BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Han S, Su L, Zhai M, Ma L, Liu S, Teng Y. A molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cells. J Mater Sci 2019;54:3331-41. [DOI: 10.1007/s10853-018-3023-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Sontakke AD, Bhattacharjee A, Fopase R, Pandey LM, Purkait MK. One-pot, sustainable and room temperature synthesis of graphene oxide-impregnated iron-based metal-organic framework (GO/MIL-100(Fe)) nanocarriers for anticancer drug delivery systems. J Mater Sci. [DOI: 10.1007/s10853-022-07773-w] [Reference Citation Analysis]
2 Yoosefi S, Esfandyari-manesh M, Ghorbani-bidkorpeh F, Ahmadi M, Moraffah F, Dinarvand R. Novel biodegradable molecularly imprinted polymer nanoparticles for drug delivery of methotrexate anti-cancer; synthesis, characterization and cellular studies. DARU J Pharm Sci 2022. [DOI: 10.1007/s40199-022-00447-7] [Reference Citation Analysis]
3 Hou T, Zhang N, Yan C, Ding M, Niu H, Guan P, Hu X. Curcumin-loaded protein imprinted mesoporous nanosphere for inhibiting amyloid aggregation. Int J Biol Macromol 2022;221:334-45. [PMID: 36084870 DOI: 10.1016/j.ijbiomac.2022.08.185] [Reference Citation Analysis]
4 Zhang W, Zhang Y, Wang R, Zhang P, Zhang Y, Randell E, Zhang M, Jia Q. A review: Development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340319] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022;350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Han S, Song Y, Liu S, Zhao L, Sun R. Dual responsive molecularly imprinted polymers based on UiO-66-DOX for selective targeting tumor cells and controlled drug release. European Polymer Journal 2022;171:111219. [DOI: 10.1016/j.eurpolymj.2022.111219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
7 Yuksel N, Tektas S. Molecularly imprinted polymers: preparation, characterisation, and application in drug delivery systems. J Microencapsul 2022;:1-21. [PMID: 35319325 DOI: 10.1080/02652048.2022.2055185] [Reference Citation Analysis]
8 Ensafi AA, Kazemifard N, Jamei HR. Molecularly imprinted biosensors for sensitive detection of biomarkers. The Detection of Biomarkers 2022. [DOI: 10.1016/b978-0-12-822859-3.00019-5] [Reference Citation Analysis]
9 Shevchenko KG, Garkushina IS, Canfarotta F, Piletsky SA, Barlev NA. Nano-molecularly imprinted polymers (nanoMIPs) as a novel approach to targeted drug delivery in nanomedicine. RSC Adv 2022;12:3957-68. [DOI: 10.1039/d1ra08385f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
10 Mughal ZUN, Shaikh H, Baig JA, Memon S, Sirajuddin, Shah S. Fabrication of an imprinted polymer based graphene oxide composite for label-free electrochemical sensing of Sus DNA. New J Chem 2022;46:16509-22. [DOI: 10.1039/d2nj02958h] [Reference Citation Analysis]
11 Lu H, Cui H, Duan D, Li L, Ding Y. A novel molecularly imprinted electrochemical sensor based on a nitrogen-doped graphene oxide quantum dot and molybdenum carbide nanocomposite for indometacin determination. Analyst 2021;146:7178-86. [PMID: 34704987 DOI: 10.1039/d1an01665b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
12 Abdellatif AAH, Mohammed HA, Khan RA, Singh V, Bouazzaoui A, Yusuf M, Akhtar N, Khan M, Al-subaiyel A, Mohammed SAA, Al-omar MS. Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity. Nanotechnology Reviews 2021;10:1493-559. [DOI: 10.1515/ntrev-2021-0096] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
13 Xu S, Wang L, Liu Z. Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angew Chem 2021;133:3902-13. [DOI: 10.1002/ange.202005309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Dong C, Shi H, Han Y, Yang Y, Wang R, Men J. Molecularly imprinted polymers by the surface imprinting technique. European Polymer Journal 2021;145:110231. [DOI: 10.1016/j.eurpolymj.2020.110231] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 24.0] [Reference Citation Analysis]
15 Liu H, Jin P, Zhu F, Nie L, Qiu H. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. TrAC Trends in Analytical Chemistry 2021;134:116132. [DOI: 10.1016/j.trac.2020.116132] [Cited by in Crossref: 41] [Cited by in F6Publishing: 28] [Article Influence: 20.5] [Reference Citation Analysis]
16 Bahrani S, Ghaedi M, Hashemi SA, Mousavi SM. Applications of molecularly imprinted polymers. Interface Science and Technology 2021. [DOI: 10.1016/b978-0-12-818805-7.00002-3] [Reference Citation Analysis]
17 Han S, Yao A, Wang Y. An ionic liquid–molecularly imprinted composite based on graphene oxide for the specific recognition and extraction of cancer antigen 153. RSC Adv 2021;11:13085-90. [DOI: 10.1039/d1ra00134e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
18 Alemi F, Zarezadeh R, Sadigh AR, Hamishehkar H, Rahimi M, Majidinia M, Asemi Z, Ebrahimi-kalan A, Yousefi B, Rashtchizadeh N. Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. Journal of Drug Delivery Science and Technology 2020;60:101974. [DOI: 10.1016/j.jddst.2020.101974] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
19 Denmark DJ, Mohapatra S, Mohapatra SS. Point-of-Care Diagnostics: Molecularly Imprinted Polymers and Nanomaterials for Enhanced Biosensor Selectivity and Transduction. The EuroBiotech Journal 2020;4:184-206. [DOI: 10.2478/ebtj-2020-0023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Rebelo P, Costa-Rama E, Seguro I, Pacheco JG, Nouws HPA, Cordeiro MNDS, Delerue-Matos C. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens Bioelectron 2021;172:112719. [PMID: 33166805 DOI: 10.1016/j.bios.2020.112719] [Cited by in Crossref: 72] [Cited by in F6Publishing: 75] [Article Influence: 24.0] [Reference Citation Analysis]
21 Abu-Alsoud GF, Hawboldt KA, Bottaro CS. Assessment of cross-reactivity in a tailor-made molecularly imprinted polymer for phenolic compounds using four adsorption isotherm models. J Chromatogr A 2020;1629:461463. [PMID: 32841770 DOI: 10.1016/j.chroma.2020.461463] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
22 Suravajhala R, Burri HR, Malik B. Selective Targeted Drug Delivery Mechanism via Molecular Imprinted Polymers in Cancer Therapeutics. Curr Top Med Chem 2020;20:1993-8. [PMID: 32568022 DOI: 10.2174/1568026620666200622150710] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
23 Yuan Y, Han Y, Yang C, Han D, Yan H. Deep eutectic solvent functionalized graphene oxide composite adsorbent for miniaturized pipette-tip solid-phase extraction of toluene and xylene exposure biomarkers in urine prior to their determination with HPLC-UV. Mikrochim Acta 2020;187:387. [PMID: 32535659 DOI: 10.1007/s00604-020-04370-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
24 Bakhshpour M, Göktürk I, Bereli N, Denizli A. Molecularly imprinted cryogel cartridges for the selective recognition of tyrosine. Biotechnol Prog 2020;36:e3006. [PMID: 32329233 DOI: 10.1002/btpr.3006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
25 Han S, Teng F, Wang Y, Su L, Leng Q, Jiang H. Drug-loaded dual targeting graphene oxide-based molecularly imprinted composite and recognition of carcino-embryonic antigen. RSC Adv 2020;10:10980-8. [DOI: 10.1039/d0ra00574f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
26 Zaidi SA. Molecular imprinting: A useful approach for drug delivery. Materials Science for Energy Technologies 2020;3:72-7. [DOI: 10.1016/j.mset.2019.10.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
27 Ghawanmeh AA, Ali GAM, Algarni H, Sarkar SM, Chong KF. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res 2019;12:973-90. [DOI: 10.1007/s12274-019-2300-4] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 13.5] [Reference Citation Analysis]