BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, Duran E, Solana R, Tarazona R. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother 2009;58:1517-26. [PMID: 19259667 DOI: 10.1007/s00262-009-0682-y] [Cited by in Crossref: 83] [Cited by in F6Publishing: 77] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Josefsson SE, Huse K, Kolstad A, Beiske K, Pende D, Steen CB, Inderberg EM, Lingjærde OC, Østenstad B, Smeland EB, Levy R, Irish JM, Myklebust JH. T Cells Expressing Checkpoint Receptor TIGIT Are Enriched in Follicular Lymphoma Tumors and Characterized by Reversible Suppression of T-cell Receptor Signaling. Clin Cancer Res 2018;24:870-81. [PMID: 29217528 DOI: 10.1158/1078-0432.CCR-17-2337] [Cited by in Crossref: 39] [Cited by in F6Publishing: 23] [Article Influence: 7.8] [Reference Citation Analysis]
2 Joller N, Peters A, Anderson AC, Kuchroo VK. Immune checkpoints in central nervous system autoimmunity. Immunol Rev 2012;248:122-39. [PMID: 22725958 DOI: 10.1111/j.1600-065X.2012.01136.x] [Cited by in Crossref: 64] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
3 Tarazona R, Lopez-Sejas N, Guerrero B, Hassouneh F, Valhondo I, Pera A, Sanchez-Correa B, Pastor N, Duran E, Alonso C, Solana R. Current progress in NK cell biology and NK cell-based cancer immunotherapy. Cancer Immunol Immunother 2020;69:879-99. [PMID: 32130453 DOI: 10.1007/s00262-020-02532-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
4 Wang L, Qin W, Huo YJ, Li X, Shi Q, Rasko JEJ, Janin A, Zhao WL. Advances in targeted therapy for malignant lymphoma. Signal Transduct Target Ther 2020;5:15. [PMID: 32296035 DOI: 10.1038/s41392-020-0113-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
5 Campillo JA, López-Hernández R, Martínez-Banaclocha H, Bolarín JM, Gimeno L, Mrowiec A, López M, Las Heras B, Minguela A, Moya-Quiles MR, Legáz I, Frías-Iniesta JF, García-Alonso AM, Álvarez-López MR, Martínez-Escribano JA, Muro M. MHC class I chain-related gene a diversity in patients with cutaneous malignant melanoma from southeastern Spain. Dis Markers 2015;2015:831864. [PMID: 25838620 DOI: 10.1155/2015/831864] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
6 Du X, de Almeida P, Manieri N, de Almeida Nagata D, Wu TD, Harden Bowles K, Arumugam V, Schartner J, Cubas R, Mittman S, Javinal V, Anderson KR, Warming S, Grogan JL, Chiang EY. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A 2018;115:E11731-40. [PMID: 30504141 DOI: 10.1073/pnas.1814052115] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
7 Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 2012;24:331-41. [PMID: 22560929 DOI: 10.1016/j.smim.2012.04.008] [Cited by in Crossref: 318] [Cited by in F6Publishing: 265] [Article Influence: 31.8] [Reference Citation Analysis]
8 DelaRosa O, Sánchez-Correa B, Morgado S, Ramírez C, del Río B, Menta R, Lombardo E, Tarazona R, Casado JG. Human adipose-derived stem cells impair natural killer cell function and exhibit low susceptibility to natural killer-mediated lysis. Stem Cells Dev. 2012;21:1333-1343. [PMID: 21867426 DOI: 10.1089/scd.2011.0139] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 5.2] [Reference Citation Analysis]
9 Martinez M, Kim S, St Jean N, O'Brien S, Lian L, Sun J, Verona RI, Moon E. Addition of anti-TIM3 or anti-TIGIT Antibodies to anti-PD1 Blockade Augments Human T cell Adoptive Cell Transfer. Oncoimmunology 2021;10:1873607. [PMID: 33537176 DOI: 10.1080/2162402X.2021.1873607] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Campillo JA, Legaz I, López-Álvarez MR, Bolarín JM, Las Heras B, Muro M, Minguela A, Moya-Quiles MR, Blanco-García R, Martínez-Banaclocha H, García-Alonso AM, Alvarez-López MR, Martínez-Escribano JA. KIR gene variability in cutaneous malignant melanoma: influence of KIR2D/HLA-C pairings on disease susceptibility and prognosis. Immunogenetics 2013;65:333-43. [PMID: 23370861 DOI: 10.1007/s00251-013-0682-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
11 Guia S, Fenis A, Vivier E, Narni-mancinelli E. Activating and inhibitory receptors expressed on innate lymphoid cells. Semin Immunopathol 2018;40:331-41. [DOI: 10.1007/s00281-018-0685-x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
12 Tahmasebi S, Elahi R, Esmaeilzadeh A. Solid Tumors Challenges and New Insights of CAR T Cell Engineering. Stem Cell Rev and Rep 2019;15:619-36. [DOI: 10.1007/s12015-019-09901-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
13 Lee H, Da Silva IP, Palendira U, Scolyer RA, Long GV, Wilmott JS. Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers (Basel) 2021;13:1363. [PMID: 33802954 DOI: 10.3390/cancers13061363] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Shimanovsky A, Jethava A, Dasanu CA. Immune alterations in malignant melanoma and current immunotherapy concepts. Expert Opin Biol Ther 2013;13:1413-27. [PMID: 23930800 DOI: 10.1517/14712598.2013.827658] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
15 Pisibon C, Ouertani A, Bertolotto C, Ballotti R, Cheli Y. Immune Checkpoints in Cancers: From Signaling to the Clinic. Cancers (Basel) 2021;13:4573. [PMID: 34572799 DOI: 10.3390/cancers13184573] [Reference Citation Analysis]
16 Joosse ME, Nederlof I, Walker LSK, Samsom JN. Tipping the balance: inhibitory checkpoints in intestinal homeostasis. Mucosal Immunol 2019;12:21-35. [PMID: 30498201 DOI: 10.1038/s41385-018-0113-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
17 Grier JT, Forbes LR, Monaco-Shawver L, Oshinsky J, Atkinson TP, Moody C, Pandey R, Campbell KS, Orange JS. Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest 2012;122:3769-80. [PMID: 23006327 DOI: 10.1172/JCI64837] [Cited by in Crossref: 99] [Cited by in F6Publishing: 63] [Article Influence: 9.9] [Reference Citation Analysis]
18 Sun Y, Luo J, Chen Y, Cui J, Lei Y, Cui Y, Jiang N, Jiang W, Chen L, Chen Y, Kuang Y, Tang K, Ke Z. Combined evaluation of the expression status of CD155 and TIGIT plays an important role in the prognosis of LUAD (lung adenocarcinoma). Int Immunopharmacol 2020;80:106198. [PMID: 31954274 DOI: 10.1016/j.intimp.2020.106198] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
19 Tarazona R, Duran E, Solana R. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy. Front Immunol 2015;6:649. [PMID: 26779186 DOI: 10.3389/fimmu.2015.00649] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
20 Harjunpää H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol 2020;200:108-19. [PMID: 31828774 DOI: 10.1111/cei.13407] [Cited by in Crossref: 78] [Cited by in F6Publishing: 68] [Article Influence: 26.0] [Reference Citation Analysis]
21 Wang M, Liu Y, Cheng Y, Wei Y, Wei X. Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer. 2019;1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
22 Pérez-martínez A, de Prada Vicente I, Fernández L, González-vicent M, Valentín J, Martín R, Maxwell H, Sevilla J, Vicario JL, Díaz MÁ. Natural killer cells can exert a graft-vs-tumor effect in haploidentical stem cell transplantation for pediatric solid tumors. Experimental Hematology 2012;40:882-891.e1. [DOI: 10.1016/j.exphem.2012.07.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
23 Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J. TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer. Front Immunol 2021;12:699895. [PMID: 34367161 DOI: 10.3389/fimmu.2021.699895] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 López-Cobo S, Pieper N, Campos-Silva C, García-Cuesta EM, Reyburn HT, Paschen A, Valés-Gómez M. Impaired NK cell recognition of vemurafenib-treated melanoma cells is overcome by simultaneous application of histone deacetylase inhibitors. Oncoimmunology 2018;7:e1392426. [PMID: 29308322 DOI: 10.1080/2162402X.2017.1392426] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 6.2] [Reference Citation Analysis]
25 Hargadon KM. Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints. Clin Transl Med 2020;10:374-411. [PMID: 32508018 DOI: 10.1002/ctm2.37] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
26 Deleuze A, Saout J, Dugay F, Peyronnet B, Mathieu R, Verhoest G, Bensalah K, Crouzet L, Laguerre B, Belaud-Rotureau MA, Rioux-Leclercq N, Kammerer-Jacquet SF. Immunotherapy in Renal Cell Carcinoma: The Future Is Now. Int J Mol Sci 2020;21:E2532. [PMID: 32260578 DOI: 10.3390/ijms21072532] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
27 Liu S, Sun L, Wang C, Cui Y, Ling Y, Li T, Lin F, Fu W, Ding M, Zhang S, Lei C, Hu S. Treatment of murine lupus with TIGIT-Ig. Clinical Immunology 2019;203:72-80. [DOI: 10.1016/j.clim.2019.04.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
28 Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity. 2016;44:989-1004. [PMID: 27192565 DOI: 10.1016/j.immuni.2016.05.001] [Cited by in Crossref: 783] [Cited by in F6Publishing: 754] [Article Influence: 156.6] [Reference Citation Analysis]
29 Wennerberg E, Kremer V, Childs R, Lundqvist A. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol Immunother 2015;64:225-35. [DOI: 10.1007/s00262-014-1629-5] [Cited by in Crossref: 79] [Cited by in F6Publishing: 76] [Article Influence: 9.9] [Reference Citation Analysis]
30 Tsai HF, Hsu PN. Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. J Biomed Sci 2017;24:35. [PMID: 28545567 DOI: 10.1186/s12929-017-0341-0] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
31 Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Jafarpour R, Shojaei Z, Motallebnezhad M. Immune checkpoints and cancer development: Therapeutic implications and future directions. Pathol Res Pract 2021;223:153485. [PMID: 34022684 DOI: 10.1016/j.prp.2021.153485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Azzazi MO, Hegab HM, El-Ghammaz AMS, Saber HM, Afifi YA. Impact of serum soluble CD155 level at diagnosis on interim response to CHOP with or without rituximab in diffuse large B cell lymphoma. Clin Exp Med 2021. [PMID: 34216302 DOI: 10.1007/s10238-021-00741-9] [Reference Citation Analysis]
33 Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S. Melanoma Cells Control Antimelanoma CTL Responses via Interaction between TIGIT and CD155 in the Effector Phase. Journal of Investigative Dermatology 2016;136:255-63. [DOI: 10.1038/jid.2015.404] [Cited by in Crossref: 82] [Cited by in F6Publishing: 40] [Article Influence: 13.7] [Reference Citation Analysis]
34 Morgado S, Sanchez-correa B, Casado JG, Duran E, Gayoso I, Labella F, Solana R, Tarazona R. NK Cell Recognition and Killing of Melanoma Cells Is Controlled by Multiple Activating Receptor-Ligand Interactions. J Innate Immun 2011;3:365-73. [DOI: 10.1159/000328505] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
35 Yin X, Liu T, Wang Z, Ma M, Lei J, Zhang Z, Fu S, Fu Y, Hu Q, Ding H, Han X, Xu J, Shang H, Jiang Y. Expression of the Inhibitory Receptor TIGIT Is Up-Regulated Specifically on NK Cells With CD226 Activating Receptor From HIV-Infected Individuals. Front Immunol 2018;9:2341. [PMID: 30364127 DOI: 10.3389/fimmu.2018.02341] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
36 Jacquelot N, Pitt JM, Enot DP, Roberti MP, Duong CPM, Rusakiewicz S, Eggermont AM, Zitvogel L. Immune biomarkers for prognosis and prediction of responses to immune checkpoint blockade in cutaneous melanoma. Oncoimmunology 2017;6:e1299303. [PMID: 28919986 DOI: 10.1080/2162402X.2017.1299303] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
37 Konjević G, Mirjačić Martinović K, Vuletić A, Radenković S. Novel aspects of in vitro IL-2 or IFN-α enhanced NK cytotoxicity of healthy individuals based on NKG2D and CD161 NK cell receptor induction. Biomed Pharmacother 2010;64:663-71. [PMID: 20800424 DOI: 10.1016/j.biopha.2010.06.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
38 Lee WJ, Lee YJ, Choi ME, Yun KA, Won CH, Lee MW, Choi JH, Chang SE. Expression of lymphocyte-activating gene 3 and T-cell immunoreceptor with immunoglobulin and ITIM domains in cutaneous melanoma and their correlation with programmed cell death 1 expression in tumor-infiltrating lymphocytes. Journal of the American Academy of Dermatology 2019;81:219-27. [DOI: 10.1016/j.jaad.2019.03.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
39 Walton RW, Brown MC, Sacco MT, Gromeier M. Engineered Oncolytic Poliovirus PVSRIPO Subverts MDA5-Dependent Innate Immune Responses in Cancer Cells. J Virol 2018;92:e00879-18. [PMID: 29997212 DOI: 10.1128/JVI.00879-18] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
40 Joller N, Kuchroo VK. Tim-3, Lag-3, and TIGIT. Curr Top Microbiol Immunol 2017;410:127-56. [PMID: 28900677 DOI: 10.1007/82_2017_62] [Cited by in Crossref: 24] [Cited by in F6Publishing: 39] [Article Influence: 8.0] [Reference Citation Analysis]
41 Chen X, Song X, Li K, Zhang T. FcγR-Binding Is an Important Functional Attribute for Immune Checkpoint Antibodies in Cancer Immunotherapy. Front Immunol 2019;10:292. [PMID: 30863404 DOI: 10.3389/fimmu.2019.00292] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 12.7] [Reference Citation Analysis]
42 Tarazona R, Delgado E, Guarnizo M, Roncero R, Morgado S, Sánchez-correa B, Gordillo J, Dejulián J, Casado J. Human prostasomes express CD48 and interfere with NK cell function. Immunobiology 2011;216:41-6. [DOI: 10.1016/j.imbio.2010.03.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.5] [Reference Citation Analysis]
43 Bevelacqua V, Bevelacqua Y, Candido S, Skarmoutsou E, Amoroso A, Guarneri C, Strazzanti A, Gangemi P, Mazzarino MC, D'Amico F, McCubrey JA, Libra M, Malaponte G. Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget. 2012;3:882-892. [PMID: 22929570 DOI: 10.18632/oncotarget.594] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 5.9] [Reference Citation Analysis]
44 Bowers JR, Readler JM, Sharma P, Excoffon KJDA. Poliovirus Receptor: More than a simple viral receptor. Virus Res 2017;242:1-6. [PMID: 28870470 DOI: 10.1016/j.virusres.2017.09.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
45 Burke S, Lakshmikanth T, Colucci F, Carbone E. New views on natural killer cell-based immunotherapy for melanoma treatment. Trends Immunol 2010;31:339-45. [PMID: 20655806 DOI: 10.1016/j.it.2010.06.003] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 4.8] [Reference Citation Analysis]
46 Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R, Tarazona R. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol 2012;90:109-15. [PMID: 21383766 DOI: 10.1038/icb.2011.15] [Cited by in Crossref: 129] [Cited by in F6Publishing: 116] [Article Influence: 11.7] [Reference Citation Analysis]
47 Josefsson SE, Beiske K, Blaker YN, Førsund MS, Holte H, Østenstad B, Kimby E, Köksal H, Wälchli S, Bai B, Smeland EB, Levy R, Kolstad A, Huse K, Myklebust JH. TIGIT and PD-1 Mark Intratumoral T Cells with Reduced Effector Function in B-cell Non-Hodgkin Lymphoma. Cancer Immunol Res 2019;7:355-62. [PMID: 30659053 DOI: 10.1158/2326-6066.CIR-18-0351] [Cited by in F6Publishing: 29] [Reference Citation Analysis]
48 Hervieu A, Rébé C, Végran F, Chalmin F, Bruchard M, Vabres P, Apetoh L, Ghiringhelli F, Mignot G. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth. J Invest Dermatol 2013;133:499-508. [PMID: 22951720 DOI: 10.1038/jid.2012.273] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 5.0] [Reference Citation Analysis]
49 van Vliet AA, Georgoudaki AM, Raimo M, de Gruijl TD, Spanholtz J. Adoptive NK Cell Therapy: A Promising Treatment Prospect for Metastatic Melanoma. Cancers (Basel) 2021;13:4722. [PMID: 34572949 DOI: 10.3390/cancers13184722] [Reference Citation Analysis]
50 Helfrich I, Singer BB. Size Matters: The Functional Role of the CEACAM1 Isoform Signature and Its Impact for NK Cell-Mediated Killing in Melanoma. Cancers (Basel) 2019;11:E356. [PMID: 30871206 DOI: 10.3390/cancers11030356] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
51 Obiedat A, Seidel E, Mahameed M, Berhani O, Tsukerman P, Voutetakis K, Chatziioannou A, McMahon M, Avril T, Chevet E, Mandelboim O, Tirosh B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1. FASEB J 2019;33:3481-95. [PMID: 30452881 DOI: 10.1096/fj.201801350RR] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
52 Wang S, Li H, Zhang F, Jiao Y, Xie Q, Zhang Z, Li X. Expression of TIGIT in splenic and circulatory T cells from mice acutely infected with Toxoplasma gondii. Parasite 2021;28:13. [PMID: 33629951 DOI: 10.1051/parasite/2021010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Zhang C, Wang Y, Xun X, Wang S, Xiang X, Hu S, Cheng Q, Guo J, Li Z, Zhu J. TIGIT Can Exert Immunosuppressive Effects on CD8+ T Cells by the CD155/TIGIT Signaling Pathway for Hepatocellular Carcinoma In Vitro. J Immunother 2020;43:236-43. [PMID: 32804915 DOI: 10.1097/CJI.0000000000000330] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
54 Davar D, Zarour HM. Immunological Targets for Immunotherapy: Inhibitory T Cell Receptors. Methods Mol Biol 2020;2055:23-60. [PMID: 31502146 DOI: 10.1007/978-1-4939-9773-2_2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
55 Schramm HM. Should EMT of Cancer Cells Be Understood as Epithelial-Myeloid Transition? J Cancer. 2014;5:125-132. [PMID: 24494030 DOI: 10.7150/jca.8242] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
56 Zhou X, Du J, Zhou X, Niu X, Li W, Chen C, Lv S, Wu A, Gou S, Sun Y, Zhai W, Qiu L, Qi Y, Zhao W, Gao Y. Computer-aided design of PVR mutants with enhanced binding affinity to TIGIT. Cell Commun Signal 2021;19:12. [PMID: 33557880 DOI: 10.1186/s12964-020-00701-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Grapin M, Richard C, Limagne E, Boidot R, Morgand V, Bertaut A, Derangere V, Laurent PA, Thibaudin M, Fumet JD, Crehange G, Ghiringhelli F, Mirjolet C. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination. J Immunother Cancer. 2019;7:160. [PMID: 31238970 DOI: 10.1186/s40425-019-0634-9] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
58 Boustani J, Grapin M, Laurent PA, Apetoh L, Mirjolet C. The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response. Cancers (Basel) 2019;11:E860. [PMID: 31226866 DOI: 10.3390/cancers11060860] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
59 Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, Chen TH, Maurer M, Korman AJ. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest. 2015;125:2046-2058. [PMID: 25866972 DOI: 10.1172/jci80445] [Cited by in Crossref: 345] [Cited by in F6Publishing: 219] [Article Influence: 49.3] [Reference Citation Analysis]
60 Hodgins JJ, Khan ST, Park MM, Auer RC, Ardolino M. Killers 2.0: NK cell therapies at the forefront of cancer control. J Clin Invest 2019;129:3499-510. [PMID: 31478911 DOI: 10.1172/JCI129338] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 28.0] [Reference Citation Analysis]
61 Shirasuna K, Koelsch G, Seidel-Dugan C, Salmeron A, Steiner P, Winston WM, Brodkin HR, Nirschl CJ, Abbott S, Kinugasa F, Sugahara S, Ohori M, Takeuchi M, Hicklin DJ, Yoshida T. Characterization of ASP8374, a fully-human, antagonistic anti-TIGIT monoclonal antibody. Cancer Treat Res Commun 2021;28:100433. [PMID: 34273876 DOI: 10.1016/j.ctarc.2021.100433] [Reference Citation Analysis]
62 Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK, Anderson AC. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 2015;125:4053-62. [PMID: 26413872 DOI: 10.1172/JCI81187] [Cited by in Crossref: 257] [Cited by in F6Publishing: 155] [Article Influence: 36.7] [Reference Citation Analysis]
63 Park J, Kwon M, Shin EC. Immune checkpoint inhibitors for cancer treatment. Arch Pharm Res. 2016;39:1577-1587. [PMID: 27770382 DOI: 10.1007/s12272-016-0850-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
64 Bitar L, Schumann U, König R, Zipp F, Schmidt MHH. Targeting Immune Modulators in Glioma While Avoiding Autoimmune Conditions. Cancers (Basel) 2021;13:3524. [PMID: 34298735 DOI: 10.3390/cancers13143524] [Reference Citation Analysis]
65 Tarazona R, Sanchez-Correa B, Casas-Avilés I, Campos C, Pera A, Morgado S, López-Sejas N, Hassouneh F, Bergua JM, Arcos MJ, Bañas H, Casado JG, Durán E, Labella F, Solana R. Immunosenescence: limitations of natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother 2017;66:233-45. [PMID: 27530271 DOI: 10.1007/s00262-016-1882-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
66 Folli C, Chiappori A, Pellegrini M, Garelli V, Riccio AM, De Ferrari L, Braido F, Canonica GW. COPD treatment: real life and experimental effects on peripheral NK cells, their receptors expression and their IFN-γ secretion. Pulm Pharmacol Ther 2012;25:371-6. [PMID: 22766315 DOI: 10.1016/j.pupt.2012.06.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
67 Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel) 2020;12:E952. [PMID: 32290478 DOI: 10.3390/cancers12040952] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
68 Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11:39. [PMID: 29544515 DOI: 10.1186/s13045-018-0582-8] [Cited by in Crossref: 285] [Cited by in F6Publishing: 280] [Article Influence: 71.3] [Reference Citation Analysis]
69 Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 2018;95:77-99. [PMID: 30174217 DOI: 10.1016/j.jaut.2018.08.007] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 16.0] [Reference Citation Analysis]
70 Sanchez-Correa B, Valhondo I, Hassouneh F, Lopez-Sejas N, Pera A, Bergua JM, Arcos MJ, Bañas H, Casas-Avilés I, Durán E, Alonso C, Solana R, Tarazona R. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer Immunotherapy. Cancers (Basel) 2019;11:E877. [PMID: 31234588 DOI: 10.3390/cancers11060877] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 23.0] [Reference Citation Analysis]
71 Davis ZB, Vallera DA, Miller JS, Felices M. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Semin Immunol 2017;31:64-75. [PMID: 28882429 DOI: 10.1016/j.smim.2017.07.011] [Cited by in Crossref: 63] [Cited by in F6Publishing: 68] [Article Influence: 12.6] [Reference Citation Analysis]
72 Chandramohan V, Bryant JD, Piao H, Keir ST, Lipp ES, Lefaivre M, Perkinson K, Bigner DD, Gromeier M, McLendon RE. Validation of an Immunohistochemistry Assay for Detection of CD155, the Poliovirus Receptor, in Malignant Gliomas. Arch Pathol Lab Med 2017;141:1697-704. [PMID: 28829151 DOI: 10.5858/arpa.2016-0580-OA] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 4.4] [Reference Citation Analysis]
73 Sanchez-Correa B, Lopez-Sejas N, Duran E, Labella F, Alonso C, Solana R, Tarazona R. Modulation of NK cells with checkpoint inhibitors in the context of cancer immunotherapy. Cancer Immunol Immunother 2019;68:861-70. [PMID: 30953117 DOI: 10.1007/s00262-019-02336-6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
74 Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, Bengochea ML, Duran E, Solana R, Tarazona R. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother 2011;60:1195-205. [PMID: 21644031 DOI: 10.1007/s00262-011-1050-2] [Cited by in Crossref: 88] [Cited by in F6Publishing: 74] [Article Influence: 8.0] [Reference Citation Analysis]
75 Gimeno L, Martínez-Banaclocha H, Bernardo MV, Bolarin JM, Marín L, López-Hernández R, López-Alvarez MR, Moya-Quiles MR, Muro M, Frias-Iniesta JF, Martínez-Escribano J, Alvarez-López MR, Minguela A, Campillo JA. NKG2D Polymorphism in Melanoma Patients from Southeastern Spain. Cancers (Basel) 2019;11:E438. [PMID: 30925758 DOI: 10.3390/cancers11040438] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
76 Garofalo C, De Marco C, Cristiani CM. NK Cells in the Tumor Microenvironment as New Potential Players Mediating Chemotherapy Effects in Metastatic Melanoma. Front Oncol 2021;11:754541. [PMID: 34712615 DOI: 10.3389/fonc.2021.754541] [Reference Citation Analysis]
77 Cifaldi L, Doria M, Cotugno N, Zicari S, Cancrini C, Palma P, Rossi P. DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci 2019;20:E3715. [PMID: 31366013 DOI: 10.3390/ijms20153715] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]