BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li J, Li S, Yang CF. Electrochemical Biosensors for Cancer Biomarker Detection. Electroanalysis 2012;24:2213-29. [DOI: 10.1002/elan.201200447] [Cited by in Crossref: 71] [Cited by in F6Publishing: 53] [Article Influence: 7.1] [Reference Citation Analysis]
Number Citing Articles
1 Agrahari S, Kumar Gautam R, Kumar Singh A, Tiwari I. Nanoscale materials-based hybrid frameworks modified electrochemical biosensors for early cancer diagnostics: An overview of current trends and challenges. Microchemical Journal 2022;172:106980. [DOI: 10.1016/j.microc.2021.106980] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
2 Zheng Y, Li J, Zhou B, Ian H, Shao H. Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art. Biosensors and Bioelectronics 2021;178:113021. [DOI: 10.1016/j.bios.2021.113021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
3 Yang R, Hao Q, Lu Q, Meng F, Niu J, Liu Z, Niu G, Yu X. Fabrication of small-structure red-emissive fluorescent probes for plasma membrane enables quantification of nuclear to cytoplasmic ratio in live cells and tissues. Spectrochim Acta A Mol Biomol Spectrosc 2021;249:119338. [PMID: 33360060 DOI: 10.1016/j.saa.2020.119338] [Reference Citation Analysis]
4 Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. Adv Therap 2021;4:2000248. [DOI: 10.1002/adtp.202000248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
5 Solhi E, Hasanzadeh M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay. Biomed Pharmacother 2020;132:110849. [PMID: 33068928 DOI: 10.1016/j.biopha.2020.110849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
6 Amarnath CA, Sawant SN. Polyaniline Based Electrochemical Biosensor for α‐Fetoprotein Detection Using Bio‐functionalized Nanoparticles as Detection Probe. Electroanalysis 2020;32:2415-21. [DOI: 10.1002/elan.202060219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Svalova TS, Saigushkina AA, Medvedeva MV, Malysheva NN, Zhdanovskikh VO, Kozitsin IV, Kozitsina AN. Modification of Gold Electrode via Electrografting of the in situ Generated 3‐Carboxy‐1,2,4‐triazoldiazonium Salt for Label‐free Determination of Carcinoembryonic Antigen. Electroanalysis 2020;32:698-705. [DOI: 10.1002/elan.201900457] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Moreira FT, Sales MGF. Autonomous biosensing device merged with photovoltaic technology for cancer biomarker detection. Journal of Electroanalytical Chemistry 2019;855:113611. [DOI: 10.1016/j.jelechem.2019.113611] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
9 Ramanathan S, Gopinath SC, Md. Arshad M, Poopalan P. Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: Comprehensive assessment on current diagnostics. Biosensors and Bioelectronics 2019;141:111434. [DOI: 10.1016/j.bios.2019.111434] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
10 Qian L, Li Q, Baryeh K, Qiu W, Li K, Zhang J, Yu Q, Xu D, Liu W, Brand RE, Zhang X, Chen W, Liu G. Biosensors for early diagnosis of pancreatic cancer: a review. Transl Res 2019;213:67-89. [PMID: 31442419 DOI: 10.1016/j.trsl.2019.08.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 35] [Article Influence: 9.7] [Reference Citation Analysis]
11 Wang Y, Yang L, Li N, Sun C, Xia Y, Yuan L, Lu J, Liu F, Xing X. A versatile assay for alkaline phosphatase detection based on thymine-HgII-thymine structure generation mediated by TdT. Talanta 2019;195:566-72. [DOI: 10.1016/j.talanta.2018.11.061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
12 Kalyoncu D, Buyuksunetci YT, Anık Ü. Development of a Sandwich Immunosensor for concurrent detection of carcinoembryonic antigen (CEA), vascular endothelial growth factor (VEGF) and α-fetoprotein (AFP) biomarkers. Mater Sci Eng C Mater Biol Appl 2019;101:88-91. [PMID: 31029367 DOI: 10.1016/j.msec.2019.03.079] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
13 Wongkaew N. Nanofiber-integrated miniaturized systems: an intelligent platform for cancer diagnosis. Anal Bioanal Chem 2019;411:4251-64. [PMID: 30706075 DOI: 10.1007/s00216-019-01589-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
14 Silva MLS. Lectin-based biosensors as analytical tools for clinical oncology. Cancer Lett 2018;436:63-74. [PMID: 30125611 DOI: 10.1016/j.canlet.2018.08.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
15 Shoja Y, Kermanpur A, Karimzadeh F. Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide /functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite electrode. Biosensors and Bioelectronics 2018;113:108-15. [DOI: 10.1016/j.bios.2018.04.013] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
16 Bravo I, Revenga-parra M, Weber K, Popp J, Pariente F, Lorenzo E. One-step reduced/quinone functionalized graphene oxide as reagentless lactate biosensing platform. Sensors and Actuators B: Chemical 2018;267:533-41. [DOI: 10.1016/j.snb.2018.03.170] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
17 Li Q, Jin J, Lou F, Xiao Y, Zhu J, Zhang S. Carbon Nanomaterials-based Electrochemical Immunoassay with β-Galactosidase as Labels for Carcinoembryonic Antigen. Electroanalysis 2018;30:852-8. [DOI: 10.1002/elan.201700642] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 González-fernández E, Staderini M, Avlonitis N, Murray AF, Mount AR, Bradley M. Effect of spacer length on the performance of peptide-based electrochemical biosensors for protease detection. Sensors and Actuators B: Chemical 2018;255:3040-6. [DOI: 10.1016/j.snb.2017.09.128] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
19 Farzin L, Shamsipur M. Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. Journal of Pharmaceutical and Biomedical Analysis 2018;147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
20 Babamiri B, Hallaj R, Salimi A. Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru(bpy)32+ and PAMAM-CdTe@CdS nanocomposite. Biosensors and Bioelectronics 2018;99:353-60. [DOI: 10.1016/j.bios.2017.07.062] [Cited by in Crossref: 78] [Cited by in F6Publishing: 85] [Article Influence: 19.5] [Reference Citation Analysis]
21 Felix FS, Angnes L. Electrochemical immunosensors - A powerful tool for analytical applications. Biosens Bioelectron 2018;102:470-8. [PMID: 29182930 DOI: 10.1016/j.bios.2017.11.029] [Cited by in Crossref: 206] [Cited by in F6Publishing: 228] [Article Influence: 41.2] [Reference Citation Analysis]
22 Devillers M, Ahmad L, Korri-youssoufi H, Salmon L. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma. Biosensors and Bioelectronics 2017;96:178-85. [DOI: 10.1016/j.bios.2017.04.031] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
23 Li W, Ma Z. Conductive catalytic redox hydrogel composed of aniline and vinyl-ferrocene for ultrasensitive detection of prostate specific antigen. Sensors and Actuators B: Chemical 2017;248:545-50. [DOI: 10.1016/j.snb.2017.04.021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
24 Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017;117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Cited by in Crossref: 322] [Cited by in F6Publishing: 338] [Article Influence: 64.4] [Reference Citation Analysis]
25 Hovancová J, Šišoláková I, Oriňaková R, Oriňak A. Nanomaterial-based electrochemical sensors for detection of glucose and insulin. J Solid State Electrochem 2017;21:2147-66. [DOI: 10.1007/s10008-017-3544-0] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 8.2] [Reference Citation Analysis]
26 Zapatero-rodríguez J, Liébana S, Sharma S, Gilgunn S, Drago GA, O’kennedy R. Detection of Free Prostate-Specific Antigen Using a Novel Single-Chain Antibody (scAb)-Based Magneto-Immunosensor. BioNanoSci 2018;8:680-9. [DOI: 10.1007/s12668-017-0394-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
27 Feng T, Wang Y, Qiao X. Recent Advances of Carbon Nanotubes-based Electrochemical Immunosensors for the Detection of Protein Cancer Biomarkers. Electroanalysis 2017;29:662-75. [DOI: 10.1002/elan.201600512] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
28 Hori N, Chikae M, Kirimura H, Takamura Y. Design of dual working electrodes for concentration process in metalloimmunoassay. Biomed Microdevices 2016;18:86. [PMID: 27572238 DOI: 10.1007/s10544-016-0114-7] [Reference Citation Analysis]
29 Yan H, Gong L, Zang L, Dai H, Xu G, Zhang S, Lin Y. Dual-responsive competitive immunosensor for sensitive detection of tumor marker on g-CN/rGO conjugation. Sensors and Actuators B: Chemical 2016;230:810-7. [DOI: 10.1016/j.snb.2016.02.144] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
30 Lu J, Liu Y, Liu X, Lu X, Liu X. Construction of a highly sensitive NADH sensing platform based on PDDA-rGO nanocomposite modified electrode. Ionics 2016;22:2225-33. [DOI: 10.1007/s11581-016-1753-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
31 Yagati AK, Choi Y, Park J, Choi J, Jun H, Cho S. Silver nanoflower–reduced graphene oxide composite based micro-disk electrode for insulin detection in serum. Biosensors and Bioelectronics 2016;80:307-14. [DOI: 10.1016/j.bios.2016.01.086] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 9.2] [Reference Citation Analysis]
32 Rama EC, Costa-garcía A. Screen-printed Electrochemical Immunosensors for the Detection of Cancer and Cardiovascular Biomarkers. Electroanalysis 2016;28:1700-15. [DOI: 10.1002/elan.201600126] [Cited by in Crossref: 49] [Cited by in F6Publishing: 25] [Article Influence: 8.2] [Reference Citation Analysis]
33 Xiao F, Wang L, Duan H. Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnology Advances 2016;34:234-49. [DOI: 10.1016/j.biotechadv.2016.01.006] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 10.3] [Reference Citation Analysis]
34 Chen X, Lv Y, Zhang Y, Zhao J, Sun L. A simple but efficient electrochemical method to assay protein arginine deiminase 4. Sensors and Actuators B: Chemical 2016;227:43-7. [DOI: 10.1016/j.snb.2015.12.050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
35 Tu D, He Y, Rong Y, Wang Y, Li G. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene. Meas Sci Technol 2016;27:045108. [DOI: 10.1088/0957-0233/27/4/045108] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
36 Wang Z, Liu N, Feng F, Ma Z. Synthesis of cadmium, lead and copper alginate nanobeads as immunosensing probes for the detection of AFP, CEA and PSA. Biosensors and Bioelectronics 2015;70:98-105. [DOI: 10.1016/j.bios.2015.03.015] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 7.9] [Reference Citation Analysis]
37 Josypčuk O, Barek J, Josypčuk B. Construction and Application of Flow Enzymatic Biosensor Based of Silver Solid Amalgam Electrode for Determination of Sarcosine. Electroanalysis 2015;27:2559-66. [DOI: 10.1002/elan.201500246] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
38 Azzouzi S, Rotariu L, Benito AM, Maser WK, Ben Ali M, Bala C. A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosensors and Bioelectronics 2015;69:280-6. [DOI: 10.1016/j.bios.2015.03.012] [Cited by in Crossref: 73] [Cited by in F6Publishing: 69] [Article Influence: 10.4] [Reference Citation Analysis]
39 Li G, Xue Q, Feng J, Sui W. Electrochemical Biosensor Based on Nanocomposites Film of Thiol Graphene-Thiol Chitosan/Nano Gold for the Detection of Carcinoembryonic Antigen. Electroanalysis 2015;27:1245-52. [DOI: 10.1002/elan.201400524] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
40 Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015;115:2045-108. [PMID: 25659975 DOI: 10.1021/cr500279h] [Cited by in Crossref: 207] [Cited by in F6Publishing: 206] [Article Influence: 29.6] [Reference Citation Analysis]
41 Wu L, Qu X. Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 2015;44:2963-97. [DOI: 10.1039/c4cs00370e] [Cited by in Crossref: 535] [Cited by in F6Publishing: 594] [Article Influence: 76.4] [Reference Citation Analysis]
42 Liu N, Feng F, Liu Z, Ma Z. Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP. Microchim Acta 2015;182:1143-51. [DOI: 10.1007/s00604-014-1435-y] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
43 Xue K, Zhou S, Shi H, Feng X, Xin H, Song W. A novel amperometric glucose biosensor based on ternary gold nanoparticles/polypyrrole/reduced graphene oxide nanocomposite. Sensors and Actuators B: Chemical 2014;203:412-6. [DOI: 10.1016/j.snb.2014.07.018] [Cited by in Crossref: 60] [Cited by in F6Publishing: 45] [Article Influence: 7.5] [Reference Citation Analysis]
44 Nagaraj VJ, Jacobs M, Vattipalli KM, Annam VP, Prasad S. Nanochannel-based electrochemical sensor for the detection of pharmaceutical contaminants in water. Environ Sci Process Impacts 2014;16:135-40. [PMID: 24276544 DOI: 10.1039/c3em00406f] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
45 Jia X, Chen X, Han J, Ma J, Ma Z. Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay. Biosensors and Bioelectronics 2014;53:65-70. [DOI: 10.1016/j.bios.2013.09.021] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
46 Jia X, Liu Z, Liu N, Ma Z. A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers. Biosensors and Bioelectronics 2014;53:160-6. [DOI: 10.1016/j.bios.2013.09.050] [Cited by in Crossref: 97] [Cited by in F6Publishing: 101] [Article Influence: 12.1] [Reference Citation Analysis]
47 Yin C, Lai G, Fu L, Zhang H, Yu A. Ultrasensitive Immunoassay Based on Amplified Inhibition of the Electrochemical Stripping Signal of Silver Nanocomposite by Silica Nanoprobe. Electroanalysis 2014;26:409-15. [DOI: 10.1002/elan.201300507] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
48 Yang M, Yi X, Wang J, Zhou F. Electroanalytical and surface plasmon resonance sensors for detection of breast cancer and Alzheimer's disease biomarkers in cells and body fluids. Analyst 2014;139:1814. [DOI: 10.1039/c3an02065g] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 4.6] [Reference Citation Analysis]
49 Gao Q, Han J, Ma Z. Polyamidoamine dendrimers-capped carbon dots/Au nanocrystal nanocomposites and its application for electrochemical immunosensor. Biosensors and Bioelectronics 2013;49:323-8. [DOI: 10.1016/j.bios.2013.05.048] [Cited by in Crossref: 89] [Cited by in F6Publishing: 87] [Article Influence: 9.9] [Reference Citation Analysis]
50 Altintas Z, Tothill I. Biomarkers and biosensors for the early diagnosis of lung cancer. Sensors and Actuators B: Chemical 2013;188:988-98. [DOI: 10.1016/j.snb.2013.07.078] [Cited by in Crossref: 78] [Cited by in F6Publishing: 60] [Article Influence: 8.7] [Reference Citation Analysis]
51 Díez P, Gamella M, Martínez-ruíz P, Lanzone V, Sánchez A, Sánchez E, Garcinuño B, Villalonga R, Pingarrón JM. Biotin-Labeled Electropolymerized Network of Gold Nanoparticles for Amperometric Immunodetection of Human Fibrinogen. CHEMELECTROCHEM 2014;1:200-6. [DOI: 10.1002/celc.201300114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
52 Nejdl L, Merlos Rodrigo MA, Kudr J, Ruttkay-nedecky B, Konecna M, Kopel P, Zitka O, Hubalek J, Kizek R, Adam V. Liposomal nanotransporter for targeted binding based on nucleic acid anchor system: Microfluidics and Miniaturization. ELECTROPHORESIS 2014;35:393-404. [DOI: 10.1002/elps.201300197] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
53 Zhu C, Dong S. Energetic Graphene-Based Electrochemical Analytical Devices in Nucleic Acid, Protein and Cancer Diagnostics and Detection. Electroanalysis 2014;26:14-29. [DOI: 10.1002/elan.201300056] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]