BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang S, Uludağ H. Nanoparticulate systems for growth factor delivery. Pharm Res 2009;26:1561-80. [PMID: 19415467 DOI: 10.1007/s11095-009-9897-z] [Cited by in Crossref: 126] [Cited by in F6Publishing: 117] [Article Influence: 9.7] [Reference Citation Analysis]
Number Citing Articles
1 Elitok MS, Gunduz E, Gurses HE, Gunduz M. Tissue Engineering. Omics Technologies and Bio-Engineering. Elsevier; 2018. pp. 471-95. [DOI: 10.1016/b978-0-12-804659-3.00020-8] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
2 Princz M, Sheardown H. Heparin-modified dendrimer crosslinked collagen matrices for the delivery of heparin-binding epidermal growth factor. J Biomed Mater Res 2012;100A:1929-37. [DOI: 10.1002/jbm.a.34128] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
3 Yamakawa S, Hayashida K. Advances in surgical applications of growth factors for wound healing. Burns Trauma. 2019;7:10. [PMID: 30993143 DOI: 10.1186/s41038-019-0148-1] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 18.3] [Reference Citation Analysis]
4 Yao X, Bunt C, Cornish J, Quek S, Wen J. Oral Delivery of Lactoferrin: A Review. Int J Pept Res Ther 2013;19:125-34. [DOI: 10.1007/s10989-012-9326-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
5 Zhou W, Zhao M, Zhao Y, Mou Y. A fibrin gel loaded with chitosan nanoparticles for local delivery of rhEGF: preparation and in vitro release studies. J Mater Sci: Mater Med 2011;22:1221-30. [DOI: 10.1007/s10856-011-4304-9] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 3.4] [Reference Citation Analysis]
6 Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 2011;8:607-26. [PMID: 22026626 DOI: 10.1586/erd.11.27] [Cited by in Crossref: 788] [Cited by in F6Publishing: 654] [Article Influence: 78.8] [Reference Citation Analysis]
7 Mohtaram NK, Montgomery A, Willerth SM. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed Mater 2013;8:022001. [DOI: 10.1088/1748-6041/8/2/022001] [Cited by in Crossref: 72] [Cited by in F6Publishing: 60] [Article Influence: 8.0] [Reference Citation Analysis]
8 Anderson M, Shelke NB, Manoukian OS, Yu X, McCullough LD, Kumbar SG. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits. Crit Rev Biomed Eng 2015;43:131-59. [PMID: 27278739 DOI: 10.1615/CritRevBiomedEng.2015014015] [Cited by in Crossref: 34] [Cited by in F6Publishing: 17] [Article Influence: 6.8] [Reference Citation Analysis]
9 Wickremasinghe NC, Kumar VA, Shi S, Hartgerink JD. Controlled Angiogenesis in Peptide Nanofiber Composite Hydrogels. ACS Biomater Sci Eng 2015;1:845-54. [PMID: 26925462 DOI: 10.1021/acsbiomaterials.5b00210] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
10 Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater Sci Eng 2020;6:5399-430. [PMID: 33320556 DOI: 10.1021/acsbiomaterials.0c00528] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 Moghassemi S, Hadjizadeh A, Omidfar K. Formulation and Characterization of Bovine Serum Albumin-Loaded Niosome. AAPS PharmSciTech 2017;18:27-33. [DOI: 10.1208/s12249-016-0487-1] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
12 Gonciar D, Mocan T, Agoston-coldea L. Nanoparticles Targeting the Molecular Pathways of Heart Remodeling and Regeneration. Pharmaceutics 2022;14:711. [DOI: 10.3390/pharmaceutics14040711] [Reference Citation Analysis]
13 Yoganarasimha S, Trahan WR, Best AM, Bowlin GL, Kitten TO, Moon PC, Madurantakam PA. Peracetic acid: a practical agent for sterilizing heat-labile polymeric tissue-engineering scaffolds. Tissue Eng Part C Methods 2014;20:714-23. [PMID: 24341350 DOI: 10.1089/ten.TEC.2013.0624] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
14 Rosen Y, Upadhyay UM, Elman NM. Pharmacogenomics-based RNA interference nanodelivery: focus on solid malignant tumors. Expert Opinion on Drug Delivery 2012;9:755-66. [DOI: 10.1517/17425247.2012.685932] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
15 Palamà IE, Arcadio V, D'Amone S, Biasiucci M, Gigli G, Cortese B. Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Sci Rep 2017;7:12672. [PMID: 28978922 DOI: 10.1038/s41598-017-12824-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 5.6] [Reference Citation Analysis]
16 Kudo TA, Tominami K, Izumi S, Hayashi Y, Noguchi T, Matsuzawa A, Hong G, Nakai J. Characterization of PC12 Cell Subclones with Different Sensitivities to Programmed Thermal Stimulation. Int J Mol Sci 2020;21:E8356. [PMID: 33171774 DOI: 10.3390/ijms21218356] [Reference Citation Analysis]
17 Shrestha S, Kishen A. Bioactive Molecule Delivery Systems for Dentin-pulp Tissue Engineering. J Endod 2017;43:733-44. [PMID: 28320538 DOI: 10.1016/j.joen.2016.12.020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
18 Ortega-Oller I, Padial-Molina M, Galindo-Moreno P, O'Valle F, Jódar-Reyes AB, Peula-García JM. Bone Regeneration from PLGA Micro-Nanoparticles. Biomed Res Int 2015;2015:415289. [PMID: 26509156 DOI: 10.1155/2015/415289] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
19 Zhou S, Wang Q, Huang A, Fan H, Yan S, Zhang Q. Advances in Skin Wound and Scar Repair by Polymer Scaffolds. Molecules 2021;26:6110. [PMID: 34684690 DOI: 10.3390/molecules26206110] [Reference Citation Analysis]
20 Li X, Wang J, Su G, Zhou Z, Shi J, Liu L, Guan M, Zhang Q. Spatiotemporal control over growth factor delivery from collagen-based membrane. J Biomed Mater Res 2012;100A:396-405. [DOI: 10.1002/jbm.a.33282] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
21 Bhirde A, Xie J, Swierczewska M, Chen X. Nanoparticles for cell labeling. Nanoscale. 2011;3:142-153. [PMID: 20938522 DOI: 10.1039/c0nr00493f] [Cited by in Crossref: 146] [Cited by in F6Publishing: 47] [Article Influence: 12.2] [Reference Citation Analysis]
22 Eskens O, Amin S. Challenges and effective routes for formulating and delivery of epidermal growth factors in skin care. Int J Cosmet Sci 2021;43:123-30. [PMID: 33354795 DOI: 10.1111/ics.12685] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
23 Laughter MR, Ammar DA, Bardill JR, Pena B, Kahook MY, Lee DJ, Park D. A Self-Assembling Injectable Biomimetic Microenvironment Encourages Retinal Ganglion Cell Axon Extension in Vitro. ACS Appl Mater Interfaces 2016;8:20540-8. [PMID: 27434231 DOI: 10.1021/acsami.6b04679] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
24 Colasante C, Sanford Z, Garfein E, Tepper O. Current Trends in 3D Printing, Bioprosthetics, and Tissue Engineering in Plastic and Reconstructive Surgery. Curr Surg Rep 2016;4. [DOI: 10.1007/s40137-016-0127-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
25 Offner D, Wagner Q, Idoux-Gillet Y, Gegout H, Ferrandon A, Schwinté P, Musset AM, Benkirane-Jessel N, Keller L. Hybrid collagen sponge and stem cells as a new combined scaffold able to induce the re-organization of endothelial cells into clustered networks. Biomed Mater Eng 2017;28:S185-92. [PMID: 28372294 DOI: 10.3233/BME-171640] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
26 Peres JA, Lamano T. Strategies for stimulation of new bone formation: a critical review. Braz Dent J 2011;22:443-8. [DOI: 10.1590/s0103-64402011000600001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
27 Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 2012;64:1292-309. [PMID: 22342771 DOI: 10.1016/j.addr.2012.01.016] [Cited by in Crossref: 417] [Cited by in F6Publishing: 363] [Article Influence: 41.7] [Reference Citation Analysis]
28 Zhang ZG, Li ZH, Mao XZ, Wang WC. Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology 2011;63:437-43. [PMID: 21748262 DOI: 10.1007/s10616-011-9367-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
29 Ziv-Polat O, Shahar A, Levy I, Skaat H, Neuman S, Fregnan F, Geuna S, Grothe C, Haastert-Talini K, Margel S. The role of neurotrophic factors conjugated to iron oxide nanoparticles in peripheral nerve regeneration: in vitro studies. Biomed Res Int 2014;2014:267808. [PMID: 25133160 DOI: 10.1155/2014/267808] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
30 Polley P, Gupta S, Singh R, Pradhan A, Basu SM, V. R, Yadava SK, Giri J. Protein–Sugar-Glass Nanoparticle Platform for the Development of Sustained-Release Protein Depots by Overcoming Protein Delivery Challenges. Mol Pharmaceutics 2020;17:284-300. [DOI: 10.1021/acs.molpharmaceut.9b01022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Baier G, Musyanovych A, Landfester K, Best A, Lorenz S, Mailänder V. DNA amplification via polymerase chain reaction inside miniemulsion droplets with subsequent poly(n-butylcyanoacrylate) shell formation and delivery of polymeric capsules into mammalian cells. Macromol Biosci 2011;11:1099-109. [PMID: 21557476 DOI: 10.1002/mabi.201100003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
32 Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev 2013;19:308-26. [PMID: 23268651 DOI: 10.1089/ten.TEB.2012.0138] [Cited by in Crossref: 98] [Cited by in F6Publishing: 84] [Article Influence: 10.9] [Reference Citation Analysis]
33 Keller L, Idoux-Gillet Y, Wagner Q, Eap S, Brasse D, Schwinté P, Arruebo M, Benkirane-Jessel N. Nanoengineered implant as a new platform for regenerative nanomedicine using 3D well-organized human cell spheroids. Int J Nanomedicine 2017;12:447-57. [PMID: 28138241 DOI: 10.2147/IJN.S116749] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.6] [Reference Citation Analysis]
34 Budama-Kilinc Y, Kecel-Gunduz S, Ozdemir B, Bicak B, Akman G, Arvas B, Aydogan F, Yolacan C. New nanodrug design for cancer therapy: Its synthesis, formulation, in vitro and in silico evaluations. Arch Pharm (Weinheim) 2020;353:e2000137. [PMID: 32757360 DOI: 10.1002/ardp.202000137] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Soh JH, Gao Z. Metal Nanoparticles in Biomedical Applications. In: Sau TK, Rogach AL, editors. Complex-Shaped Metal Nanoparticles. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. pp. 477-519. [DOI: 10.1002/9783527652570.ch15] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
36 Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacological Research 2017;120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 9.6] [Reference Citation Analysis]
37 Thapa RK, Margolis DJ, Kiick KL, Sullivan MO. Enhanced wound healing via collagen-turnover-driven transfer of PDGF-BB gene in a murine wound model. ACS Appl Bio Mater 2020;3:3500-17. [PMID: 32656505 DOI: 10.1021/acsabm.9b01147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Bousalis D, McCrary MW, Vaughn N, Hlavac N, Evering A, Kolli S, Song YH, Morley C, E Angelini T, Schmidt CE. Decellularized peripheral nerve as an injectable delivery vehicle for neural applications. J Biomed Mater Res A 2021. [PMID: 34590403 DOI: 10.1002/jbm.a.37312] [Reference Citation Analysis]
39 Meyer RA, Green JJ. Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:191-207. [PMID: 25981390 DOI: 10.1002/wnan.1348] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 4.9] [Reference Citation Analysis]
40 Baier G, Siebert JM, Landfester K, Musyanovych A. Surface Click Reactions on Polymeric Nanocapsules for Versatile Functionalization. Macromolecules 2012;45:3419-27. [DOI: 10.1021/ma300312n] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
41 Farjo KM, Ma JX. The potential of nanomedicine therapies to treat neovascular disease in the retina. J Angiogenes Res 2010;2:21. [PMID: 20932321 DOI: 10.1186/2040-2384-2-21] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 2.6] [Reference Citation Analysis]
42 Hoop M, Chen XZ, Ferrari A, Mushtaq F, Ghazaryan G, Tervoort T, Poulikakos D, Nelson B, Pané S. Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci Rep 2017;7:4028. [PMID: 28642614 DOI: 10.1038/s41598-017-03992-3] [Cited by in Crossref: 65] [Cited by in F6Publishing: 53] [Article Influence: 13.0] [Reference Citation Analysis]
43 Monteiro N, Martins A, Pires R, Faria S, Fonseca NA, Moreira JN, Reis RL, Neves NM. Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomater Sci 2014;2:1195-209. [DOI: 10.1039/c4bm00069b] [Cited by in Crossref: 40] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
44 Ferreira CL, Abreu FAMD, Silva GAB, Silveira FF, Barreto LBA, Paulino TDP, Miziara MN, Alves JB. TGF-β1 and BMP-4 carried by liposomes enhance the healing process in alveolar bone. Archives of Oral Biology 2013;58:646-56. [DOI: 10.1016/j.archoralbio.2012.11.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
45 Gabriel D, Dvir T, Kohane DS. Delivering bioactive molecules as instructive cues to engineered tissues. Expert Opin Drug Deliv 2012;9:473-92. [PMID: 22432691 DOI: 10.1517/17425247.2012.668521] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
46 Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials 2010;31:6279-308. [PMID: 20493521 DOI: 10.1016/j.biomaterials.2010.04.053] [Cited by in Crossref: 461] [Cited by in F6Publishing: 417] [Article Influence: 38.4] [Reference Citation Analysis]
47 Mabrouk M, Rajendran R, Soliman IE, Ashour MM, Beherei HH, Tohamy KM, Thomas S, Kalarikkal N, Arthanareeswaran G, Das DB. Nanoparticle- and Nanoporous-Membrane-Mediated Delivery of Therapeutics. Pharmaceutics 2019;11:E294. [PMID: 31234394 DOI: 10.3390/pharmaceutics11060294] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
48 Girotra P, Behl T, Sehgal A, Singh S, Bungau S. Investigation of the Molecular Role of Brain-Derived Neurotrophic Factor in Alzheimer's Disease. J Mol Neurosci 2021. [PMID: 34424488 DOI: 10.1007/s12031-021-01824-8] [Reference Citation Analysis]
49 Monteiro N, Martins A, Reis RL, Neves NM. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen Ther 2015;1:109-18. [PMID: 31245450 DOI: 10.1016/j.reth.2015.05.004] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
50 Cassidy JW. Nanotechnology in the Regeneration of Complex Tissues. Bone Tissue Regen Insights 2014;5:25-35. [PMID: 26097381 DOI: 10.4137/BTRI.S12331] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
51 Guo X, Elliott CG, Li Z, Xu Y, Hamilton DW, Guan J. Creating 3D angiogenic growth factor gradients in fibrous constructs to guide fast angiogenesis. Biomacromolecules 2012;13:3262-71. [PMID: 22924876 DOI: 10.1021/bm301029a] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
52 Koria P. Delivery of growth factors for tissue regeneration and wound healing. BioDrugs 2012;26:163-75. [PMID: 22500904 DOI: 10.2165/11631850-000000000-00000] [Cited by in Crossref: 68] [Cited by in F6Publishing: 59] [Article Influence: 6.8] [Reference Citation Analysis]
53 Géral C, Angelova A, Lesieur S. From molecular to nanotechnology strategies for delivery of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics 2013;5:127-67. [PMID: 24300402 DOI: 10.3390/pharmaceutics5010127] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 8.0] [Reference Citation Analysis]
54 Caldorera-Moore M, Guimard N, Shi L, Roy K. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 2010;7:479-95. [PMID: 20331355 DOI: 10.1517/17425240903579971] [Cited by in Crossref: 218] [Cited by in F6Publishing: 181] [Article Influence: 18.2] [Reference Citation Analysis]
55 Kim JH, Kim TH, Kang MS, Kim HW. Angiogenic Effects of Collagen/Mesoporous Nanoparticle Composite Scaffold Delivering VEGF165. Biomed Res Int 2016;2016:9676934. [PMID: 27689093 DOI: 10.1155/2016/9676934] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
56 Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 2018;6:1312-38. [PMID: 29744496 DOI: 10.1039/c8bm00021b] [Cited by in Crossref: 78] [Cited by in F6Publishing: 21] [Article Influence: 19.5] [Reference Citation Analysis]
57 Kishen A, Hussein H. Bioactive molecule carrier systems in endodontics. Expert Opin Drug Deliv 2020;17:1093-112. [PMID: 32500747 DOI: 10.1080/17425247.2020.1777981] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
58 Lee JH, Park J, Eltohamy M, Perez R, Lee E, Kim H. Collagen gel combined with mesoporous nanoparticles loading nerve growth factor as a feasible therapeutic three-dimensional depot for neural tissue engineering. RSC Adv 2013;3:24202. [DOI: 10.1039/c3ra43534b] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
59 Levy I, Sher I, Corem-Salkmon E, Ziv-Polat O, Meir A, Treves AJ, Nagler A, Kalter-Leibovici O, Margel S, Rotenstreich Y. Bioactive magnetic near Infra-Red fluorescent core-shell iron oxide/human serum albumin nanoparticles for controlled release of growth factors for augmentation of human mesenchymal stem cell growth and differentiation. J Nanobiotechnology 2015;13:34. [PMID: 25947109 DOI: 10.1186/s12951-015-0090-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
60 Ziv-Polat O, Skaat H, Shahar A, Margel S. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int J Nanomedicine 2012;7:1259-74. [PMID: 22419873 DOI: 10.2147/IJN.S26533] [Cited by in Crossref: 55] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
61 Giannaccini M, Calatayud MP, Poggetti A, Corbianco S, Novelli M, Paoli M, Battistini P, Castagna M, Dente L, Parchi P, Lisanti M, Cavallini G, Junquera C, Goya GF, Raffa V. Magnetic Nanoparticles for Efficient Delivery of Growth Factors: Stimulation of Peripheral Nerve Regeneration. Adv Healthcare Mater 2017;6:1601429. [DOI: 10.1002/adhm.201601429] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 7.2] [Reference Citation Analysis]
62 Landfester K, Musyanovych A, Mailänder V. Half-Life Extension with Pharmaceutical Formulations: Nanoparticles by the Miniemulsion Process. In: Kontermann R, editor. Therapeutic Proteins. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. pp. 315-39. [DOI: 10.1002/9783527644827.ch17] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
63 Zeng Q, Macri L, Prasad A, Clark R, Zeugolis D, Hanley C, Garcia Y, Pandit A. Skin Tissue Engineering. Comprehensive Biomaterials. Elsevier; 2011. pp. 467-99. [DOI: 10.1016/b978-0-08-055294-1.00186-0] [Cited by in Crossref: 9] [Article Influence: 0.8] [Reference Citation Analysis]
64 Wong VW, Rustad KC, Longaker MT, Gurtner GC. Tissue Engineering in Plastic Surgery: A Review: . Plastic and Reconstructive Surgery 2010;126:858-68. [DOI: 10.1097/prs.0b013e3181e3b3a3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
65 Shamloo A, Sarmadi M, Aghababaie Z, Vossoughi M. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. International Journal of Pharmaceutics 2018;537:278-89. [DOI: 10.1016/j.ijpharm.2017.12.045] [Cited by in Crossref: 57] [Cited by in F6Publishing: 45] [Article Influence: 14.3] [Reference Citation Analysis]
66 Ahn G, Yu G, Abdullah A, Kim Y, Lee D. Controlling the Release Profile Through Phase Control of Calcium Phosphate-Alginate Core-shell Nanoparticles in Gene Delivery. Macromol Res 2019;27:579-85. [DOI: 10.1007/s13233-019-7106-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
67 Buie T, McCune J, Cosgriff-Hernandez E. Gelatin Matrices for Growth Factor Sequestration. Trends Biotechnol 2020;38:546-57. [PMID: 31954527 DOI: 10.1016/j.tibtech.2019.12.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
68 Qi H, Yang L, Li X, Sun X, Zhao J, Hou X, Li Z, Yuan X, Cui Z, Yang X. Systemic administration of enzyme-responsive growth factor nanocapsules for promoting bone repair. Biomater Sci 2019;7:1675-85. [PMID: 30742145 DOI: 10.1039/c8bm01632a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
69 Atienza-Roca P, Cui X, Hooper GJ, Woodfield TBF, Lim KS. Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine. Adv Exp Med Biol 2018;1078:245-69. [PMID: 30357627 DOI: 10.1007/978-981-13-0950-2_13] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
70 Shi X, Chen S, Zhou J, Yu H, Li L, Wu H. Directing Osteogenesis of Stem Cells with Drug-Laden, Polymer-Microsphere-Based Micropatterns Generated by Teflon Microfluidic Chips. Adv Funct Mater 2012;22:3799-807. [DOI: 10.1002/adfm.201200914] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
71 Rahman SU, Nagrath M, Ponnusamy S, Arany PR. Nanoscale and Macroscale Scaffolds with Controlled-Release Polymeric Systems for Dental Craniomaxillofacial Tissue Engineering. Materials (Basel) 2018;11:E1478. [PMID: 30127246 DOI: 10.3390/ma11081478] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
72 Rebouças JS, Santos-Magalhães NS, Formiga FR. Cardiac Regeneration using Growth Factors: Advances and Challenges. Arq Bras Cardiol 2016;107:271-5. [PMID: 27355588 DOI: 10.5935/abc.20160097] [Cited by in Crossref: 14] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
73 Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11:20140459. [PMID: 25401172 DOI: 10.1098/rsif.2014.0459] [Cited by in Crossref: 158] [Cited by in F6Publishing: 126] [Article Influence: 22.6] [Reference Citation Analysis]
74 Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010;2010:218142. [PMID: 21350642 DOI: 10.4061/2010/218142] [Cited by in Crossref: 270] [Cited by in F6Publishing: 252] [Article Influence: 22.5] [Reference Citation Analysis]
75 Jauregui C, Yoganarasimha S, Madurantakam P. Mesenchymal Stem Cells Derived from Healthy and Diseased Human Gingiva Support Osteogenesis on Electrospun Polycaprolactone Scaffolds. Bioengineering (Basel) 2018;5:E8. [PMID: 29360752 DOI: 10.3390/bioengineering5010008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
76 Rustad KC, Sorkin M, Levi B, Longaker MT, Gurtner GC. Strategies for organ level tissue engineering. Organogenesis 2010;6:151-7. [PMID: 21197216 DOI: 10.4161/org.6.3.12139] [Cited by in Crossref: 61] [Cited by in F6Publishing: 48] [Article Influence: 5.5] [Reference Citation Analysis]
77 Gusić N, Ivković A, VaFaye J, Vukasović A, Ivković J, Hudetz D, Janković S. Nanobiotechnology and bone regeneration: a mini-review. Int Orthop 2014;38:1877-84. [PMID: 24962293 DOI: 10.1007/s00264-014-2412-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
78 Laiva AL, O'Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018;12:e296-312. [PMID: 28482114 DOI: 10.1002/term.2443] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 7.4] [Reference Citation Analysis]
79 Skaat H, Ziv-Polat O, Shahar A, Margel S. Enhancement of the growth and differentiation of nasal olfactory mucosa cells by the conjugation of growth factors to functional nanoparticles. Bioconjug Chem 2011;22:2600-10. [PMID: 22029397 DOI: 10.1021/bc200454k] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.1] [Reference Citation Analysis]
80 Young DA, Pimentel MB, Lima LD, Custodio AF, Lo WC, Chen SC, Teymour F, Papavasiliou G. Design and characterization of hydrogel nanoparticles with tunable network characteristics for sustained release of a VEGF-mimetic peptide. Biomater Sci 2017;5:2079-92. [PMID: 28744527 DOI: 10.1039/c7bm00359e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
81 Subbiah R, Guldberg RE. Materials Science and Design Principles of Growth Factor Delivery Systems in Tissue Engineering and Regenerative Medicine. Adv Healthcare Mater 2019;8:1801000. [DOI: 10.1002/adhm.201801000] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 16.0] [Reference Citation Analysis]
82 Kandavalli SR, Wang Q, Ebrahimi M, Gode C, Djavanroodi F, Attarilar S, Liu S. A Brief Review on the Evolution of Metallic Dental Implants: History, Design, and Application. Front Mater 2021;8:646383. [DOI: 10.3389/fmats.2021.646383] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
83 Prathipati P, Zhu J, Dong X. Development of novel HDL-mimicking α-tocopherol-coated nanoparticles to encapsulate nerve growth factor and evaluation of biodistribution. Eur J Pharm Biopharm 2016;108:126-35. [PMID: 27531623 DOI: 10.1016/j.ejpb.2016.08.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
84 Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 2010;10:3223-30. [PMID: 20726522 DOI: 10.1021/nl102184c] [Cited by in Crossref: 1002] [Cited by in F6Publishing: 814] [Article Influence: 91.1] [Reference Citation Analysis]
85 Santo VE, Gomes ME, Mano JF, Reis RL. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine 2012;7:1045-66. [DOI: 10.2217/nnm.12.78] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
86 Koutsopoulos S. Molecular fabrications of smart nanobiomaterials and applications in personalized medicine. Adv Drug Deliv Rev. 2012;64:1459-1476. [PMID: 22921596 DOI: 10.1016/j.addr.2012.08.002] [Cited by in Crossref: 47] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
87 Park KE, Kim BS, Kim MH, You HK, Lee J, Park WH. Basic fibroblast growth factor-encapsulated PCL nano/microfibrous composite scaffolds for bone regeneration. Polymer 2015;76:8-16. [DOI: 10.1016/j.polymer.2015.08.024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
88 Pop NL, Nan A, Urda-Cimpean AE, Florea A, Toma VA, Moldovan R, Decea N, Mitrea DR, Orasan R. Chitosan Functionalized Magnetic Nanoparticles to Provide Neural Regeneration and Recovery after Experimental Model Induced Peripheral Nerve Injury. Biomolecules 2021;11:676. [PMID: 33946445 DOI: 10.3390/biom11050676] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
89 Yang Q, Zhao C, Zhao J, Ye Y. Photoresponsive nanocapsulation of cobra neurotoxin and enhancement of its central analgesic effects under red light. Int J Nanomedicine 2017;12:3463-70. [PMID: 28496322 DOI: 10.2147/IJN.S132510] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
90 Ding C, Teng S, Pan H. In-situ generation of chitosan/hydroxyapatite composite microspheres for biomedical application. Materials Letters 2012;79:72-4. [DOI: 10.1016/j.matlet.2012.03.092] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
91 Shah NJ, Macdonald ML, Beben YM, Padera RF, Samuel RE, Hammond PT. Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 2011;32:6183-93. [PMID: 21645919 DOI: 10.1016/j.biomaterials.2011.04.036] [Cited by in Crossref: 162] [Cited by in F6Publishing: 147] [Article Influence: 14.7] [Reference Citation Analysis]
92 Izadifar M, Kelly ME, Haddadi A, Chen X. Optimization of nanoparticles for cardiovascular tissue engineering. Nanotechnology 2015;26:235301. [DOI: 10.1088/0957-4484/26/23/235301] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
93 Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science 2010;35:1217-56. [DOI: 10.1016/j.progpolymsci.2010.04.002] [Cited by in Crossref: 2249] [Cited by in F6Publishing: 1383] [Article Influence: 187.4] [Reference Citation Analysis]
94 Ng S, Guo J, Ma J, Loo SCJ. Synthesis of high surface area mesostructured calcium phosphate particles. Acta Biomaterialia 2010;6:3772-81. [DOI: 10.1016/j.actbio.2010.03.017] [Cited by in Crossref: 72] [Cited by in F6Publishing: 60] [Article Influence: 6.0] [Reference Citation Analysis]
95 Edalat F, Sheu I, Manoucheri S, Khademhosseini A. Material strategies for creating artificial cell-instructive niches. Curr Opin Biotechnol 2012;23:820-5. [PMID: 22705446 DOI: 10.1016/j.copbio.2012.05.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
96 Lv B, Wang Y, Chen W. Preparation, Characterization, and Bioactivity of Chitosan Microspheres Containing Basic Fibroblast Growth Factor. Journal of Nanomaterials 2014;2014:1-7. [DOI: 10.1155/2014/534287] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
97 Wong VW, Wan DC, Gurtner GC, Longaker MT. Regenerative Surgery: Tissue Engineering in General Surgical Practice. World J Surg 2012;36:2288-99. [DOI: 10.1007/s00268-012-1710-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
98 Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31:4639-4656. [PMID: 20303169 DOI: 10.1016/j.biomaterials.2010.02.044] [Cited by in Crossref: 811] [Cited by in F6Publishing: 700] [Article Influence: 67.6] [Reference Citation Analysis]
99 Yoshida VM, Balcão VM, Vila MM, Oliveira Júnior JM, Aranha N, Chaud MV, Gremião MP. Zidovudine-Poly(l-Lactic Acid) Solid Dispersions with Improved Intestinal Permeability Prepared by Supercritical Antisolvent Process. Journal of Pharmaceutical Sciences 2015;104:1691-700. [DOI: 10.1002/jps.24377] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
100 Makhdom AM, Nayef L, Tabrizian M, Hamdy RC. The potential roles of nanobiomaterials in distraction osteogenesis. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:1-18. [DOI: 10.1016/j.nano.2014.05.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
101 Wagner Q, Offner D, Idoux-Gillet Y, Saleem I, Somavarapu S, Schwinté P, Benkirane-Jessel N, Keller L. Advanced nanostructured medical device combining mesenchymal cells and VEGF nanoparticles for enhanced engineered tissue vascularization. Nanomedicine (Lond) 2016;11:2419-30. [PMID: 27529130 DOI: 10.2217/nnm-2016-0189] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
102 Hosseini M, Shafiee A. Engineering Bioactive Scaffolds for Skin Regeneration. Small 2021;:e2101384. [PMID: 34313003 DOI: 10.1002/smll.202101384] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
103 Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res 2011;28:215-36. [PMID: 20721603 DOI: 10.1007/s11095-010-0241-4] [Cited by in Crossref: 142] [Cited by in F6Publishing: 120] [Article Influence: 11.8] [Reference Citation Analysis]
104 Liu L, Chen B, Liu K, Gao J, Ye Y, Wang Z, Qin N, Wilson DA, Tu Y, Peng F. Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem‐Like Cell Stimulation. Adv Funct Mater 2020;30:1910108. [DOI: 10.1002/adfm.201910108] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
105 Sun M, Lee J, Chen Y, Hoshino K. Studies of nanoparticle delivery with in vitro bio-engineered microtissues. Bioact Mater 2020;5:924-37. [PMID: 32637755 DOI: 10.1016/j.bioactmat.2020.06.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
106 Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater 2017;9:e435-e435. [DOI: 10.1038/am.2017.171] [Cited by in Crossref: 176] [Cited by in F6Publishing: 77] [Article Influence: 35.2] [Reference Citation Analysis]
107 Koria P. Self-assembled nanosystems as delivery vehicles for regenerative medicine. Ther Deliv 2012;3:583-7. [PMID: 22834403 DOI: 10.4155/tde.12.36] [Reference Citation Analysis]
108 Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond) 2012;7:1425-42. [PMID: 22994959 DOI: 10.2217/nnm.12.109] [Cited by in Crossref: 146] [Cited by in F6Publishing: 114] [Article Influence: 16.2] [Reference Citation Analysis]
109 Fichter M, Baier G, Dedters M, Pretsch L, Pietrzak-nguyen A, Landfester K, Gehring S. Nanocapsules generated out of a polymeric dexamethasone shell suppress the inflammatory response of liver macrophages. Nanomedicine: Nanotechnology, Biology and Medicine 2013;9:1223-34. [DOI: 10.1016/j.nano.2013.05.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.7] [Reference Citation Analysis]
110 Minardi S, Pandolfi L, Taraballi F, Wang X, De Rosa E, Mills ZD, Liu X, Ferrari M, Tasciotti E. Enhancing Vascularization through the Controlled Release of Platelet-Derived Growth Factor-BB. ACS Appl Mater Interfaces 2017;9:14566-75. [PMID: 28393518 DOI: 10.1021/acsami.6b13760] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
111 Shekaran A, Garcia AJ. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. Biochim Biophys Acta 2011;1810:350-60. [PMID: 20435097 DOI: 10.1016/j.bbagen.2010.04.006] [Cited by in Crossref: 82] [Cited by in F6Publishing: 72] [Article Influence: 6.8] [Reference Citation Analysis]
112 Li X, Su G, Wang J, Zhou Z, Li L, Liu L, Guan M, Zhang Q, Wang H. Exogenous bFGF promotes articular cartilage repair via up-regulation of multiple growth factors. Osteoarthritis Cartilage 2013;21:1567-75. [PMID: 23792272 DOI: 10.1016/j.joca.2013.06.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
113 Choi WI, Sahu A, Vilos C, Kamaly N, Jo SM, Lee JH, Tae G. Bioinspired Heparin Nanosponge Prepared by Photo-crosslinking for Controlled Release of Growth Factors. Sci Rep 2017;7:14351. [PMID: 29084990 DOI: 10.1038/s41598-017-14040-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
114 Deen GR, Loh XJ. Stimuli-Responsive Cationic Hydrogels in Drug Delivery Applications. Gels 2018;4:E13. [PMID: 30674789 DOI: 10.3390/gels4010013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 8.3] [Reference Citation Analysis]
115 Bhattarai G, Lee YH, Lee MH, Park IS, Yi HK. Insulin-like growth factor binding protein-3 affects osteogenic efficacy on dental implants in rat mandible. Mater Sci Eng C Mater Biol Appl 2015;55:490-6. [PMID: 26117781 DOI: 10.1016/j.msec.2015.05.076] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
116 Li S, Tang Q, Xu H, Huang Q, Wen Z, Liu Y, Peng C. Improved stability of KGF by conjugation with gold nanoparticles for diabetic wound therapy. Nanomedicine (Lond) 2019;14:2909-23. [PMID: 31791171 DOI: 10.2217/nnm-2018-0487] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
117 Subbiah R, Hwang MP, Van SY, Do SH, Park H, Lee K, Kim SH, Yun K, Park K. Osteogenic/angiogenic dual growth factor delivery microcapsules for regeneration of vascularized bone tissue. Adv Healthc Mater 2015;4:1982-92. [PMID: 26138344 DOI: 10.1002/adhm.201500341] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 8.7] [Reference Citation Analysis]
118 Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 2011;6:13-22. [PMID: 21151110 DOI: 10.1038/nnano.2010.246] [Cited by in Crossref: 965] [Cited by in F6Publishing: 850] [Article Influence: 80.4] [Reference Citation Analysis]
119 Ge Z, Li C, Heng BC, Cao G, Yang Z. Functional biomaterials for cartilage regeneration. J Biomed Mater Res A 2012;100:2526-36. [PMID: 22492677 DOI: 10.1002/jbm.a.34147] [Cited by in Crossref: 17] [Cited by in F6Publishing: 30] [Article Influence: 1.7] [Reference Citation Analysis]
120 Park JW, Hwang SR, Yoon IS. Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules 2017;22:E1259. [PMID: 28749427 DOI: 10.3390/molecules22081259] [Cited by in Crossref: 101] [Cited by in F6Publishing: 102] [Article Influence: 20.2] [Reference Citation Analysis]
121 Ouma GO, Jonas RA, Usman MH, Mohler ER 3rd. Targets and delivery methods for therapeutic angiogenesis in peripheral artery disease. Vasc Med 2012;17:174-92. [PMID: 22496126 DOI: 10.1177/1358863X12438270] [Cited by in Crossref: 45] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
122 Zhang Z, Li Q, Han L, Zhong Y. Layer-by-layer films assembled from natural polymers for sustained release of neurotrophin. Biomed Mater 2015;10:055006. [DOI: 10.1088/1748-6041/10/5/055006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]