BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang BP, Zhou B, Lin Z, Liang H, Shen XC. Recent Advances in Carbon Nanomaterials for Cancer Phototherapy. Chemistry 2019;25:3993-4004. [PMID: 30328167 DOI: 10.1002/chem.201804383] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 19.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhou B, Guo Z, Lin Z, Zhang L, Jiang B, Shen X. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg Chem Front 2019;6:1116-28. [DOI: 10.1039/c9qi00201d] [Cited by in Crossref: 34] [Article Influence: 11.3] [Reference Citation Analysis]
2 Peng J, Gong P, Li S, Kong F, Ge X, Wang B, Guo L, Liu Z, You J. A smart bioresponsive nanosystem with dual-modal imaging for drug visual loading and targeted delivery. Chemical Engineering Journal 2020;391:123619. [DOI: 10.1016/j.cej.2019.123619] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
3 Azevedo S, Costa-almeida R, Santos SG, Magalhães FD, Pinto AM. Advances in carbon nanomaterials for immunotherapy. Applied Materials Today 2022;27:101397. [DOI: 10.1016/j.apmt.2022.101397] [Reference Citation Analysis]
4 Adhikari J, Rizwan M, Keasberry NA, Ahmed MU. Current progresses and trends in carbon nanomaterials‐based electrochemical and electrochemiluminescence biosensors. J Chin Chem Soc 2020;67:937-60. [DOI: 10.1002/jccs.201900417] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Guan Q, Wang G, Zhou L, Li W, Dong Y. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Adv 2020;2:3656-733. [DOI: 10.1039/d0na00537a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 1] [Article Influence: 13.0] [Reference Citation Analysis]
6 Pan Y, Huang K, Li Y, Liu Y, Yu H, lv Z, Zou R, Yao Q. Mesoporous porphyrinic metal-organic framework nanoparticles/3D nanofibrous scaffold as a versatile platform for bone tumor therapy. Materials Today Chemistry 2022;24:100829. [DOI: 10.1016/j.mtchem.2022.100829] [Reference Citation Analysis]
7 Mouhib M, Antonucci A, Reggente M, Amirjani A, Gillen AJ, Boghossian AA. Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Res 2019;12:2184-99. [DOI: 10.1007/s12274-019-2438-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 5.3] [Reference Citation Analysis]
8 Taer E, Apriwandi A, Taslim R, Agutino A, Yusra DA. Conversion Syzygium oleana leaves biomass waste to porous activated carbon nanosheet for boosting supercapacitor performances. Journal of Materials Research and Technology 2020;9:13332-40. [DOI: 10.1016/j.jmrt.2020.09.049] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
9 Cruz-Hernández C, López-Méndez LJ, Guadarrama P. Dendronization: A practical strategy to improve the performance of molecular systems used in biomedical applications. Eur J Med Chem 2021;:113988. [PMID: 34801269 DOI: 10.1016/j.ejmech.2021.113988] [Reference Citation Analysis]
10 Alaghmandfard A, Sedighi O, Tabatabaei Rezaei N, Abedini AA, Malek Khachatourian A, Toprak MS, Seifalian A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater Sci Eng C Mater Biol Appl 2021;120:111756. [PMID: 33545897 DOI: 10.1016/j.msec.2020.111756] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
11 Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021;179:114036. [PMID: 34740763 DOI: 10.1016/j.addr.2021.114036] [Reference Citation Analysis]
12 Mangalath S, Saneesh Babu PS, Nair RR, Manu PM, Krishna S, Nair SA, Joseph J. Graphene Quantum Dots Decorated with Boron Dipyrromethene Dye Derivatives for Photodynamic Therapy. ACS Appl Nano Mater 2021;4:4162-71. [DOI: 10.1021/acsanm.1c00486] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
13 Wu H, Su W, Xu H, Zhang Y, Li Y, Li X, Fan L. Applications of carbon dots on tumour theranostics. View 2021;2:20200061. [DOI: 10.1002/viw.20200061] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
14 Chen X, Wu S, Ma D, Chen J, Guo Q, Han X, Chen K, Yang H, Huang Y, Peng Y. A polyfluoroalkyl substituted phthalocyanine based supramolecular light switch for photothermal and photodynamic antibacterial activity against Escherichia coli. Chem Commun 2018;54:13279-82. [DOI: 10.1039/c8cc06071a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
15 Wu Y, Huang Y, Tu C, Wu F, Tong G, Su Y, Xu L, Zhang X, Xiong S, Zhu X. A mesoporous polydopamine nanoparticle enables highly efficient manganese encapsulation for enhanced MRI-guided photothermal therapy. Nanoscale 2021;13:6439-46. [PMID: 33885524 DOI: 10.1039/d1nr00957e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
16 Burkert SC, He X, Shurin GV, Nefedova Y, Kagan VE, Shurin MR, Star A. Nitrogen-Doped Carbon Nanotube Cups for Cancer Therapy. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.1c03245] [Reference Citation Analysis]
17 Kundu S, Ghosh M, Sarkar N. State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. Langmuir 2021;37:9281-301. [PMID: 34297580 DOI: 10.1021/acs.langmuir.1c00732] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Leitão MM, Alves CG, de Melo-diogo D, Lima-sousa R, Moreira AF, Correia IJ. Sulfobetaine methacrylate-functionalized graphene oxide-IR780 nanohybrids aimed at improving breast cancer phototherapy. RSC Adv 2020;10:38621-30. [DOI: 10.1039/d0ra07508f] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
19 Tîlmaciu CM, Dinesh B, Pellerano M, Diot S, Guidetti M, Vollaire J, Bianco A, Ménard-Moyon C, Josserand V, Morris MC. Nanobiosensor Reports on CDK1 Kinase Activity in Tumor Xenografts in Mice. Small 2021;17:e2007177. [PMID: 33502119 DOI: 10.1002/smll.202007177] [Reference Citation Analysis]
20 Shrestha B, Wang L, Brey EM, Uribe GR, Tang L. Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics 2021;13:853. [PMID: 34201333 DOI: 10.3390/pharmaceutics13060853] [Reference Citation Analysis]
21 Sun Z, Yang J, Li H, Wang C, Fletcher C, Li J, Zhan Y, Du L, Wang F, Jiang Y. Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials 2021;274:120873. [PMID: 33989972 DOI: 10.1016/j.biomaterials.2021.120873] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Wang D, Zhang Y, Zhai M, Huang Y, Li H, Liu X, Gong P, Liu Z, You J. Fluorescence Turn‐off Magnetic Fluorinated Graphene Composite with High NIR Absorption for Targeted Drug Delivery. ChemNanoMat 2021;7:71-7. [DOI: 10.1002/cnma.202000539] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Shang T, Lu L, Cao Z, Liu Y, He W, Yu B. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem Commun 2019;55:5408-19. [DOI: 10.1039/c9cc01047e] [Cited by in Crossref: 185] [Cited by in F6Publishing: 9] [Article Influence: 61.7] [Reference Citation Analysis]
24 Liu J, Shi J, Nie W, Wang S, Liu G, Cai K. Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy. Adv Healthc Mater 2021;10:e2001207. [PMID: 33000920 DOI: 10.1002/adhm.202001207] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
25 Guilbaud-Chéreau C, Dinesh B, Schurhammer R, Collin D, Bianco A, Ménard-Moyon C. Protected Amino Acid-Based Hydrogels Incorporating Carbon Nanomaterials for Near-Infrared Irradiation-Triggered Drug Release. ACS Appl Mater Interfaces 2019;11:13147-57. [PMID: 30865420 DOI: 10.1021/acsami.9b02482] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
26 Santos YH, Martinez AHG, Veiga AG, Rocco MLM, Zarbin AJG, Orth ES. Neighboring Effects on the Selective Bifunctionalization of Graphene Oxide for Nanocatalytic Organophosphate Neutralization. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c00832] [Reference Citation Analysis]
27 Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020;25:E5317. [PMID: 33202648 DOI: 10.3390/molecules25225317] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Wang D, Peng J, Huang Y, Sun L, Liu M, Li H, Chao M, Gong P, Liu Z, You J. Rational Construction of Fluorescence Turn-Off Fluorinated Carbon Fiber/Ag Composites and Their Anticancer and Antibacterial Activities. ACS Appl Bio Mater 2021;4:1749-59. [DOI: 10.1021/acsabm.0c01503] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
29 Guo S, Nishina Y, Bianco A, Ménard‐moyon C. A Flexible Method for Covalent Double Functionalization of Graphene Oxide. Angew Chem 2020;132:1558-63. [DOI: 10.1002/ange.201913461] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
30 Karki N, Tiwari H, Tewari C, Rana A, Pandey N, Basak S, Sahoo NG. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J Mater Chem B 2020;8:8116-48. [PMID: 32966535 DOI: 10.1039/d0tb01149e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
31 Soltani R, Guo S, Bianco A, Ménard‐moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. Adv Therap 2020;3:2000051. [DOI: 10.1002/adtp.202000051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Chen T, Huang R, Liang J, Zhou B, Guo XL, Shen XC, Jiang BP. Natural Polyphenol-Vanadium Oxide Nanozymes for Synergistic Chemodynamic/Photothermal Therapy. Chemistry 2020;26:15159-69. [PMID: 32737907 DOI: 10.1002/chem.202002335] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
33 Sevencan C, Mccoy RSA, Ravisankar P, Liu M, Govindarajan S, Zhu J, Bay BH, Leong DT. Cell Membrane Nanotherapeutics: From Synthesis to Applications Emerging Tools for Personalized Cancer Therapy. Adv Therap 2020;3:1900201. [DOI: 10.1002/adtp.201900201] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 8.5] [Reference Citation Analysis]
34 Chen Y, Yang Y, Xian Y, Singh P, Feng J, Cui S, Carrier A, Oakes K, Luan T, Zhang X. Multifunctional Graphene-Oxide-Reinforced Dissolvable Polymeric Microneedles for Transdermal Drug Delivery. ACS Appl Mater Interfaces 2020;12:352-60. [PMID: 31825580 DOI: 10.1021/acsami.9b19518] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
35 Geng S, Zhao H, Zhan G, Zhao Y, Yang X. Injectable in Situ Forming Hydrogels of Thermosensitive Polypyrrole Nanoplatforms for Precisely Synergistic Photothermo-Chemotherapy. ACS Appl Mater Interfaces 2020;12:7995-8005. [DOI: 10.1021/acsami.9b22654] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 13.5] [Reference Citation Analysis]
36 Xie G, Zhang L, Pan J, Zhang X, Sun SK. Green and Kilogram-Scale Synthesis of Fe Hydrogel for Photothermal Therapy of Tumors in Vivo. ACS Biomater Sci Eng 2020;6:4276-84. [PMID: 33463327 DOI: 10.1021/acsbiomaterials.9b01933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Silva FALS, Costa-Almeida R, Timochenco L, Amaral SI, Pinto S, Gonçalves IC, Fernandes JR, Magalhães FD, Sarmento B, Pinto AM. Graphene Oxide Topical Administration: Skin Permeability Studies. Materials (Basel) 2021;14:2810. [PMID: 34070414 DOI: 10.3390/ma14112810] [Reference Citation Analysis]
38 Guo S, Nishina Y, Bianco A, Ménard-Moyon C. A Flexible Method for Covalent Double Functionalization of Graphene Oxide. Angew Chem Int Ed Engl 2020;59:1542-7. [PMID: 31705715 DOI: 10.1002/anie.201913461] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 7.3] [Reference Citation Analysis]
39 Sharma S, Zvyagin AV, Roy I. Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. JNT 2021;2:131-56. [DOI: 10.3390/jnt2030009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Wei C, Jin X, Wu C, Brozovic A, Zhang W. Carbon spheres with high photothermal conversion efficiency for photothermal therapy of tumor. Diamond and Related Materials 2022. [DOI: 10.1016/j.diamond.2022.109048] [Reference Citation Analysis]
41 Seung Lee J, Kim J, Ye YS, Kim TI. Materials and Device Design for Advanced Phototherapy Systems. Adv Drug Deliv Rev 2022;:114339. [PMID: 35568104 DOI: 10.1016/j.addr.2022.114339] [Reference Citation Analysis]
42 Liu, Speranza. Functionalization of Carbon Nanomaterials for Biomedical Applications. C 2019;5:72. [DOI: 10.3390/c5040072] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
43 Guo S, Li R, Tian F, Yang X, Wang L, Guan S, Zhou S, Lu J. Carbon-Defect-Driven Boron Carbide for Dual-Modal NIR-II/Photoacoustic Imaging and Photothermal Therapy. ACS Biomater Sci Eng 2021;7:3370-8. [PMID: 34120445 DOI: 10.1021/acsbiomaterials.1c00578] [Reference Citation Analysis]
44 Jiang H, Studer A. Anti‐Markovnikov Radical Hydro‐ and Deuteroamidation of Unactivated Alkenes. Chem Eur J 2019;25:7105-9. [DOI: 10.1002/chem.201901566] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
45 He Y, Hu C, Li Z, Wu C, Zeng Y, Peng C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100231] [Reference Citation Analysis]
46 Jindal A, Sarkar S, Alam A. Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Front Chem 2021;9:629635. [PMID: 33708759 DOI: 10.3389/fchem.2021.629635] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Wen Y, Jia Q, Nan F, Zheng X, Liu W, Wu J, Ren H, Ge J, Wang P. Pheophytin Derived Near-Infrared-Light Responsive Carbon Dot Assembly as a New Phototheranotic Agent for Bioimaging and Photodynamic Therapy. Chem Asian J 2019;14:2162-8. [PMID: 31037828 DOI: 10.1002/asia.201900416] [Cited by in Crossref: 24] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
48 Guo Z, Zhou X, Hou C, Ding Z, Wen C, Zhang L, Jiang B, Shen X. A chloroplast-inspired nanoplatform for targeting cancer and synergistic photodynamic/photothermal therapy. Biomater Sci 2019;7:3886-97. [DOI: 10.1039/c9bm00762h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
49 Jia Q, Zhao Z, Liang K, Nan F, Li Y, Wang J, Ge J, Wang P. Recent advances and prospects of carbon dots in cancer nanotheranostics. Mater Chem Front 2020;4:449-71. [DOI: 10.1039/c9qm00667b] [Cited by in Crossref: 38] [Article Influence: 19.0] [Reference Citation Analysis]
50 Lee HP, Gaharwar AK. Light-Responsive Inorganic Biomaterials for Biomedical Applications. Adv Sci (Weinh) 2020;7:2000863. [PMID: 32995121 DOI: 10.1002/advs.202000863] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
51 Xu Q, Li C, Chen Y, Zhang Y, Lu B. Metal-organic framework-based intelligent drug delivery systems for cancer theranostic: A review. Front Mater Sci 2021;15:374-90. [DOI: 10.1007/s11706-021-0568-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Huang R, Ding Z, Jiang BP, Luo Z, Chen T, Guo Z, Ji SC, Liang H, Shen XC. Artificial Metalloprotein Nanoanalogues: In Situ Catalytic Production of Oxygen to Enhance Photoimmunotherapeutic Inhibition of Primary and Abscopal Tumor Growth. Small 2020;16:e2004345. [PMID: 33089606 DOI: 10.1002/smll.202004345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Dias LD, Mfouo-Tynga IS. Learning from Nature: Bioinspired Chlorin-Based Photosensitizers Immobilized on Carbon Materials for Combined Photodynamic and Photothermal Therapy. Biomimetics (Basel) 2020;5:E53. [PMID: 33066431 DOI: 10.3390/biomimetics5040053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Huo Z, Xia L, Li G, Xiao X. A "Polymer Template" Strategy for Carbonized Polymer Dots with Controllable Properties. Chemistry 2020;26:14754-64. [PMID: 32841406 DOI: 10.1002/chem.202003379] [Reference Citation Analysis]
55 Zhou B, Guo Z, Lin Z, Jiang BP, Shen XC. Stimuli-Responsive Nanomaterials for Smart Tumor-Specific Phototherapeutics. ChemMedChem 2021;16:919-31. [PMID: 33345434 DOI: 10.1002/cmdc.202000831] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Pennetta C, Floresta G, Graziano ACE, Cardile V, Rubino L, Galimberti M, Rescifina A, Barbera V. Functionalization of Single and Multi-Walled Carbon Nanotubes with Polypropylene Glycol Decorated Pyrrole for the Development of Doxorubicin Nano-Conveyors for Cancer Drug Delivery. Nanomaterials (Basel) 2020;10:E1073. [PMID: 32486371 DOI: 10.3390/nano10061073] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
57 Liu X, Jia H, Zhu Y, Gao G, Jiang Y, Cheng X, Xu K, Yu X, Wu F. Mitochondrion- and nucleus-acting polymeric nanoagents for chemo-photothermal combination therapy. Sci China Mater 2020;63:851-63. [DOI: 10.1007/s40843-019-1260-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
58 Xu L, Wang J, Lu S, Wang X, Cao Y, Wang M, Liu F, Kang Y, Liu H. Construction of a Polypyrrole-Based Multifunctional Nanocomposite for Dual-Modal Imaging and Enhanced Synergistic Phototherapy against Cancer Cells. Langmuir 2019;35:9246-54. [DOI: 10.1021/acs.langmuir.9b01387] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
59 Nagababu U, Shanmukha Kumar JV, Rafi Shaik M, Sharaf MAF. Facile synthesis, physiochemical characterization and bio evaluation of sulfadimidine capped cobalt nanoparticles. Saudi J Biol Sci 2021;28:2168-74. [PMID: 33935564 DOI: 10.1016/j.sjbs.2021.02.071] [Reference Citation Analysis]
60 Li B, Zhao S, Huang L, Wang Q, Xiao J, Lan M. Recent advances and prospects of carbon dots in phototherapy. Chemical Engineering Journal 2021;408:127245. [DOI: 10.1016/j.cej.2020.127245] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 13.0] [Reference Citation Analysis]
61 Amaral SI, Costa-almeida R, Gonçalves IC, Magalhães FD, Pinto AM. Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon 2021. [DOI: 10.1016/j.carbon.2021.12.084] [Reference Citation Analysis]