BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brown ZJ, Yu SJ, Heinrich B, Ma C, Fu Q, Sandhu M, Agdashian D, Zhang Q, Korangy F, Greten TF. Indoleamine 2,3-dioxygenase provides adaptive resistance to immune checkpoint inhibitors in hepatocellular carcinoma. Cancer Immunol Immunother. 2018;67:1305-1315. [PMID: 29959458 DOI: 10.1007/s00262-018-2190-4] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Cerezo M, Rocchi S. Cancer cell metabolic reprogramming: a keystone for the response to immunotherapy. Cell Death Dis 2020;11:964. [PMID: 33177494 DOI: 10.1038/s41419-020-03175-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
2 Shrestha R, Bridle KR, Crawford DHG, Jayachandran A. Immune checkpoint molecules are regulated by transforming growth factor (TGF)-β1-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma. Int J Med Sci 2021;18:2466-79. [PMID: 34104078 DOI: 10.7150/ijms.54239] [Reference Citation Analysis]
3 Wabitsch S, McVey JC, Ma C, Ruf B, Kamenyeva O, McCallen JD, Diggs LP, Heinrich B, Greten TF. Hydroxychloroquine can impair tumor response to anti-PD1 in subcutaneous mouse models. iScience 2021;24:101990. [PMID: 33490900 DOI: 10.1016/j.isci.2020.101990] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
4 Sukowati CHC, El-Khobar KE, Tiribelli C. Immunotherapy against programmed death-1/programmed death ligand 1 in hepatocellular carcinoma: Importance of molecular variations, cellular heterogeneity, and cancer stem cells. World J Stem Cells 2021; 13(7): 795-824 [PMID: 34367478 DOI: 10.4252/wjsc.v13.i7.795] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Marin JJG, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Sanchez-Martin A, Fabris L, Briz O. Mechanisms of Pharmacoresistance in Hepatocellular Carcinoma: New Drugs but Old Problems. Semin Liver Dis 2021. [PMID: 34544160 DOI: 10.1055/s-0041-1735631] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Khodadadi H, Salles ÉL, Alptekin A, Mehrabian D, Rutkowski M, Arbab AS, Yeudall WA, Yu JC, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, Baban B. Inhalant Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor Microenvironment. Cannabis Cannabinoid Res 2021. [PMID: 34918964 DOI: 10.1089/can.2021.0098] [Reference Citation Analysis]
7 Fountzilas C, Evans R, Alaklabi S, Iyer R. Immunotherapy in hepatocellular cancer. Adv Cancer Res 2021;149:295-320. [PMID: 33579426 DOI: 10.1016/bs.acr.2020.12.002] [Reference Citation Analysis]
8 Ala M. The footprint of kynurenine pathway in every cancer: a new target for chemotherapy. Eur J Pharmacol 2021;896:173921. [PMID: 33529725 DOI: 10.1016/j.ejphar.2021.173921] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Cheu JW, Wong CC. Mechanistic Rationales Guiding Combination Hepatocellular Carcinoma Therapies Involving Immune Checkpoint Inhibitors. Hepatology 2021;74:2264-76. [PMID: 33811765 DOI: 10.1002/hep.31840] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
10 Brown ZJ, Hewitt DB, Pawlik TM. Experimental drug treatments for hepatocellular carcinoma: Clinical trial failures 2015 to 2021. Expert Opin Investig Drugs 2022. [PMID: 35580650 DOI: 10.1080/13543784.2022.2079491] [Reference Citation Analysis]
11 Wu MY, Yiang GT, Cheng PW, Chu PY, Li CJ. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. J Clin Med. 2018;7. [PMID: 30104473 DOI: 10.3390/jcm7080213] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
12 Li L, Ye J. Characterization of gut microbiota in patients with primary hepatocellular carcinoma received immune checkpoint inhibitors: A Chinese population-based study. Medicine (Baltimore) 2020;99:e21788. [PMID: 32925716 DOI: 10.1097/MD.0000000000021788] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
13 Heinrich S, Castven D, Galle PR, Marquardt JU. Translational Considerations to Improve Response and Overcome Therapy Resistance in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel) 2020;12:E2495. [PMID: 32899197 DOI: 10.3390/cancers12092495] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Yao Y, Liang H, Fang X, Zhang S, Xing Z, Shi L, Kuang C, Seliger B, Yang Q. What is the prospect of indoleamine 2,3-dioxygenase 1 inhibition in cancer? Extrapolation from the past. J Exp Clin Cancer Res 2021;40:60. [PMID: 33557876 DOI: 10.1186/s13046-021-01847-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Xu L, Ling J, Su C, Su YW, Xu Y, Jiang Z. Emerging Roles on Immunological Effect of Indoleamine 2,3-Dioxygenase in Liver Injuries. Front Med (Lausanne) 2021;8:756435. [PMID: 34869457 DOI: 10.3389/fmed.2021.756435] [Reference Citation Analysis]
16 Zhu MMT, Dancsok AR, Nielsen TO. Indoleamine Dioxygenase Inhibitors: Clinical Rationale and Current Development. Curr Oncol Rep 2019;21. [DOI: 10.1007/s11912-019-0750-1] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
17 Song X, Si Q, Qi R, Liu W, Li M, Guo M, Wei L, Yao Z. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor. Front Immunol 2021;12:800630. [PMID: 35003126 DOI: 10.3389/fimmu.2021.800630] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Kim MS, Park TI, Son SA, Lee HW. Immunohistochemical Features of Indoleamine 2,3-Dioxygenase (IDO) in Various Types of Lymphoma: A Single Center Experience. Diagnostics (Basel) 2020;10:E275. [PMID: 32370297 DOI: 10.3390/diagnostics10050275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Zhou Q, Shi Y, Chen C, Wu F, Chen Z. A narrative review of the roles of indoleamine 2,3-dioxygenase and tryptophan-2,3-dioxygenase in liver diseases. Ann Transl Med 2021;9:174. [PMID: 33569476 DOI: 10.21037/atm-20-3594] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Cheng J, Luan J, Chen P, Kuang X, Jiang P, Zhang R, Chen S, Cheng F, Gou X. Immunosuppressive receptor LILRB1 acts as a potential regulator in hepatocellular carcinoma by integrating with SHP1. Cancer Biomark 2020;28:309-19. [PMID: 32390601 DOI: 10.3233/CBM-190940] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
21 Wang Z, Wu X. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Cancer Med 2020;9:8086-121. [PMID: 32875727 DOI: 10.1002/cam4.3410] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
22 Huang X, Zhang F, Wang X, Liu K. The Role of Indoleamine 2, 3-Dioxygenase 1 in Regulating Tumor Microenvironment. Cancers (Basel) 2022;14:2756. [PMID: 35681736 DOI: 10.3390/cancers14112756] [Reference Citation Analysis]
23 Chisari A, Golán I, Campisano S, Gélabert C, Moustakas A, Sancho P, Caja L. Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types. Front Pharmacol 2021;12:723798. [PMID: 34588983 DOI: 10.3389/fphar.2021.723798] [Reference Citation Analysis]
24 Mo C, Xie S, Zhong W, Zeng T, Huang S, Lai Y, Deng G, Zhou C, Yan W, Chen Y, Huang S, Gao L, Lv Z. Mutual antagonism between indoleamine 2,3-dioxygenase 1 and nuclear factor E2-related factor 2 regulates the maturation status of DCs in liver fibrosis. Free Radical Biology and Medicine 2020;160:178-90. [DOI: 10.1016/j.freeradbiomed.2020.07.038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Krishnamurthy S, Gilot D, Ahn SB, Lam V, Shin JS, Guillemin GJ, Heng B. Involvement of Kynurenine Pathway in Hepatocellular Carcinoma. Cancers (Basel) 2021;13:5180. [PMID: 34680327 DOI: 10.3390/cancers13205180] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Herrera-Rios D, Mughal SS, Teuber-Hanselmann S, Pierscianek D, Sucker A, Jansen P, Schimming T, Klode J, Reifenberger J, Felsberg J, Keyvani K, Brors B, Sure U, Reifenberger G, Schadendorf D, Helfrich I. Macrophages/Microglia Represent the Major Source of Indolamine 2,3-Dioxygenase Expression in Melanoma Metastases of the Brain. Front Immunol 2020;11:120. [PMID: 32117271 DOI: 10.3389/fimmu.2020.00120] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
27 Gallage S, García-beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. Med 2021;2:505-52. [DOI: 10.1016/j.medj.2021.03.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Heinrich B, Brown ZJ, Diggs LP, Vormehr M, Ma C, Subramanyam V, Rosato U, Ruf B, Walz JS, McVey JC, Wabitsch S, Fu Q, Yu SJ, Zhang Q, Lai CW, Sahin U, Greten TF. Steatohepatitis Impairs T-cell-Directed Immunotherapies Against Liver Tumors in Mice. Gastroenterology 2021;160:331-345.e6. [PMID: 33010248 DOI: 10.1053/j.gastro.2020.09.031] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
29 Su CM, Lin SS, Wang HC, Hsu FT, Chung JG, Hsu LC. The inhibitory effect and mechanism of quetiapine on tumor progression in hepatocellular carcinoma in vivo. Environ Toxicol 2021. [PMID: 34626444 DOI: 10.1002/tox.23380] [Reference Citation Analysis]
30 Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother 2019;15:1111-22. [PMID: 30888929 DOI: 10.1080/21645515.2019.1571892] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 13.3] [Reference Citation Analysis]
31 Melaiu O, Lucarini V, Giovannoni R, Fruci D, Gemignani F. News on immune checkpoint inhibitors as immunotherapy strategies in adult and pediatric solid tumors. Semin Cancer Biol 2020:S1044-579X(20)30156-5. [PMID: 32659257 DOI: 10.1016/j.semcancer.2020.07.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
32 Etxeberria I, Bolaños E, Quetglas JI, Gros A, Villanueva A, Palomero J, Sánchez-paulete AR, Piulats JM, Matias-guiu X, Olivera I, Ochoa MC, Labiano S, Garasa S, Rodriguez I, Vidal A, Mancheño U, Hervás-stubbs S, Azpilikueta A, Otano I, Aznar MA, Sanmamed MF, Inogés S, Berraondo P, Teijeira Á, Melero I. Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8+ T Cells. Cancer Cell 2019;36:613-629.e7. [DOI: 10.1016/j.ccell.2019.10.006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 11.3] [Reference Citation Analysis]
33 Nishida N, Kudo M. Immune Phenotype and Immune Checkpoint Inhibitors for the Treatment of Human Hepatocellular Carcinoma. Cancers (Basel) 2020;12:E1274. [PMID: 32443599 DOI: 10.3390/cancers12051274] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
34 Harkus U, Wankell M, Palamuthusingam P, Mcfarlane C, Hebbard L. Immune checkpoint inhibitors in HCC: cellular, molecular and systemic data. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.01.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Ilyas FZ, Beane JD, Pawlik TM. The State of Immunotherapy in Hepatobiliary Cancers. Cells 2021;10:2096. [PMID: 34440865 DOI: 10.3390/cells10082096] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Chinnadurai R, Scandolara R, Alese OB, Arafat D, Ravindranathan D, Farris AB, El-Rayes BF, Gibson G. Correlation Patterns Among B7 Family Ligands and Tryptophan Degrading Enzymes in Hepatocellular Carcinoma. Front Oncol 2020;10:1632. [PMID: 33014820 DOI: 10.3389/fonc.2020.01632] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Karki K, Wright GA, Mohankumar K, Jin UH, Zhang XH, Safe S. A Bis-Indole-Derived NR4A1 Antagonist Induces PD-L1 Degradation and Enhances Antitumor Immunity. Cancer Res 2020;80:1011-23. [PMID: 31911554 DOI: 10.1158/0008-5472.CAN-19-2314] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
38 Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021;18:525-43. [PMID: 33850328 DOI: 10.1038/s41575-021-00438-0] [Cited by in Crossref: 127] [Cited by in F6Publishing: 103] [Article Influence: 127.0] [Reference Citation Analysis]
39 Zahm CD, Johnson LE, McNeel DG. Increased indoleamine 2,3-dioxygenase activity and expression in prostate cancer following targeted immunotherapy. Cancer Immunol Immunother 2019;68:1661-9. [PMID: 31606777 DOI: 10.1007/s00262-019-02394-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
40 Makaremi S, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Sgambato A, Ghorbaninezhad F, Safarpour H, Argentiero A, Brunetti O, Bernardini R, Silvestris N, Baradaran B. Immune Checkpoint Inhibitors in Colorectal Cancer: Challenges and Future Prospects. Biomedicines 2021;9:1075. [PMID: 34572263 DOI: 10.3390/biomedicines9091075] [Reference Citation Analysis]
41 Cheng J, Gao X, Zhang X, Guo H, Chen S, Gou X. Leukocyte immunoglobulin-like receptor subfamily B member 1 potentially acts as a diagnostic and prognostic target in certain subtypes of adenocarcinoma. Med Hypotheses 2020;144:109863. [PMID: 32534335 DOI: 10.1016/j.mehy.2020.109863] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Hou J, Zhang H, Sun B, Karin M. The immunobiology of hepatocellular carcinoma in humans and mice: Basic concepts and therapeutic implications. J Hepatol 2020;72:167-82. [PMID: 31449859 DOI: 10.1016/j.jhep.2019.08.014] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 15.7] [Reference Citation Analysis]
43 Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Letters 2020;470:8-17. [DOI: 10.1016/j.canlet.2019.12.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 43] [Article Influence: 16.5] [Reference Citation Analysis]
44 Ribas V, de la Rosa LC, Robles D, Núñez S, Segalés P, Insausti-Urkia N, Solsona-Vilarrasa E, Fernández-Checa JC, García-Ruiz C. Dietary and Genetic Cholesterol Loading Rather Than Steatosis Promotes Liver Tumorigenesis and NASH-Driven HCC. Cancers (Basel) 2021;13:4091. [PMID: 34439245 DOI: 10.3390/cancers13164091] [Reference Citation Analysis]
45 Cao L, Prithviraj P, Shrestha R, Sharma R, Anaka M, Bridle KR, Kannourakis G, Crawford DHG, Jayachandran A. Prognostic Role of Immune Checkpoint Regulators in Cholangiocarcinoma: A Pilot Study. J Clin Med 2021;10:2191. [PMID: 34069452 DOI: 10.3390/jcm10102191] [Reference Citation Analysis]
46 Abdulla M, Alexsson A, Sundström C, Ladenvall C, Mansouri L, Lindskog C, Berglund M, Cavelier L, Enblad G, Hollander P, Amini RM. PD-L1 and IDO1 are potential targets for treatment in patients with primary diffuse large B-cell lymphoma of the CNS. Acta Oncol 2021;60:531-8. [PMID: 33579170 DOI: 10.1080/0284186X.2021.1881161] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
47 Li S, Han X, Lyu N, Xie Q, Deng H, Mu L, Pan T, Huang X, Wang X, Shi Y, Zhao M. Mechanism and prognostic value of indoleamine 2,3-dioxygenase 1 expressed in hepatocellular carcinoma. Cancer Sci 2018;109:3726-36. [PMID: 30264546 DOI: 10.1111/cas.13811] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
48 Zhou J, Wang W, Li Q. Potential therapeutic targets in the tumor microenvironment of hepatocellular carcinoma: reversing the protumor effect of tumor-associated macrophages. J Exp Clin Cancer Res 2021;40:73. [PMID: 33596985 DOI: 10.1186/s13046-021-01873-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
49 Kazemi MH, Najafi A, Karami J, Ghazizadeh F, Yousefi H, Falak R, Safari E. Immune and metabolic checkpoints blockade: Dual wielding against tumors. Int Immunopharmacol 2021;94:107461. [PMID: 33592403 DOI: 10.1016/j.intimp.2021.107461] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
50 Refolo MG, Messa C, Guerra V, Carr BI, D'Alessandro R. Inflammatory Mechanisms of HCC Development. Cancers (Basel) 2020;12:E641. [PMID: 32164265 DOI: 10.3390/cancers12030641] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
51 Xia Y, Brown ZJ, Huang H, Tsung A. Metabolic reprogramming of immune cells: Shaping the tumor microenvironment in hepatocellular carcinoma. Cancer Med 2021. [PMID: 34390203 DOI: 10.1002/cam4.4177] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Zhou B, Gao Y, Zhang P, Chu Q. Acquired Resistance to Immune Checkpoint Blockades: The Underlying Mechanisms and Potential Strategies. Front Immunol 2021;12:693609. [PMID: 34194441 DOI: 10.3389/fimmu.2021.693609] [Reference Citation Analysis]
53 Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2020;9:1777625. [PMID: 32934882 DOI: 10.1080/2162402X.2020.1777625] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 12.5] [Reference Citation Analysis]
54 Gao Y, Ouyang Z, Yang C, Song C, Jiang C, Song S, Shen M, Shi X. Overcoming T Cell Exhaustion via Immune Checkpoint Modulation with a Dendrimer-Based Hybrid Nanocomplex. Adv Healthc Mater 2021;10:e2100833. [PMID: 34212538 DOI: 10.1002/adhm.202100833] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]