BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang C, Yang H, Yang F, Ma Y. Current progress on butyric acid production by fermentation. Curr Microbiol 2009;59:656-63. [PMID: 19727942 DOI: 10.1007/s00284-009-9491-y] [Cited by in Crossref: 155] [Cited by in F6Publishing: 123] [Article Influence: 11.9] [Reference Citation Analysis]
Number Citing Articles
1 Cerrone F, Duane G, Casey E, Davis R, Belton I, Kenny ST, Guzik MW, Woods T, Babu RP, O'Connor K. Fed-batch strategies using butyrate for high cell density cultivation of Pseudomonas putida and its use as a biocatalyst. Appl Microbiol Biotechnol 2014;98:9217-28. [PMID: 25104034 DOI: 10.1007/s00253-014-5989-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
2 Steinbrenner J, Mueller J, Oechsner H. Combined Butyric Acid and Methane Production from Grass Silage in a Novel Green Biorefinery Concept. Waste Biomass Valor. [DOI: 10.1007/s12649-021-01626-4] [Reference Citation Analysis]
3 Lee KM, Kim K, Choi O, Woo HM, Kim Y, Han SO, Sang B, Um Y. In situ detoxification of lignocellulosic hydrolysate using a surfactant for butyric acid production by Clostridium tyrobutyricum ATCC 25755. Process Biochemistry 2015;50:630-5. [DOI: 10.1016/j.procbio.2015.01.020] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
4 Yang S, Yu M, Chang W, Tang I. Anaerobic Fermentations for the Production of Acetic and Butyric Acids. In: Yang S, El-enshasy HA, Thongchul N, editors. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. Hoboken: John Wiley & Sons, Inc.; 2013. pp. 351-74. [DOI: 10.1002/9781118642047.ch19] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
5 Ueki T, Nevin KP, Woodard TL, Lovley DR. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 2014;5:e01636-14. [PMID: 25336453 DOI: 10.1128/mBio.01636-14] [Cited by in Crossref: 104] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
6 Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2018;118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Cited by in Crossref: 69] [Cited by in F6Publishing: 64] [Article Influence: 13.8] [Reference Citation Analysis]
7 Saini M, Wang ZW, Chiang CJ, Chao YP. Metabolic engineering of Escherichia coli for production of butyric acid. J Agric Food Chem 2014;62:4342-8. [PMID: 24773075 DOI: 10.1021/jf500355p] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 4.6] [Reference Citation Analysis]
8 Garcia-Mazcorro JF, Lage NN, Mertens-Talcott S, Talcott S, Chew B, Dowd SE, Kawas JR, Noratto GD. Effect of dark sweet cherry powder consumption on the gut microbiota, short-chain fatty acids, and biomarkers of gut health in obese db/db mice. PeerJ 2018;6:e4195. [PMID: 29312822 DOI: 10.7717/peerj.4195] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
9 Ren F, He R, Zhou X, Gu Q, Xia Z, Liang M, Zhou J, Lin B, Zou C. Dynamic changes in fermentation profiles and bacterial community composition during sugarcane top silage fermentation: A preliminary study. Bioresour Technol 2019;285:121315. [PMID: 30965280 DOI: 10.1016/j.biortech.2019.121315] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
10 Li L, Qu Z, Wang B, Qu D. Dynamics of the abundance and structure of metabolically active Clostridium community in response to glucose additions in flooded paddy soils: closely correlated with hydrogen production and Fe(III) reduction. J Soils Sediments 2017;17:1727-40. [DOI: 10.1007/s11368-016-1637-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wang J, Lin M, Xu M, Yang S. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass. In: Hatti-kaul R, Mamo G, Mattiasson B, editors. Anaerobes in Biotechnology. Cham: Springer International Publishing; 2016. pp. 323-61. [DOI: 10.1007/10_2015_5009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
12 Liu T, Zhu L, Zhu Z, Jiang L. Genome Sequence Analysis of Clostridium tyrobutyricum, a Promising Microbial Host for Human Health and Industrial Applications. Curr Microbiol 2020;77:3685-94. [DOI: 10.1007/s00284-020-02175-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Luo L, Wong JW. Enhanced food waste degradation in integrated two-phase anaerobic digestion: Effect of leachate recirculation ratio. Bioresource Technology 2019;291:121813. [DOI: 10.1016/j.biortech.2019.121813] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
14 Soo C, Yap W, Hon W, Phang L. Mini review: hydrogen and ethanol co-production from waste materials via microbial fermentation. World J Microbiol Biotechnol 2015;31:1475-88. [DOI: 10.1007/s11274-015-1902-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
15 Jiang L, Fu H, Yang HK, Xu W, Wang J, Yang ST. Butyric acid: Applications and recent advances in its bioproduction. Biotechnol Adv 2018;36:2101-17. [PMID: 30266343 DOI: 10.1016/j.biotechadv.2018.09.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 9.5] [Reference Citation Analysis]
16 Blahušiak M, Schlosser Š, Marták J. Extraction of butyric acid with a solvent containing ammonium ionic liquid. Separation and Purification Technology 2013;119:102-11. [DOI: 10.1016/j.seppur.2013.09.005] [Cited by in Crossref: 48] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
17 Suo Y, Ren M, Yang X, Liao Z, Fu H, Wang J. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio. Appl Microbiol Biotechnol 2018;102:4511-22. [DOI: 10.1007/s00253-018-8954-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
18 Murali N, Srinivas K, Ahring BK. Biochemical Production and Separation of Carboxylic Acids for Biorefinery Applications. Fermentation 2017;3:22. [DOI: 10.3390/fermentation3020022] [Cited by in Crossref: 48] [Cited by in F6Publishing: 25] [Article Influence: 9.6] [Reference Citation Analysis]
19 Kataoka N, Vangnai AS, Pongtharangkul T, Yakushi T, Matsushita K. Butyrate production under aerobic growth conditions by engineered Escherichia coli. Journal of Bioscience and Bioengineering 2017;123:562-8. [DOI: 10.1016/j.jbiosc.2016.12.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
20 Prabhu R, Altman E, Eiteman MA. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Appl Environ Microbiol 2012;78:8564-70. [PMID: 23023753 DOI: 10.1128/AEM.02443-12] [Cited by in Crossref: 68] [Cited by in F6Publishing: 18] [Article Influence: 6.8] [Reference Citation Analysis]
21 Sotelo‐navarro PX, Poggi‐varaldo HM, Turpin‐marion SJ, Rinderknecht Seijas NF. Sodium polyacrylate inhibits fermentative hydrogen production from waste diaper‐like material. J Chem Technol Biotechnol 2019;95:78-85. [DOI: 10.1002/jctb.6208] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Suo Y, Liao Z, Qu C, Fu H, Wang J. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from undetoxified corncob acid hydrolysate. Bioresource Technology 2019;271:266-73. [DOI: 10.1016/j.biortech.2018.09.095] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
23 Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Lopez Garcia I, Kookos IK, Papanikolaou S, Kwan TH, Lin CSK. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 2014;43:2587. [DOI: 10.1039/c3cs60293a] [Cited by in Crossref: 316] [Cited by in F6Publishing: 213] [Article Influence: 39.5] [Reference Citation Analysis]
24 Dwidar M, Lee S, Mitchell RJ. The production of biofuels from carbonated beverages. Applied Energy 2012;100:47-51. [DOI: 10.1016/j.apenergy.2012.02.054] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
25 Zhou X, Wang S, Lu X, Liang J. Comparison of the effects of high energy carbon heavy ion irradiation and Eucommia ulmoides Oliv. on biosynthesis butyric acid efficiency in Clostridium tyrobutyricum. Bioresource Technology 2014;161:221-9. [DOI: 10.1016/j.biortech.2014.03.039] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
26 Gu F, Chen Y, Fang Y, Wu G, Tan L. Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics. Molecules 2015;20:18422-36. [PMID: 26473810 DOI: 10.3390/molecules201018422] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Fu H, Hu J, Guo X, Feng J, Zhang Y, Wang J. High-Selectivity Butyric Acid Production from Saccharina japonica Hydrolysate by Clostridium tyrobutyricum. Ind Eng Chem Res 2020;59:17147-55. [DOI: 10.1021/acs.iecr.0c01279] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Talebi A, Razali YS, Ismail N, Rafatullah M, Azan Tajarudin H. Selective adsorption and recovery of volatile fatty acids from fermented landfill leachate by activated carbon process. Sci Total Environ 2020;707:134533. [PMID: 31865088 DOI: 10.1016/j.scitotenv.2019.134533] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
29 Santhanakrishnan A, Shannon A, Peereboom L, Lira CT, Miller DJ. Kinetics of Mixed Ethanol/ n -Butanol Esterification of Butyric Acid with Amberlyst 70 and p -Toluene Sulfonic Acid. Ind Eng Chem Res 2013;52:1845-53. [DOI: 10.1021/ie302267s] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
30 Suo Y, Luo S, Zhang Y, Liao Z, Wang J. Enhanced butyric acid tolerance and production by Class I heat shock protein-overproducing Clostridium tyrobutyricum ATCC 25755. Journal of Industrial Microbiology and Biotechnology 2017;44:1145-56. [DOI: 10.1007/s10295-017-1939-7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
31 Merklein K, Fong SS, Deng Y. Production of butyric acid by a cellulolytic actinobacterium Thermobifida fusca on cellulose. Biochemical Engineering Journal 2014;90:239-44. [DOI: 10.1016/j.bej.2014.06.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
32 Li J, Chi X, Zhang Y, Wang X. Enhanced coproduction of hydrogen and butanol from rice straw by a novel two-stage fermentation process. International Biodeterioration & Biodegradation 2018;127:62-8. [DOI: 10.1016/j.ibiod.2017.11.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
33 Chanakul A, Traiphol R, Traiphol N. Colorimetric sensing of various organic acids by using polydiacetylene/zinc oxide nanocomposites: Effects of polydiacetylene and acid structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016;489:9-18. [DOI: 10.1016/j.colsurfa.2015.09.068] [Cited by in Crossref: 28] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
34 Bai Y, Mansell TJ. Production and Sensing of Butyrate in a Probiotic Escherichia coli Strain. Int J Mol Sci 2020;21:E3615. [PMID: 32443851 DOI: 10.3390/ijms21103615] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
35 Chen Y, Reinhardt M, Neris N, Kerns L, Mansell TJ, Jarboe LR. Lessons in Membrane Engineering for Octanoic Acid Production from Environmental Escherichia coli Isolates. Appl Environ Microbiol 2018;84:e01285-18. [PMID: 30030228 DOI: 10.1128/AEM.01285-18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
36 Zhou X, Yang Z, Jiang TT, Wang SY, Liang JP, Lu XH, Wang L. The acquisition of Clostridium tyrobutyricum mutants with improved bioproduction under acidic conditions after two rounds of heavy-ion beam irradiation. Sci Rep 2016;6:29968. [PMID: 27426447 DOI: 10.1038/srep29968] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
37 Volker AR, Gogerty DS, Bartholomay C, Hennen-bierwagen T, Zhu H, Bobik TA. Fermentative production of short-chain fatty acids in Escherichia coli. Microbiology 2014;160:1513-22. [DOI: 10.1099/mic.0.078329-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
38 Su LW, Cheng YH, Hsiao FS, Han JC, Yu YH. Optimization of Mixed Solid-state Fermentation of Soybean Meal by Lactobacillus Species and Clostridium butyricum. Pol J Microbiol 2018;67:297-305. [PMID: 30451446 DOI: 10.21307/pjm-2018-035] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
39 Ai B, Li J, Chi X, Meng J, Jha AK, Liu C, Shi E. Effect of pH and buffer on butyric acid production and microbial community characteristics in bioconversion of rice straw with undefined mixed culture. Biotechnol Bioproc E 2014;19:676-86. [DOI: 10.1007/s12257-013-0655-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
40 Kumar S, Pandey S, Wasewar KL, Ak N, Uslu H. Reactive Extraction as an Intensifying Approach for the Recovery of Organic Acids from Aqueous Solution: A Comprehensive Review on Experimental and Theoretical Studies. J Chem Eng Data 2021;66:1557-73. [DOI: 10.1021/acs.jced.0c00405] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
41 Fujii Y, Mitsuka K, Ogata H, Inoue D, Ike M. Development and Characterization of a Chloroethenes-Dechlorinating Consortium Using Gluconate as a Hydrogen Donor. J of Wat & Envir Tech 2020;18:212-25. [DOI: 10.2965/jwet.20-016] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Stein UH, Wimmer B, Ortner M, Fuchs W, Bochmann G. Maximizing the production of butyric acid from food waste as a precursor for ABE-fermentation. Science of The Total Environment 2017;598:993-1000. [DOI: 10.1016/j.scitotenv.2017.04.139] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
43 Liu Y, Geng Y, Zhou Q, Yuan W. The effect of furfural and 5‐hydroxymethyl furfural on butyric acid fermentation by Clostridium tyrobutyricum. J Chem Technol Biotechnol 2017;93:849-54. [DOI: 10.1002/jctb.5439] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
44 Magdalena JA, Greses S, González-fernández C. Anaerobic degradation of protein-rich biomass in an UASB reactor: Organic loading rate effect on product output and microbial communities dynamics. Journal of Environmental Management 2020;274:111201. [DOI: 10.1016/j.jenvman.2020.111201] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
45 Baek JM, Mazumdar S, Lee SW, Jung MY, Lim JH, Seo SW, Jung GY, Oh MK. Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol Bioeng 2013;110:2790-4. [PMID: 23568786 DOI: 10.1002/bit.24925] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 7.4] [Reference Citation Analysis]
46 Joung S, Kurumbang NP, Sang B, Oh M. Effects of carbon source and metabolic engineering on butyrate production in Escherichia coli. Korean J Chem Eng 2011;28:1587-92. [DOI: 10.1007/s11814-011-0032-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
47 Ma C, Ou J, Miller M, Mcfann S, Liu X. High production of butyric acid by Clostridium tyrobutyricum mutant. Front Chem Sci Eng 2015;9:369-75. [DOI: 10.1007/s11705-015-1525-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
48 Thakker C, Martínez I, Li W, San KY, Bennett GN. Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biotechnol 2015;42:403-22. [PMID: 25502283 DOI: 10.1007/s10295-014-1560-y] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
49 Chi X, Li J, Leu S, Wang X, Zhang Y, Wang Y. Features of a Staged Acidogenic/Solventogenic Fermentation Process To Improve Butanol Production from Rice Straw. Energy Fuels 2019;33:1123-32. [DOI: 10.1021/acs.energyfuels.8b03095] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Blahušiak M, Schlosser Š, Annus J. Separation of butyric acid in fixed bed column with solvent impregnated resin containing ammonium ionic liquid. Reactive and Functional Polymers 2015;87:29-36. [DOI: 10.1016/j.reactfunctpolym.2014.12.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
51 Sarma SJ, Pachapur V, Brar SK, Le Bihan Y, Buelna G. Hydrogen biorefinery: Potential utilization of the liquid waste from fermentative hydrogen production. Renewable and Sustainable Energy Reviews 2015;50:942-51. [DOI: 10.1016/j.rser.2015.04.191] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
52 Fu H, Yu L, Lin M, Wang J, Xiu Z, Yang S. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metabolic Engineering 2017;40:50-8. [DOI: 10.1016/j.ymben.2016.12.014] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 9.4] [Reference Citation Analysis]
53 Bhatia SK, Yang Y. Microbial production of volatile fatty acids: current status and future perspectives. Rev Environ Sci Biotechnol 2017;16:327-45. [DOI: 10.1007/s11157-017-9431-4] [Cited by in Crossref: 67] [Cited by in F6Publishing: 45] [Article Influence: 13.4] [Reference Citation Analysis]
54 Chi X, Li J, Wang X, Zhang Y, Antwi P. Hyper-production of butyric acid from delignified rice straw by a novel consolidated bioprocess. Bioresource Technology 2018;254:115-20. [DOI: 10.1016/j.biortech.2018.01.042] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
55 Wang X, Li J, Chi X, Zhang Y, Yan H, Jin Y, Qu J. A novel isolate of Clostridium butyricum for efficient butyric acid production by xylose fermentation. Ann Microbiol 2018;68:321-30. [DOI: 10.1007/s13213-018-1340-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
56 Qi S, Lin J, Wang Y, Yuan S, Wang W, Xiao L, Zhan X, Hu Z. Fermentation liquid production of food wastes as carbon source for denitrification: Laboratory and full-scale investigation. Chemosphere 2021;270:129460. [PMID: 33423004 DOI: 10.1016/j.chemosphere.2020.129460] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
57 Dwidar M, Park JY, Mitchell RJ, Sang BI. The future of butyric acid in industry. ScientificWorldJournal 2012;2012:471417. [PMID: 22593687 DOI: 10.1100/2012/471417] [Cited by in Crossref: 97] [Cited by in F6Publishing: 75] [Article Influence: 9.7] [Reference Citation Analysis]
58 Afzali E, Eslaminejad T, Amirheidari B, Ansari M, Jin Z. Cell immobilization of Streptomyces griseobrunneus by microcrystalline cellulose for production of cyclodextrin glucanotransferase enzyme. Cogent Engineering 2021;8:1868145. [DOI: 10.1080/23311916.2020.1868145] [Reference Citation Analysis]
59 Zhou J, Shen J, Wang X, Sun Y, Xiu Z. Stability and oscillatory behavior of microbial consortium in continuous conversion of crude glycerol to 1,3-propanediol. Appl Microbiol Biotechnol 2018;102:8291-305. [DOI: 10.1007/s00253-018-9244-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
60 Franciosa G, Scalfaro C, Di Bonito P, Vitale M, Aureli P. Identification of novel linear megaplasmids carrying a ß-lactamase gene in neurotoxigenic Clostridium butyricum type E strains. PLoS One 2011;6:e21706. [PMID: 21738770 DOI: 10.1371/journal.pone.0021706] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
61 Baroi GN, Baumann I, Westermann P, Gavala HN. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain. Microb Biotechnol 2015;8:874-82. [PMID: 26230610 DOI: 10.1111/1751-7915.12304] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 5.9] [Reference Citation Analysis]
62 Luo H, Yang R, Zhao Y, Wang Z, Liu Z, Huang M, Zeng Q. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. Bioresour Technol 2018;253:343-54. [PMID: 29329775 DOI: 10.1016/j.biortech.2018.01.007] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 11.8] [Reference Citation Analysis]
63 Baroi G, Gavala H, Westermann P, Skiadas I. Fermentative production of butyric acid from wheat straw: Economic evaluation. Industrial Crops and Products 2017;104:68-80. [DOI: 10.1016/j.indcrop.2017.04.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
64 Huang J, Tang W, Zhu S, Du M. Biosynthesis of butyric acid by Clostridium tyrobutyricum. Prep Biochem Biotechnol 2018;48:427-34. [PMID: 29561227 DOI: 10.1080/10826068.2018.1452257] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
65 Cho C, Jang Y, Moon HG, Lee J, Lee SY. Metabolic engineering of clostridia for the production of chemicals. Biofuels, Bioprod Bioref 2015;9:211-25. [DOI: 10.1002/bbb.1531] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
66 Akhtar T, Hashmi AS, Tayyab M, Anjum AA, Saeed S, Ali S. Bioconversion of Agricultural Waste to Butyric Acid Through Solid State Fermentation by Clostridium tyrobutyricum. Waste Biomass Valor 2020;11:2067-73. [DOI: 10.1007/s12649-018-0475-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
67 Fu H, Wang X, Sun Y, Yan L, Shen J, Wang J, Yang S, Xiu Z. Effects of salting-out and salting-out extraction on the separation of butyric acid. Separation and Purification Technology 2017;180:44-50. [DOI: 10.1016/j.seppur.2017.02.042] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 4.8] [Reference Citation Analysis]
68 Oswald F, Dörsam S, Veith N, Zwick M, Neumann A, Ochsenreither K, Syldatk C. Sequential Mixed Cultures: From Syngas to Malic Acid. Front Microbiol 2016;7:891. [PMID: 27445993 DOI: 10.3389/fmicb.2016.00891] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
69 Yoon J, Woo HM. CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production. Biotechnol Bioeng 2018;115:2067-74. [PMID: 29704438 DOI: 10.1002/bit.26720] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
70 Huang J, Cai J, Wang J, Zhu X, Huang L, Yang S, Xu Z. Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresource Technology 2011;102:3923-6. [DOI: 10.1016/j.biortech.2010.11.112] [Cited by in Crossref: 78] [Cited by in F6Publishing: 70] [Article Influence: 7.1] [Reference Citation Analysis]
71 Fonseca BC, Reginatto V, López-linares JC, Lucas S, García-cubero MT, Coca M. Acetic acid as catalyst for microwave-assisted pretreatment of sugarcane straw aids highly specific butyric acid bioproduction. Industrial Crops and Products 2020;157:112936. [DOI: 10.1016/j.indcrop.2020.112936] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
72 Zhang Y, Li J, Meng J, Wang X. A cathodic electro-fermentation system for enhancing butyric acid production from rice straw with a mixed culture. Sci Total Environ 2021;767:145011. [PMID: 33636772 DOI: 10.1016/j.scitotenv.2021.145011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Jiang L, Wang J, Liang S, Cai J, Xu Z, Cen P, Yang S, Li S. Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Biotechnol Bioeng 2011;108:31-40. [PMID: 20824675 DOI: 10.1002/bit.22927] [Cited by in Crossref: 106] [Cited by in F6Publishing: 90] [Article Influence: 9.6] [Reference Citation Analysis]
74 Suo Y, Fu H, Ren M, Liao Z, Ma Y, Wang J. Enhanced butyric acid production in Clostridium tyrobutyricum by overexpression of rate-limiting enzymes in the Embden-Meyerhof-Parnas pathway. J Biotechnol 2018;272-273:14-21. [PMID: 29501473 DOI: 10.1016/j.jbiotec.2018.02.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
75 Fu H, Lin M, Tang IC, Wang J, Yang ST. Effects of benzyl viologen on increasing NADH availability, acetate assimilation, and butyric acid production by Clostridium tyrobutyricum. Biotechnol Bioeng 2021;118:770-83. [PMID: 33058166 DOI: 10.1002/bit.27602] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
76 Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK. Microbial Volatile Emissions as Insect Semiochemicals. J Chem Ecol 2013;39:840-59. [DOI: 10.1007/s10886-013-0306-z] [Cited by in Crossref: 266] [Cited by in F6Publishing: 189] [Article Influence: 29.6] [Reference Citation Analysis]
77 de Souza Moraes B, Mary dos Santos G, Palladino Delforno T, Tadeu Fuess L, José da Silva A. Enriched microbial consortia for dark fermentation of sugarcane vinasse towards value-added short-chain organic acids and alcohol production. Journal of Bioscience and Bioengineering 2019;127:594-601. [DOI: 10.1016/j.jbiosc.2018.10.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 6.7] [Reference Citation Analysis]
78 Fu H, Yang S, Wang M, Wang J, Tang I. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. Bioresource Technology 2017;234:389-96. [DOI: 10.1016/j.biortech.2017.03.073] [Cited by in Crossref: 48] [Cited by in F6Publishing: 36] [Article Influence: 9.6] [Reference Citation Analysis]
79 Baroi GN, Skiadas IV, Westermann P, Gavala HN. Effect of in situ acids removal on mixed glucose and xylose fermentation by Clostridium tyrobutyricum. AMB Express 2015;5:67. [PMID: 26516087 DOI: 10.1186/s13568-015-0153-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
80 Tee ZK, Jahim JM, Tan JP, Kim BH. Preeminent productivity of 1,3-propanediol by Clostridium butyricum JKT37 and the role of using calcium carbonate as pH neutraliser in glycerol fermentation. Bioresource Technology 2017;233:296-304. [DOI: 10.1016/j.biortech.2017.02.110] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
81 Ahmed I, Zia MA, Afzal H, Ahmed S, Ahmad M, Akram Z, Sher F, Iqbal HMN. Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy. Sustainability 2021;13:4200. [DOI: 10.3390/su13084200] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
82 Chu CY, Zheng JL, Chen TH, Bhuyar P. High Performance of Biohydrogen Production in Packed-Filter Bioreactor via Optimizing Packed-Filter Position. Int J Environ Res Public Health 2021;18:7462. [PMID: 34299912 DOI: 10.3390/ijerph18147462] [Reference Citation Analysis]
83 Tan JP, Tee ZK, Roslam Wan Isahak WN, Kim BH, Asis AJ, Jahim JM. Improved Fermentability of Pretreated Glycerol Enhanced Bioconversion of 1,3-Propanediol. Ind Eng Chem Res 2018;57:12565-73. [DOI: 10.1021/acs.iecr.8b02268] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
84 Silva AFR, Brasil YL, Koch K, Amaral MCS. Resource recovery from sugarcane vinasse by anaerobic digestion - A review. J Environ Manage 2021;295:113137. [PMID: 34198179 DOI: 10.1016/j.jenvman.2021.113137] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
85 Jaros AM, Rova U, Berglund KA. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate. Springerplus 2013;2:47. [PMID: 23519192 DOI: 10.1186/2193-1801-2-47] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
86 Huang J, Dai H, Yan R, Wang P. Butyric acid production from recycled waste paper by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor: Butyric acid production from waste paper by immobilized C. tyrobutyricum. J Chem Technol Biotechnol 2016;91:1048-54. [DOI: 10.1002/jctb.4680] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
87 Choi O, Um Y, Sang B. Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol Bioeng 2012;109:2494-502. [DOI: 10.1002/bit.24520] [Cited by in Crossref: 96] [Cited by in F6Publishing: 85] [Article Influence: 9.6] [Reference Citation Analysis]
88 Ortigueira J, Alves L, Gouveia L, Moura P. Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel 2015;153:128-34. [DOI: 10.1016/j.fuel.2015.02.093] [Cited by in Crossref: 57] [Cited by in F6Publishing: 37] [Article Influence: 8.1] [Reference Citation Analysis]
89 Shepard L, Miracle R, Leksrisompong P, Drake M. Relating sensory and chemical properties of sour cream to consumer acceptance. Journal of Dairy Science 2013;96:5435-54. [DOI: 10.3168/jds.2012-6317] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
90 Steinbrenner J, Nägele H, Buschmann A, Hülsemann B, Oechsner H. Testing different ensiling parameters to increase butyric acid concentration for maize silage, followed by silage separation and methane yield potential of separated solids residues. Bioresource Technology Reports 2019;7:100193. [DOI: 10.1016/j.biteb.2019.100193] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
91 Mattam AJ, Yazdani SS. Engineering E. coli strain for conversion of short chain fatty acids to bioalcohols. Biotechnol Biofuels 2013;6:128. [PMID: 24020887 DOI: 10.1186/1754-6834-6-128] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
92 Du G, Liu L, Chen J. White Biotechnology for Organic Acids. Industrial Biorefineries & White Biotechnology. Elsevier; 2015. pp. 409-44. [DOI: 10.1016/b978-0-444-63453-5.00013-6] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
93 Lin LY, Peng CC, Chen KC, Wang HE, Wang CS, Shen KH, Peng RY. Manufacturing technology of banana-assorted breads: The fermentative characteristics affected by different banana cultivars. Food Sci Nutr 2020;8:2627-41. [PMID: 32566180 DOI: 10.1002/fsn3.1539] [Reference Citation Analysis]
94 Liu S, Duncan S, Qureshi N, Rich J. Fermentative production of butyric acid from paper mill sludge hydrolysates using Clostridium tyrobutyricum NRRL B-67062/RPT 4213. Biocatalysis and Agricultural Biotechnology 2018;14:48-51. [DOI: 10.1016/j.bcab.2018.02.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
95 Jang Y, Woo HM, Im JA, Kim IH, Lee SY. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Appl Microbiol Biotechnol 2013;97:9355-63. [DOI: 10.1007/s00253-013-5161-x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
96 Straathof AJJ. Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chem Rev 2014;114:1871-908. [DOI: 10.1021/cr400309c] [Cited by in Crossref: 287] [Cited by in F6Publishing: 207] [Article Influence: 31.9] [Reference Citation Analysis]
97 Hussain A, Filiatrault M, Guiot SR. Acidogenic digestion of food waste in a thermophilic leach bed reactor: Effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production. Bioresource Technology 2017;245:1-9. [DOI: 10.1016/j.biortech.2017.08.130] [Cited by in Crossref: 39] [Cited by in F6Publishing: 22] [Article Influence: 7.8] [Reference Citation Analysis]
98 Righetti E, Nortilli S, Fatone F, Frison N, Bolzonella D. A Multiproduct Biorefinery Approach for the Production of Hydrogen, Methane and Volatile Fatty Acids from Agricultural Waste. Waste Biomass Valor 2020;11:5239-46. [DOI: 10.1007/s12649-020-01023-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
99 Aly SS, Imai T, Hassouna MS, Kim Nguyen D, Higuchi T, Kanno A, Yamamoto K, Akada R, Sekine M. Identification of factors that accelerate hydrogen production by Clostridium butyricum RAK25832 using casamino acids as a nitrogen source. International Journal of Hydrogen Energy 2018;43:5300-13. [DOI: 10.1016/j.ijhydene.2017.08.171] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
100 Tashiro Y, Matsumoto H, Miyamoto H, Okugawa Y, Pramod P, Miyamoto H, Sakai K. A novel production process for optically pure l -lactic acid from kitchen refuse using a bacterial consortium at high temperatures. Bioresource Technology 2013;146:672-81. [DOI: 10.1016/j.biortech.2013.07.102] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
101 Yalın İ, Çehreli S, Andreatta AE, Senol A. Phase Equilibria of Ternary Liquid–Liquid Systems (Water + C1–C4 Monocarboxylic Acids + Dibutyl Ether) at Three Different Temperatures: Modeling with A-UNIFAC. J Solution Chem 2020;49:1009-28. [DOI: 10.1007/s10953-020-01006-x] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
102 Lim JH, Seo SW, Kim SY, Jung GY. Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli. Bioresour Technol 2013;135:568-73. [PMID: 23127832 DOI: 10.1016/j.biortech.2012.09.091] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
103 Wu X, Li G, Yang H, Zhou H. Study on extraction and separation of butyric acid from clostridium tyrobutyricum fermentation broth in PEG/Na2SO4 aqueous two-phase system. Fluid Phase Equilibria 2015;403:36-42. [DOI: 10.1016/j.fluid.2015.05.047] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
104 Xiao Z, Cheng C, Bao T, Liu L, Wang B, Tao W, Pei X, Yang ST, Wang M. Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis. Biotechnol Biofuels 2018;11:164. [PMID: 29946355 DOI: 10.1186/s13068-018-1165-1] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
105 Mangayil R, Karp M, Santala V. Bioconversion of crude glycerol from biodiesel production to hydrogen. International Journal of Hydrogen Energy 2012;37:12198-204. [DOI: 10.1016/j.ijhydene.2012.06.010] [Cited by in Crossref: 47] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
106 Arslan D, Steinbusch K, Diels L, De Wever H, Hamelers H, Buisman C. Selective carboxylate production by controlling hydrogen, carbon dioxide and substrate concentrations in mixed culture fermentation. Bioresource Technology 2013;136:452-60. [DOI: 10.1016/j.biortech.2013.03.063] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
107 Trevisan V, Monteggia LO, Delabary HDS. A short-term test for the evaluation of hydrogen and volatile fatty acids production from industrial effluents. International Journal of Hydrogen Energy 2014;39:7730-4. [DOI: 10.1016/j.ijhydene.2014.03.139] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
108 Pappu VK, Kanyi V, Santhanakrishnan A, Lira CT, Miller DJ. Butyric acid esterification kinetics over Amberlyst solid acid catalysts: The effect of alcohol carbon chain length. Bioresource Technology 2013;130:793-7. [DOI: 10.1016/j.biortech.2012.12.087] [Cited by in Crossref: 45] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
109 Ai B, Chi X, Meng J, Sheng Z, Zheng L, Zheng X, Li J. Consolidated Bioprocessing for Butyric Acid Production from Rice Straw with Undefined Mixed Culture. Front Microbiol 2016;7:1648. [PMID: 27822203 DOI: 10.3389/fmicb.2016.01648] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
110 Li J, Rong L, Zhao Y, Li S, Zhang C, Xiao D, Foo JL, Yu A. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnology Advances 2020;43:107605. [DOI: 10.1016/j.biotechadv.2020.107605] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
111 Shi S, Xu G, Yu H, Zhang Z. Strategies of valorization of sludge from wastewater treatment: Strategies of valorization of sludge from wastewater treatment. J Chem Technol Biotechnol 2018;93:936-44. [DOI: 10.1002/jctb.5548] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
112 Fonseca BC, Bortolucci J, da Silva TM, dos Passos VF, de Gouvêa PF, Dinamarco TM, Reginatto V. Butyric acid as sole product from xylose fermentation by a non-solventogenic Clostridium beijerinckii strain under controlled pH and nutritional conditions. Bioresource Technology Reports 2020;10:100426. [DOI: 10.1016/j.biteb.2020.100426] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
113 Liu C, Zheng J, Wu S, Chu C. Fermentative hydrogen production potential from washing wastewater of beverage production process. International Journal of Hydrogen Energy 2016;41:4466-73. [DOI: 10.1016/j.ijhydene.2015.08.079] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
114 Arslan D, Steinbusch KJJ, Diels L, Hamelers HVM, Strik DPBTB, Buisman CJN, De Wever H. Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations. Critical Reviews in Environmental Science and Technology 2016;46:592-634. [DOI: 10.1080/10643389.2016.1145959] [Cited by in Crossref: 59] [Cited by in F6Publishing: 38] [Article Influence: 9.8] [Reference Citation Analysis]
115 Kim M, Kim K, Lee KM, Youn SH, Lee S, Woo HM, Oh M, Um Y. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity. Bioresource Technology 2016;218:1208-14. [DOI: 10.1016/j.biortech.2016.07.073] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
116 Lalikoglu M, Bilgin M. Ternary phase diagrams for aqueous mixtures of butyric acid with several solvents: Experimental and correlated data. Fluid Phase Equilibria 2014;371:50-6. [DOI: 10.1016/j.fluid.2014.03.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
117 Varrone C, Floriotis G, Heggeset TM, Le SB, Markussen S, Skiadas IV, Gavala HN. Continuous fermentation and kinetic experiments for the conversion of crude glycerol derived from second-generation biodiesel into 1,3 propanediol and butyric acid. Biochemical Engineering Journal 2017;128:149-61. [DOI: 10.1016/j.bej.2017.09.012] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
118 Camerini S, Marcocci L, Picarazzi L, Iorio E, Ruspantini I, Pietrangeli P, Crescenzi M, Franciosa G. Type E Botulinum Neurotoxin-Producing Clostridium butyricum Strains Are Aerotolerant during Vegetative Growth. mSystems 2019;4:e00299-18. [PMID: 31058231 DOI: 10.1128/mSystems.00299-18] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
119 Rao R, Basak N. Development of novel strategies for higher fermentative biohydrogen recovery along with novel metabolites from organic wastes: The present state of the art. Biotechnol Appl Biochem 2021;68:421-44. [PMID: 32474946 DOI: 10.1002/bab.1964] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
120 Huang J, Zhu H, Tang W, Wang P, Yang S. Butyric acid production from oilseed rape straw by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Process Biochemistry 2016;51:1930-4. [DOI: 10.1016/j.procbio.2016.08.019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
121 Dwidar M, Kim S, Jeon BS, Um Y, Mitchell RJ, Sang BI. Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose. Biotechnol Biofuels 2013;6:35. [PMID: 23452443 DOI: 10.1186/1754-6834-6-35] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
122 Bastidas-oyanedel J, Bonk F, Thomsen MH, Schmidt JE. Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Biotechnol 2015;14:473-98. [DOI: 10.1007/s11157-015-9369-3] [Cited by in Crossref: 83] [Cited by in F6Publishing: 48] [Article Influence: 11.9] [Reference Citation Analysis]
123 Wang Z, Lin Y, Liu L, Zheng B, Zhang Y, Zeng H. Effect of Lotus Seed Resistant Starch on Lactic Acid Conversion to Butyric Acid Fermented by Rat Fecal Microbiota. J Agric Food Chem 2022. [PMID: 34989559 DOI: 10.1021/acs.jafc.1c06000] [Reference Citation Analysis]
124 Deng Y, Mao Y, Zhang X. Driving carbon flux through exogenous butyryl-CoA: Acetate CoA-transferase to produce butyric acid at high titer in Thermobifida fusca. J Biotechnol 2015;216:151-7. [PMID: 26535965 DOI: 10.1016/j.jbiotec.2015.10.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
125 Stoklosa RJ, Moore C, Latona RJ, Nghiem NP. Butyric Acid Generation by Clostridium tyrobutyricum from Low-Moisture Anhydrous Ammonia (LMAA) Pretreated Sweet Sorghum Bagasse. Appl Biochem Biotechnol 2021;193:761-76. [PMID: 33188509 DOI: 10.1007/s12010-020-03449-w] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 Huang J, Tang W, Zhu S, Du M. Production of butyric acid by Clostridium tyrobutyricum coated with carboxyl functioned magnetic nanoparticles: Production of butyric acid by C. tyrobutyricum with CMNPs. J Chem Technol Biotechnol 2018;93:2364-70. [DOI: 10.1002/jctb.5582] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
127 Spiller R, Knoshaug EP, Nagle N, Dong T, Milbrandt A, Clippinger J, Peterson D, Vanwychen S, Panczak B, Pienkos PT. Upgrading brown grease for the production of biofuel intermediates. Bioresource Technology Reports 2020;9:100344. [DOI: 10.1016/j.biteb.2019.100344] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
128 Du J, Mcgraw A, Lorenz N, Beitle RR, Clausen EC, Hestekin JA. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production. Energies 2012;5:2835-48. [DOI: 10.3390/en5082835] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
129 Baroi GN, Skiadas IV, Westermann P, Gavala HN. Continuous Fermentation of Wheat Straw Hydrolysate by Clostridium tyrobutyricum with In-Situ Acids Removal. Waste Biomass Valor 2015;6:317-26. [DOI: 10.1007/s12649-015-9348-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
130 Wasels F, Clément B, Lopes Ferreira N. Draft Genome Sequence of the Butyric Acid Producer Clostridium tyrobutyricum Strain CIP I-776 (IFP923). Genome Announc 2016;4:e00048-16. [PMID: 26941139 DOI: 10.1128/genomeA.00048-16] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
131 Lown AL, Peereboom L, Mueller SA, Anderson JE, Miller DJ, Lira CT. Cold flow properties for blends of biofuels with diesel and jet fuels. Fuel 2014;117:544-51. [DOI: 10.1016/j.fuel.2013.09.067] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
132 Singh R, Singh V. Integrated Biorefinery for Valorization of Engineered Bioenergy Crops—A Review. Industrial Biotechnology 2021;17:271-82. [DOI: 10.1089/ind.2021.0020] [Reference Citation Analysis]
133 Suo Y, Fu H, Ren M, Yang X, Liao Z, Wang J. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing Class I heat shock protein GroESL. Bioresour Technol 2018;250:691-8. [PMID: 29220814 DOI: 10.1016/j.biortech.2017.11.059] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
134 Tirandaz H, Mohammadi E. Efficient tumor targeting by anaerobic butyrate-producing bacteria. Med Hypotheses 2013;80:675-8. [PMID: 23410499 DOI: 10.1016/j.mehy.2013.01.024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
135 Dudek K, Molina-guerrero CE, Valdez-vazquez I. Profitability of single- and mixed-culture fermentations for the butyric acid production from a lignocellulosic substrate. Chemical Engineering Research and Design 2022. [DOI: 10.1016/j.cherd.2022.04.018] [Reference Citation Analysis]
136 Lee J, Jang YS, Han MJ, Kim JY, Lee SY. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses. mBio 2016;7:e00743-16. [PMID: 27302759 DOI: 10.1128/mBio.00743-16] [Cited by in Crossref: 46] [Cited by in F6Publishing: 9] [Article Influence: 7.7] [Reference Citation Analysis]
137 Jang Y, Im JA, Choi SY, Lee JI, Lee SY. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metabolic Engineering 2014;23:165-74. [DOI: 10.1016/j.ymben.2014.03.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 46] [Article Influence: 6.9] [Reference Citation Analysis]
138 Zhou X, Lu XH, Li XH, Xin ZJ, Xie JR, Zhao MR, Wang L, Du WY, Liang JP. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch. Biotechnol Biofuels 2014;7:22. [PMID: 24533663 DOI: 10.1186/1754-6834-7-22] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
139 Shi Z, Huang L, Wu X, Luo L, Xiao K, Cai J, Xu Z. Long-term production of butyric acid through immobilization of Clostridium tyrobutyricum in a moving fibrous-bed bioreactor (MFBB): Production of butyric acid via immobilization of C. tyrobutyricum in MFBB. J Chem Technol Biotechnol 2014;89:1883-9. [DOI: 10.1002/jctb.4271] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]