: 10.1007/s00604-017-2303-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
185 Xu H, Kou F, Ye H, Wang Z, Huang S, Liu X, Zhu X, Lin Z, Chen G. Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator. Talanta 2017;175:177-82. [PMID: 28841975 DOI: 10.1016/j.talanta.2017.04.073] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
186 Xiao Q, Zheng Y, Liu J, Wang S, Feng B. Enzyme–antibody dual-film modified gold nanoparticle probe for ultrasensitive detection of alpha fetoprotein. Biologicals 2017;47:46-51. [DOI: 10.1016/j.biologicals.2017.02.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
187 Liu W, Gómez-Durán CFA, Smith BD. Fluorescent Neuraminidase Assay Based on Supramolecular Dye Capture After Enzymatic Cleavage. J Am Chem Soc 2017;139:6390-5. [PMID: 28426220 DOI: 10.1021/jacs.7b01628] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 5.4] [Reference Citation Analysis]
188 Piro B, Reisberg S. Recent Advances in Electrochemical Immunosensors. Sensors (Basel) 2017;17:E794. [PMID: 28387718 DOI: 10.3390/s17040794] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 9.4] [Reference Citation Analysis]
189 Li B, Lai G, Zhang H, Hu S, Yu A. Copper chromogenic reaction based colorimetric immunoassay for rapid and sensitive detection of a tumor biomarker. Analytica Chimica Acta 2017;963:106-11. [DOI: 10.1016/j.aca.2017.01.030] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
190 Kokkinos C, Economou A. Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels – A review. Analytica Chimica Acta 2017;961:12-32. [DOI: 10.1016/j.aca.2017.01.016] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
191 Zhang X, Zeng Y, Zheng A, Cai Z, Huang A, Zeng J, Liu X, Liu J. A fluorescence based immunoassay for galectin-4 using gold nanoclusters and a composite consisting of glucose oxidase and a metal-organic framework. Microchim Acta 2017;184:1933-40. [DOI: 10.1007/s00604-017-2204-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
192 Näreoja T, Rosenholm JM, Lamminmäki U, Hänninen PE. Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium(III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing. Anal Bioanal Chem 2017;409:3407-16. [PMID: 28303322 DOI: 10.1007/s00216-017-0284-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
193 Seo HB, Gu MB. Aptamer-based sandwich-type biosensors. J Biol Eng 2017;11:11. [PMID: 28293287 DOI: 10.1186/s13036-017-0054-7] [Cited by in Crossref: 48] [Cited by in F6Publishing: 57] [Article Influence: 9.6] [Reference Citation Analysis]
194 Zhao L, Ma Z. New immunoprobes based on bovine serum albumin-stabilized copper nanoclusters with triple signal amplification for ultrasensitive electrochemical immunosensing for tumor marker. Sensors and Actuators B: Chemical 2017;241:849-54. [DOI: 10.1016/j.snb.2016.11.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
195 Ju H. Signal Amplification for Highly Sensitive Immunosensing. J Anal Test 2017;1. [DOI: 10.1007/s41664-017-0008-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
196 Zhao LJ, Yu RJ, Ma W, Han HX, Tian H, Qian RC, Long YT. Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay. Theranostics 2017;7:876-83. [PMID: 28382160 DOI: 10.7150/thno.17575] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
197 Gelinsky-wersing D, Wersing W, Pompe W. Bivalent kinetic binding model to surface plasmon resonance studies of antigen-antibody displacement reactions. Analytical Biochemistry 2017;518:110-25. [DOI: 10.1016/j.ab.2016.11.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
198 Yáñez-sedeño P, Campuzano S, Pingarrón J. Carbon Nanostructures for Tagging in Electrochemical Biosensing: A Review. C 2017;3:3. [DOI: 10.3390/c3010003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
199 Kim TH. A simple and real-time sensing of human serum albumin using antibody-modified CNT-FET. BioChip J 2017;11:116-20. [DOI: 10.1007/s13206-016-1204-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
200 Zhang B, Zhang Y, Liang W, Yu X, Tan H, Wang G, Li A, Jin J, Huang L. Copper sulfide-functionalized molybdenum disulfide nanohybrids as nanoenzyme mimics for electrochemical immunoassay of myoglobin in cardiovascular disease. RSC Adv 2017;7:2486-93. [DOI: 10.1039/c6ra26372k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
201 Huang Z, Han W, Wu Y, Hu X, Yuan Y, Chen W, Peng H, Liu A, Lin X. Magnetic electrochemiluminescent immunoassay with quantum dots label for highly efficient detection of the tumor marker α-fetoprotein. Journal of Electroanalytical Chemistry 2017;785:8-13. [DOI: 10.1016/j.jelechem.2016.11.060] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
202 Gong X, Cai J, Zhang B, Zhao Q, Piao J, Peng W, Gao W, Zhou D, Zhao M, Chang J. A review of fluorescent signal-based lateral flow immunochromatographic strips. J Mater Chem B 2017;5:5079-91. [DOI: 10.1039/c7tb01049d] [Cited by in Crossref: 72] [Cited by in F6Publishing: 86] [Article Influence: 14.4] [Reference Citation Analysis]
203 Khang H, Cho K, Chong S, Lee JH. All-in-one dual-aptasensor capable of rapidly quantifying carcinoembryonic antigen. Biosens Bioelectron 2017;90:46-52. [PMID: 27875751 DOI: 10.1016/j.bios.2016.11.043] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 4.8] [Reference Citation Analysis]
204 Zhang Y, Wei Q. The role of nanomaterials in electroanalytical biosensors: A mini review. Journal of Electroanalytical Chemistry 2016;781:401-9. [DOI: 10.1016/j.jelechem.2016.09.011] [Cited by in Crossref: 54] [Cited by in F6Publishing: 42] [Article Influence: 9.0] [Reference Citation Analysis]
205 Silveira CM, Monteiro T, Almeida MG. Biosensing with Paper-Based Miniaturized Printed Electrodes-A Modern Trend. Biosensors (Basel) 2016;6:E51. [PMID: 27690119 DOI: 10.3390/bios6040051] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 7.7] [Reference Citation Analysis]
206 Jang H, Lim HB. Metal-doped Nanoparticles for Detection of Carbohydrate Antigen 15-3 in Human Serum Using a Sandwich-Type ICP-MS Immunoassay: Metal-doped Nanoparticles for CA15-3 Using ICP-MS Immunoassay. Bull Korean Chem Soc 2016;37:1433-9. [DOI: 10.1002/bkcs.10884] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
207 Herrasti Z, Serna EDL, Ruiz-vega G, Baldrich E. Developing enhanced magnetoimmunosensors based on low-cost screen-printed electrode devices. Reviews in Analytical Chemistry 2016;35:53-85. [DOI: 10.1515/revac-2016-0004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
208 Ondera TJ, Hamme AT 2nd. Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens. Analyst 2015;140:7902-11. [PMID: 26469636 DOI: 10.1039/c5an00497g] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
209 Schulze P, Gericke M, Scholz F, Wondraczek H, Miethe P, Heinze T. Incorporation of Hydrophobic Dyes within Cellulose Acetate and Acetate Phthalate Based Nanoparticles. Macromol Chem Phys 2016;217:1823-33. [DOI: 10.1002/macp.201600160] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
210 Eltzov E, Marks RS. Miniaturized Flow Stacked Immunoassay for Detecting Escherichia coli in a Single Step. Anal Chem 2016;88:6441-9. [PMID: 27218705 DOI: 10.1021/acs.analchem.6b01034] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
211 Wang L, Rong Q, Ma Z. Construction of Electrochemical Immunosensing Interface for Multiple Cancer Biomarkers Detection. Electroanalysis 2016;28:1692-9. [DOI: 10.1002/elan.201600122] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
212 Kokkinos C, Economou A, Prodromidis MI. Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. TrAC Trends in Analytical Chemistry 2016;79:88-105. [DOI: 10.1016/j.trac.2015.11.020] [Cited by in Crossref: 133] [Cited by in F6Publishing: 96] [Article Influence: 22.2] [Reference Citation Analysis]
213 Fenzl C, Hirsch T, Baeumner AJ. Nanomaterials as versatile tools for signal amplification in (bio)analytical applications. TrAC Trends in Analytical Chemistry 2016;79:306-16. [DOI: 10.1016/j.trac.2015.10.018] [Cited by in Crossref: 69] [Cited by in F6Publishing: 47] [Article Influence: 11.5] [Reference Citation Analysis]
214 Chen H, Hagström AE, Kim J, Garvey G, Paterson A, Ruiz-Ruiz F, Raja B, Strych U, Rito-Palomares M, Kourentzi K, Conrad JC, Atmar RL, Willson RC. Flotation Immunoassay: Masking the Signal from Free Reporters in Sandwich Immunoassays. Sci Rep 2016;6:24297. [PMID: 27075635 DOI: 10.1038/srep24297] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
215 Wang X, Niessner R, Tang D, Knopp D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Analytica Chimica Acta 2016;912:10-23. [DOI: 10.1016/j.aca.2016.01.048] [Cited by in Crossref: 83] [Cited by in F6Publishing: 92] [Article Influence: 13.8] [Reference Citation Analysis]
216 Cai X, Weng S, Guo R, Lin L, Chen W, Zheng Z, Huang Z, Lin X. Ratiometric electrochemical immunoassay based on internal reference value for reproducible and sensitive detection of tumor marker. Biosens Bioelectron 2016;81:173-80. [PMID: 26945184 DOI: 10.1016/j.bios.2016.02.066] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 7.5] [Reference Citation Analysis]
217 Liang T, Robinson R, Houghtaling J, Fridley G, Ramsey SA, Fu E. Investigation of Reagent Delivery Formats in a Multivalent Malaria Sandwich Immunoassay and Implications for Assay Performance. Anal Chem 2016;88:2311-20. [PMID: 26835721 DOI: 10.1021/acs.analchem.5b04222] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
218 Roda A, Mirasoli M, Michelini E, Di Fusco M, Zangheri M, Cevenini L, Roda B, Simoni P. Progress in chemical luminescence-based biosensors: A critical review. Biosensors and Bioelectronics 2016;76:164-79. [DOI: 10.1016/j.bios.2015.06.017] [Cited by in Crossref: 122] [Cited by in F6Publishing: 115] [Article Influence: 20.3] [Reference Citation Analysis]
219 Cruz SM, Girão AF, Gonçalves G, Marques PA. Graphene: The Missing Piece for Cancer Diagnosis? Sensors (Basel) 2016;16:E137. [PMID: 26805845 DOI: 10.3390/s16010137] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
220 Liu G, Qi M, Hutchinson MR, Yang G, Goldys EM. Recent advances in cytokine detection by immunosensing. Biosens Bioelectron 2016;79:810-21. [PMID: 26774995 DOI: 10.1016/j.bios.2016.01.020] [Cited by in Crossref: 76] [Cited by in F6Publishing: 83] [Article Influence: 12.7] [Reference Citation Analysis]
221 Zhang B, Zhang Y, Liang W, Cui B, Li J, Yu X, Huang L. Nanogold-penetrated poly(amidoamine) dendrimer for enzyme-free electrochemical immunoassay of cardiac biomarker using cathodic stripping voltammetric method. Analytica Chimica Acta 2016;904:51-7. [DOI: 10.1016/j.aca.2015.11.025] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
222 Liu W, Zhang A, Xu G, Wei F, Yang J, Hu Q. Manganese modified CdTe/CdS quantum dots as an immunoassay biosensor for the detection of Golgi protein-73. Journal of Pharmaceutical and Biomedical Analysis 2016;117:18-25. [DOI: 10.1016/j.jpba.2015.08.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
223 Ostromohov N, Bercovici M, Kaigala GV. Delivery of minimally dispersed liquid interfaces for sequential surface chemistry. Lab Chip 2016;16:3015-23. [DOI: 10.1039/c6lc00473c] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
224 Li J, Wu J, Cui L, Liu M, Yan F, Ju H. Proximity hybridization-regulated electrochemical stripping of silver nanoparticles via nanogold induced deposition for immunoassay. Analyst 2016;141:131-6. [DOI: 10.1039/c5an01946j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
225 Tang J, Huang Y, Liu H, Zhang C, Tang D. Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers. Biosens Bioelectron 2016;79:508-14. [PMID: 26748368 DOI: 10.1016/j.bios.2015.12.097] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
226 Konopińska K, Pietrzak M, Mazur R, Malinowska E. Tetraphenylporphyrin as a protein label for triple detection analytical systems. Heliyon 2015;1:e00053. [PMID: 27441235 DOI: 10.1016/j.heliyon.2015.e00053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
227 Ravalli A, da Rocha CG, Yamanaka H, Marrazza G. A label-free electrochemical affisensor for cancer marker detection: The case of HER2. Bioelectrochemistry 2015;106:268-75. [DOI: 10.1016/j.bioelechem.2015.07.010] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 7.9] [Reference Citation Analysis]
228 Ma H, Li Y, Wang Y, Hu L, Zhang Y, Fan D, Yan T, Wei Q. Cubic Cu2O nanoframes with a unique edge-truncated structure and a good electrocatalytic activity for immunosensor application. Biosens Bioelectron 2016;78:167-73. [PMID: 26606308 DOI: 10.1016/j.bios.2015.11.036] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
229 Villar LM, Cruz HM, Barbosa JR, Bezerra CS, Portilho MM, Scalioni LP. Update on hepatitis B and C virus diagnosis. World J Virology 2015; 4(4): 323-342 [PMID: 26568915 DOI: 10.5501/wjv.v4.i4.323] [Cited by in CrossRef: 47] [Cited by in F6Publishing: 45] [Article Influence: 6.7] [Reference Citation Analysis]
230 Xu T, Li X, Xie Z, Li X, Zhang H. Poly(o-phenylenediamine) nanosphere-conjugated capture antibody immobilized on a glassy carbon electrode for electrochemical immunoassay of carcinoembryonic antigen. Microchim Acta 2015;182:2541-9. [DOI: 10.1007/s00604-015-1625-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
231 Cheng H, Lai G, Fu L, Zhang H, Yu A. Enzymatically catalytic deposition of gold nanoparticles by glucose oxidase-functionalized gold nanoprobe for ultrasensitive electrochemical immunoassay. Biosensors and Bioelectronics 2015;71:353-8. [DOI: 10.1016/j.bios.2015.04.061] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
232 Eltzov E, Guttel S, Low Yuen Kei A, Sinawang PD, Ionescu RE, Marks RS. Lateral Flow Immunoassays - from Paper Strip to Smartphone Technology. Electroanalysis 2015;27:2116-30. [DOI: 10.1002/elan.201500237] [Cited by in Crossref: 62] [Cited by in F6Publishing: 32] [Article Influence: 8.9] [Reference Citation Analysis]
233 Lai G, Cheng H, Yin C, Fu L, Yu A. One-Pot Preparation of Graphene/Gold Nanocomposites for Ultrasensitive Nonenzymatic Electrochemical Immunoassay. Electroanalysis 2016;28:69-75. [DOI: 10.1002/elan.201500470] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
234 Hori N, Chikae M, Kirimura H, Takamura Y. Highly Sensitive Detection using Dual Working Electrode and Concentration Process in Electrochemical Metalloimmunoassay. Electrochimica Acta 2015;174:799-805. [DOI: 10.1016/j.electacta.2015.06.061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
235 Chiou C, Chien L, Kuo J. Nanoconstriction-based electrodeless dielectrophoresis chip for nanoparticle and protein preconcentration. Appl Phys Express 2015;8:085201. [DOI: 10.7567/apex.8.085201] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
236 Goux E, Lisi S, Ravelet C, Durand G, Fiore E, Dausse E, Toulmé J, Peyrin E. An improved design of the kissing complex-based aptasensor for the detection of adenosine. Anal Bioanal Chem 2015;407:6515-24. [DOI: 10.1007/s00216-015-8818-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
237 Viswambari Devi R, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosensors and Bioelectronics 2015;68:688-98. [DOI: 10.1016/j.bios.2015.01.066] [Cited by in Crossref: 123] [Cited by in F6Publishing: 107] [Article Influence: 17.6] [Reference Citation Analysis]
238 Montoro Bustos AR, Garcia-cortes M, González-iglesias H, Ruiz Encinar J, Costa-fernández JM, Coca-prados M, Sanz-medel A. Sensitive targeted multiple protein quantification based on elemental detection of Quantum Dots. Analytica Chimica Acta 2015;879:77-84. [DOI: 10.1016/j.aca.2015.03.015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
239 Zhao Y, Du D, Lin Y. Glucose encapsulating liposome for signal amplification for quantitative detection of biomarkers with glucometer readout. Biosens Bioelectron 2015;72:348-54. [PMID: 26005847 DOI: 10.1016/j.bios.2015.05.028] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 6.3] [Reference Citation Analysis]
240 Wang D, Li T, Gan N, Zhang H, Long N, Hu F, Cao Y, Jiang Q, Jiang S. Electrochemical coding for multiplexed immunoassays of biomarkers based on bio-based polymer-nanotags. Electrochimica Acta 2015;163:238-45. [DOI: 10.1016/j.electacta.2015.02.145] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
241 Pal S, Bhand S. Zinc oxide nanoparticle-enhanced ultrasensitive chemiluminescence immunoassay for the carcinoma embryonic antigen. Microchim Acta 2015;182:1643-51. [DOI: 10.1007/s00604-015-1489-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
242 Sha Y, Guo Z, Chen B, Wang S, Ge G, Qiu B, Jiang X. A one-step electrochemiluminescence immunosensor preparation for ultrasensitive detection of carbohydrate antigen 19-9 based on multi-functionalized graphene oxide. Biosensors and Bioelectronics 2015;66:468-73. [DOI: 10.1016/j.bios.2014.12.013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 4.7] [Reference Citation Analysis]
243 Liu X, Wan X, Lu S, Zhang L, Yu S, Lu X. Evaluation of a magnetic particles-based chemiluminescence enzyme immunoassay for Golgi protein 73 in human serum. Clin Chim Acta 2015;445:54-9. [PMID: 25801213 DOI: 10.1016/j.cca.2015.03.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
244 Fathil MF, Md Arshad MK, Gopinath SC, Hashim U, Adzhri R, Ayub RM, Ruslinda AR, Nuzaihan M N M, Azman AH, Zaki M, Tang TH. Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosens Bioelectron 2015;70:209-20. [PMID: 25841117 DOI: 10.1016/j.bios.2015.03.037] [Cited by in Crossref: 95] [Cited by in F6Publishing: 102] [Article Influence: 13.6] [Reference Citation Analysis]
245 Yang C, Spinelli N, Perrier S, Defrancq E, Peyrin E. Macrocyclic host-dye reporter for sensitive sandwich-type fluorescent aptamer sensor. Anal Chem 2015;87:3139-43. [PMID: 25738735 DOI: 10.1021/acs.analchem.5b00341] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
246 Wu D, Guo Z, Liu Y, Guo A, Lou W, Fan D, Wei Q. Sandwich-type electrochemical immunosensor using dumbbell-like nanoparticles for the determination of gastric cancer biomarker CA72-4. Talanta 2015;134:305-9. [DOI: 10.1016/j.talanta.2014.11.025] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 5.3] [Reference Citation Analysis]
247 Zhang Y, Ma H, Wu D, Li Y, Du B, Wei Q. Label-free immunosensor based on Au@Ag2S nanoparticles/magnetic chitosan matrix for sensitive determination of ractopamine. Journal of Electroanalytical Chemistry 2015;741:14-9. [DOI: 10.1016/j.jelechem.2015.01.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
248 Azevedo CB, Batista T, de Faria EH, Rocha LA, Ciuffi KJ, Nassar EJ. Nanospherical Silica as Luminescent Markers Obtained by Sol–Gel. J Fluoresc 2015;25:433-40. [DOI: 10.1007/s10895-015-1530-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
249 Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015;115:2045-108. [PMID: 25659975 DOI: 10.1021/cr500279h] [Cited by in Crossref: 207] [Cited by in F6Publishing: 206] [Article Influence: 29.6] [Reference Citation Analysis]
250 Fan H, Guo Z, Gao L, Zhang Y, Fan D, Ji G, Du B, Wei Q. Ultrasensitive electrochemical immunosensor for carbohydrate antigen 72-4 based on dual signal amplification strategy of nanoporous gold and polyaniline–Au asymmetric multicomponent nanoparticles. Biosensors and Bioelectronics 2015;64:51-6. [DOI: 10.1016/j.bios.2014.08.043] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 9.3] [Reference Citation Analysis]
251 Ma H, Wang Y, Zhang H, Wu D, Guo A, Yan T, Wei Q, Du B. A sensitive electrochemical immunosensor for the detection of squamous cell carcinoma antigen by using PtAu nanoparticles loaded on TiO 2 colloidal spheres as labels. RSC Adv 2015;5:59853-60. [DOI: 10.1039/c5ra06827d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
252 Wu K, Zhang Y, Yan M, Ge S, Yu J, Song X. An electrochemical immunoassay based on trepang-like gold electrodes and nanogold functionalized flower-like hierarchical carbon materials with improved sensitivity. New J Chem 2015;39:3452-60. [DOI: 10.1039/c4nj02336f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
253 Wang Y, Li Y, Ma H, Guo A, Du B, Yan T, Wei Q. An ultrasensitive electrochemical immunosensor for the detection of CD146 based on TiO 2 colloidal sphere laden Au/Pd nanoparticles. Analyst 2015;140:3557-64. [DOI: 10.1039/c5an00156k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
254 Peng K, Zhao H, Wu X. Signal-enhanced electrochemical immunosensor for CD36 based on cascade catalysis of a GOx labeled Prussian blue functionalized Ceria nanohybrid. RSC Adv 2015;5:1812-7. [DOI: 10.1039/c4ra10413g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
255 Kim C, Searson PC. Magnetic bead-quantum dot assay for detection of a biomarker for traumatic brain injury. Nanoscale 2015;7:17820-6. [DOI: 10.1039/c5nr05608j] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
256 Hayat A, Catanante G, Marty JL. Current Trends in Nanomaterial-Based Amperometric Biosensors. Sensors (Basel) 2014;14:23439-61. [PMID: 25494347 DOI: 10.3390/s141223439] [Cited by in Crossref: 72] [Cited by in F6Publishing: 51] [Article Influence: 9.0] [Reference Citation Analysis]
257 Martín-yerga D, González-garcía MB, Costa-garcía A. Electrochemical immunosensor for anti-tissue transglutaminase antibodies based on the in situ detection of quantum dots. Talanta 2014;130:598-602. [DOI: 10.1016/j.talanta.2014.07.010] [Cited by in Crossref: 58] [Cited by in F6Publishing: 48] [Article Influence: 7.3] [Reference Citation Analysis]
258 Filip J, Kasák P, Tkac J. Graphene as a signal amplifier for preparation of ultrasensitive electrochemical biosensors. Chem Zvesti 2015;69:112-33. [PMID: 27242391 DOI: 10.1515/chempap-2015-0051] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
259 Uliana CV, Riccardi CS, Yamanaka H. Diagnostic tests for hepatitis C: Recent trends in electrochemical immunosensor and genosensor analysis. World J Gastroenterol 2014; 20(42): 15476-15491 [PMID: 25400433 DOI: 10.3748/wjg.v20.i42.15476] [Cited by in CrossRef: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
260 Konecna M, Novotny K, Krizkova S, Blazkova I, Kopel P, Kaiser J, Hodek P, Kizek R, Adam V. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 2014;101:220-5. [DOI: 10.1016/j.sab.2014.08.037] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
261 Lisitsyn NA, Chernyi AA, Nikitina IG, Karpov VL, Beresten SF. Methods of protein immunoanalysis. Mol Biol 2014;48:624-33. [DOI: 10.1134/s0026893314050094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
262 Bao C, Conde J, Polo E, del Pino P, Moros M, Baptista PV, Grazu V, Cui D, de la Fuente JM. A promising road with challenges: where are gold nanoparticles in translational research? Nanomedicine 2014;9:2353-70. [DOI: 10.2217/nnm.14.155] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
263 Zhao C, Wu J, Ju H, Yan F. Multiplexed electrochemical immunoassay using streptavidin/nanogold/carbon nanohorn as a signal tag to induce silver deposition. Analytica Chimica Acta 2014;847:37-43. [DOI: 10.1016/j.aca.2014.07.035] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
264 Lin G, Huang H, Liu T, He C, Liu J, Chen S, Hou J, Ren Z, Dong W, Wu Y. A time-resolved fluoroimmunoassay for the quantitation of rabies virus nucleoprotein in the rabies vaccine. Journal of Virological Methods 2014;206:89-94. [DOI: 10.1016/j.jviromet.2014.06.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
265 Choi Y, Jeon W, Kim H. Electrochemical Immunoassay based on the Dopamine-antigen Conjugate for Detecting Hippuric Acid. Journal of the Korean Electrochemical Society 2014;17:172-8. [DOI: 10.5229/jkes.2014.17.3.172] [Reference Citation Analysis]
266 Yang L, Zhao H, Fan S, Deng S, Lv Q, Lin J, Li C. Label-free electrochemical immunosensor based on gold–silicon carbide nanocomposites for sensitive detection of human chorionic gonadotrophin. Biosensors and Bioelectronics 2014;57:199-206. [DOI: 10.1016/j.bios.2014.02.019] [Cited by in Crossref: 61] [Cited by in F6Publishing: 59] [Article Influence: 7.6] [Reference Citation Analysis]
267 Iranifam M. Analytical applications of chemiluminescence methods for cancer detection and therapy. TrAC Trends in Analytical Chemistry 2014;59:156-83. [DOI: 10.1016/j.trac.2014.03.010] [Cited by in Crossref: 63] [Cited by in F6Publishing: 52] [Article Influence: 7.9] [Reference Citation Analysis]
268 Tang Q, Cai F, Deng A, Li J. Ultrasensitive competitive electrochemiluminescence immunoassay for the β-adrenergic agonist phenylethanolamine A using quantum dots and enzymatic amplification. Microchim Acta 2015;182:139-47. [DOI: 10.1007/s00604-014-1292-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
269 Gao Q, Liu N, Ma Z. Prussian blue–gold nanoparticles-ionic liquid functionalized reduced graphene oxide nanocomposite as label for ultrasensitive electrochemical immunoassay of alpha-fetoprotein. Analytica Chimica Acta 2014;829:15-21. [DOI: 10.1016/j.aca.2014.04.045] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
270 Chen X, Ma Z. Multiplexed electrochemical immunoassay of biomarkers using chitosan nanocomposites. Biosensors and Bioelectronics 2014;55:343-9. [DOI: 10.1016/j.bios.2013.12.037] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.8] [Reference Citation Analysis]
271 Yang F, Han J, Zhuo Y, Yang Z, Chai Y, Yuan R. Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosensors and Bioelectronics 2014;55:360-5. [DOI: 10.1016/j.bios.2013.12.040] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 10.0] [Reference Citation Analysis]
272 Chen GZ, Yin ZZ, Lou JF. Electrochemical Immunoassay of Escherichia coli O157:H7 Using Ag@SiO2 Nanoparticles as Labels. J Anal Methods Chem 2014;2014:247034. [PMID: 24872904 DOI: 10.1155/2014/247034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
273 Filice M, Palomo JM. Cascade Reactions Catalyzed by Bionanostructures. ACS Catal 2014;4:1588-98. [DOI: 10.1021/cs401005y] [Cited by in Crossref: 70] [Cited by in F6Publishing: 54] [Article Influence: 8.8] [Reference Citation Analysis]
274 Zhu K, Dietrich R, Didier A, Doyscher D, Märtlbauer E. Recent developments in antibody-based assays for the detection of bacterial toxins. Toxins (Basel) 2014;6:1325-48. [PMID: 24732203 DOI: 10.3390/toxins6041325] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
275 Hou L, Gao Z, Xu M, Cao X, Wu X, Chen G, Tang D. DNAzyme-functionalized gold–palladium hybrid nanostructures for triple signal amplification of impedimetric immunosensor. Biosensors and Bioelectronics 2014;54:365-71. [DOI: 10.1016/j.bios.2013.11.014] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 7.0] [Reference Citation Analysis]
276 Hu J, Wang S, Wang L, Li F, Pingguan-murphy B, Lu TJ, Xu F. Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics 2014;54:585-97. [DOI: 10.1016/j.bios.2013.10.075] [Cited by in Crossref: 633] [Cited by in F6Publishing: 607] [Article Influence: 79.1] [Reference Citation Analysis]
277 Li Y, Hong M, Qiu B, Lin Z, Chen Y, Cai Z, Chen G. Highly sensitive fluorescent immunosensor for detection of influenza virus based on Ag autocatalysis. Biosensors and Bioelectronics 2014;54:358-64. [DOI: 10.1016/j.bios.2013.10.045] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 4.5] [Reference Citation Analysis]
278 Zhuo Y, Gui G, Chai Y, Liao N, Xiao K, Yuan R. Sandwich-format electrochemiluminescence assays for tumor marker based on PAMAM dendrimer-l-cysteine-hollow gold nanosphere nanocomposites. Biosensors and Bioelectronics 2014;53:459-64. [DOI: 10.1016/j.bios.2013.10.014] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 5.5] [Reference Citation Analysis]
279 Du S, Guo Z, Chen B, Sha Y, Jiang X, Li X, Gan N, Wang S. Electrochemiluminescence immunosensor for tumor markers based on biological barcode mode with conductive nanospheres. Biosensors and Bioelectronics 2014;53:135-41. [DOI: 10.1016/j.bios.2013.09.041] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
280 Zhang Q, Chen X, Tang Y, Ge L, Guo B, Yao C. Amperometric carbohydrate antigen 19-9 immunosensor based on three dimensional ordered macroporous magnetic Au film coupling direct electrochemistry of horseradish peroxidase. Anal Chim Acta 2014;815:42-50. [PMID: 24560371 DOI: 10.1016/j.aca.2014.01.033] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
281 Li Q, Lou F, Tang D. Biofunctional nanogold microsphere doped with Prussian blue nanoparticles for sensitive electrochemical immunoassay of cancer marker. Anal Methods 2014;6:3442-8. [DOI: 10.1039/c4ay00086b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
282 Lai W, Zhuang J, Que X, Fu L, Tang D. Mesoporous nanogold–MnO 2 –poly(o-phenylenediamine) hollow microspheres as nanotags and peroxidase mimics for sensing biomolecules. Biomater Sci 2014;2:1073-9. [DOI: 10.1039/c3bm60284b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
283 Fu C, Xu Q, Wei X, Li J. Highly sensitive ECL immunosensor based on multi-labeling of luminol via a dendrimer on Fe3O4 nanoparticles. RSC Adv 2014;4:26102. [DOI: 10.1039/c4ra02845g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
284 Muzyka K. Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron 2014;54:393-407. [PMID: 24292145 DOI: 10.1016/j.bios.2013.11.011] [Cited by in Crossref: 148] [Cited by in F6Publishing: 145] [Article Influence: 16.4] [Reference Citation Analysis]
285 Liu R, Wang C, Jiang Q, Zhang W, Yue Z, Liu G. Magnetic-particle-based, ultrasensitive chemiluminescence enzyme immunoassay for free prostate-specific antigen. Analytica Chimica Acta 2013;801:91-6. [DOI: 10.1016/j.aca.2013.09.050] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 4.6] [Reference Citation Analysis]
286 Iranifam M. Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles. TrAC Trends in Analytical Chemistry 2013;51:51-70. [DOI: 10.1016/j.trac.2013.05.014] [Cited by in Crossref: 74] [Cited by in F6Publishing: 73] [Article Influence: 8.2] [Reference Citation Analysis]
287 Ding L, Bond AM, Zhai J, Zhang J. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: A review. Analytica Chimica Acta 2013;797:1-12. [DOI: 10.1016/j.aca.2013.07.035] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 9.7] [Reference Citation Analysis]
288 Hou L, Cui Y, Xu M, Gao Z, Huang J, Tang D. Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosensors and Bioelectronics 2013;47:149-56. [DOI: 10.1016/j.bios.2013.02.035] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 6.7] [Reference Citation Analysis]
289 Pei X, Xu Z, Zhang J, Liu Z, Tian J. Redox-active and Catalytic-efficient PAMAM Dendrimer Nanostructures for Sensing Low-abundance Protein with Signal Amplification. Chem Lett 2013;42:841-2. [DOI: 10.1246/cl.130278] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
290 Li Q, Tang D, Lou F, Yang X, Chen G. Simultaneous Electrochemical Multiplexed Immunoassay of Biomarkers Based on Multifunctionalized Graphene Nanotags. CHEMELECTROCHEM 2014;1:441-7. [DOI: 10.1002/celc.201300039] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
291 Zhang B, Liu B, Zhou J, Tang J, Tang D. Additional molecular biological amplification strategy for enhanced sensitivity of monitoring low-abundance protein with dual nanotags. ACS Appl Mater Interfaces 2013;5:4479-85. [PMID: 23593961 DOI: 10.1021/am401027w] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.8] [Reference Citation Analysis]
292 Fu X, Huang R, Wang J, Feng X. Platinum nanoflower-based catalysts for an enzyme-free electrochemical immunoassay of neuron-specific enolase. Anal Methods 2013;5:3803. [DOI: 10.1039/c3ay40844b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
293 Huang J, Hong Y, Chang Y, Chang P, Yew T. Carbon nanotubes for highly sensitive colorimetric immunoassay biosensor. J Mater Chem B 2013;1:5389. [DOI: 10.1039/c3tb20980f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
294 Fu X, Huang R, Wang J, Chang B. Sensitive electrochemical immunoassay of a biomarker based on biotin-avidin conjugated DNAzyme concatamer with signal tagging. RSC Adv 2013;3:13451. [DOI: 10.1039/c3ra41429a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
295 Pei X, Xu Z, Zhang J, Liu Z, Tian J. Sensitive electrochemical immunoassay of IgG1 based on poly(amido amine) dendrimer-encapsulated CdS quantum dots. RSC Adv 2013;3:16410. [DOI: 10.1039/c3ra41665h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
296 Pei X, Xu Z, Zhang J, Liu Z, Tian J. Electroactive dendrimer-encapsulated silver nanoparticles for sensing low-abundance proteins with signal amplification. Anal Methods 2013;5:3235. [DOI: 10.1039/c3ay40518d] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
297 Li J, Fu C, Yang CF. Recent advances in micro/nano-particles for clinical detection of cancer biomarkers. Anal Methods 2013;5:5862. [DOI: 10.1039/c3ay40791h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]