BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. Adv Mater 2020;32:e1903862. [PMID: 31944430 DOI: 10.1002/adma.201903862] [Cited by in Crossref: 104] [Cited by in F6Publishing: 105] [Article Influence: 34.7] [Reference Citation Analysis]
Number Citing Articles
1 Shi Z, Jefimovs K, Stampanoni M, Romano L. High aspect ratio arrays of Si nano-pillars using displacement Talbot lithography and gas-MacEtch. Materials Science in Semiconductor Processing 2023;157:107311. [DOI: 10.1016/j.mssp.2023.107311] [Reference Citation Analysis]
2 Finbloom JA, Huynh C, Huang X, Desai TA. Bioinspired nanotopographical design of drug delivery systems. Nat Rev Bioeng 2023. [DOI: 10.1038/s44222-022-00010-8] [Reference Citation Analysis]
3 Thangam R, Kim SY, Kang N, Hong H, Lee H, Lee S, Jeong D, Tag K, Kim K, Zhu Y, Sun W, Kim H, Cho S, Ahn J, Jang WY, Kim JS, Paulmurugan R, Khademhosseini A, Kim H, Kang H. Ligand Coupling and Decoupling Modulates Stem Cell Fate. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202206673] [Reference Citation Analysis]
4 Ahn H, Cho Y, Yun GT, Jung KB, Jeong W, Kim Y, Son MY, Lee E, Im SG, Jung HT. Hierarchical Topography with Tunable Micro- and Nanoarchitectonics for Highly Enhanced Cardiomyocyte Maturation via Multi-Scale Mechanotransduction. Adv Healthc Mater 2023;:e2202371. [PMID: 36652539 DOI: 10.1002/adhm.202202371] [Reference Citation Analysis]
5 Angeloni L, Popa B, Nouri-Goushki M, Minneboo M, Zadpoor AA, Ghatkesar MK, Fratila-Apachitei LE. Fluidic Force Microscopy and Atomic Force Microscopy Unveil New Insights into the Interactions of Preosteoblasts with 3D-Printed Submicron Patterns. Small 2023;19:e2204662. [PMID: 36373704 DOI: 10.1002/smll.202204662] [Reference Citation Analysis]
6 Gouthami K, Lakshminarayana L, Faniband B, Veeraraghavan V, Bilal M, Bhargava RN, Ferreira LFR, Rahdar A, Kakkameli S, Mulla SI. Introduction to polymeric nanomaterials. Smart Polymer Nanocomposites 2023. [DOI: 10.1016/b978-0-323-91611-0.00008-6] [Reference Citation Analysis]
7 Wu L, Pei X, Zhang B, Su Z, Gui X, Gao C, Guo L, Fan H, Jiang Q, Zhao L, Zhou C, Fan Y, Zhang X. 3D-printed HAp bone regeneration scaffolds enable nano-scale manipulation of cellular mechanotransduction signals. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140699] [Reference Citation Analysis]
8 Wang Y, Wang N, Yang Y, Chen Y, Zhang Z. Cellular nanomechanics derived from pattern-dependent focal adhesion and cytoskeleton to balance gene transfection of malignant osteosarcoma. J Nanobiotechnol 2022;20:499. [DOI: 10.1186/s12951-022-01713-1] [Reference Citation Analysis]
9 Liu Z, Yi Y, Wang S, Dou H, Fan Y, Tian L, Zhao J, Ren L. Bio-Inspired Self-Adaptive Nanocomposite Array: From Non-antibiotic Antibacterial Actions to Cell Proliferation. ACS Nano 2022;16:16549-62. [PMID: 36218160 DOI: 10.1021/acsnano.2c05980] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Modaresifar K, Ganjian M, Díaz-Payno PJ, Klimopoulou M, Koedam M, van der Eerden BCJ, Fratila-Apachitei LE, Zadpoor AA. Mechanotransduction in high aspect ratio nanostructured meta-biomaterials: The role of cell adhesion, contractility, and transcriptional factors. Mater Today Bio 2022;16:100448. [PMID: 36238966 DOI: 10.1016/j.mtbio.2022.100448] [Reference Citation Analysis]
11 Wang Y, Yang R, Zhao Y, Li Z, Zhang W, Tian J. Independently tunable bifunctional terahertz metasurface based on double-layer graphene. Optical Materials 2022;132:112793. [DOI: 10.1016/j.optmat.2022.112793] [Reference Citation Analysis]
12 Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022;16:249-70. [PMID: 35415290 DOI: 10.1016/j.bioactmat.2022.02.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
13 Liu C, Wang S, Wang N, Yu J, Liu YT, Ding B. From 1D Nanofibers to 3D Nanofibrous Aerogels: A Marvellous Evolution of Electrospun SiO(2) Nanofibers for Emerging Applications. Nanomicro Lett 2022;14:194. [PMID: 36161372 DOI: 10.1007/s40820-022-00937-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
14 Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022;17:4227-59. [PMID: 36134205 DOI: 10.2147/IJN.S377149] [Reference Citation Analysis]
15 Nakanishi J, Yamamoto S. Static and photoresponsive dynamic materials to dissect physical regulation of cellular functions. Biomater Sci 2022. [PMID: 36111810 DOI: 10.1039/d2bm00789d] [Reference Citation Analysis]
16 Fang Z, Yan Y, Geng Y. Uncovering the machining mechanism of polycrystalline gold nanowires by nanoskiving. International Journal of Mechanical Sciences 2022;230:107545. [DOI: 10.1016/j.ijmecsci.2022.107545] [Reference Citation Analysis]
17 Elnathan R, Barbato MG, Guo X, Mariano A, Wang Z, Santoro F, Shi P, Voelcker NH, Xie X, Young JL, Zhao Y, Zhao W, Chiappini C. Biointerface design for vertical nanoprobes. Nat Rev Mater. [DOI: 10.1038/s41578-022-00464-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Argatov I, Jin X. Gravitational settling of a cell on a high-aspect-ratio nanostructured substrate – An asymptotic modeling approach. Applied Mathematical Modelling 2022;108:294-307. [DOI: 10.1016/j.apm.2022.03.041] [Reference Citation Analysis]
19 Ganjian M, Janbaz S, van Manen T, Tümer N, Modaresifar K, Minneboo M, Fratila-apachitei LE, Zadpoor AA. Controlled metal crumpling as an alternative to folding for the fabrication of nanopatterned meta-biomaterials. Materials & Design 2022;220:110844. [DOI: 10.1016/j.matdes.2022.110844] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Harberts J, Siegmund M, Hedrich C, Kim W, Fontcuberta i Morral A, Zierold R, Blick RH. Generation of Human iPSC‐Derived Neurons on Nanowire Arrays Featuring Varying Lengths, Pitches, and Diameters. Adv Materials Inter. [DOI: 10.1002/admi.202200806] [Reference Citation Analysis]
21 Hachim D, Zhao J, Bhankharia J, Nuñez-Toldra R, Brito L, Seong H, Becce M, Ouyang L, Grigsby CL, Higgins SG, Terracciano CM, Stevens MM. Polysaccharide-Polyplex Nanofilm Coatings Enhance Nanoneedle-Based Gene Delivery and Transfection Efficiency. Small 2022;:e2202303. [PMID: 35770803 DOI: 10.1002/smll.202202303] [Reference Citation Analysis]
22 Usgaonkar SS, Ellison CJ, Kumar S. Controlling Surface Deformation and Feature Aspect Ratio in Photochemically Induced Marangoni Patterning of Polymer Films. Langmuir 2022;38:7400-12. [PMID: 35671396 DOI: 10.1021/acs.langmuir.2c00179] [Reference Citation Analysis]
23 Veerabagu U, Palza H, Quero F. Review: Auxetic Polymer-Based Mechanical Metamaterials for Biomedical Applications. ACS Biomater Sci Eng 2022. [PMID: 35709523 DOI: 10.1021/acsbiomaterials.2c00109] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Iarossi M, Hubarevich A, Iachetta G, Dipalo M, Huang J, Darvill D, De Angelis F. Probing ND7/23 neuronal cells before and after differentiation with SERS using Sharp-tipped Au nanopyramid arrays. Sensors and Actuators B: Chemical 2022;361:131724. [DOI: 10.1016/j.snb.2022.131724] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Nakamoto ML, Forró C, Zhang W, Tsai CT, Cui B. Expansion Microscopy for Imaging the Cell-Material Interface. ACS Nano 2022;16:7559-71. [PMID: 35533401 DOI: 10.1021/acsnano.1c11015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Carra C, Medvids A, Litvinas D, Ščajev P, Malinauskas T, Selskis A, Roman HE, Bazaka K, Levchenko I, Riccardi C. Hierarchical Carbon Nanocone-Silica Metamaterials: Implications for White Light Photoluminescence. ACS Appl Nano Mater 2022;5:4787-800. [DOI: 10.1021/acsanm.1c04283] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Cao S, Yuan Q, Sc, Qy, Qy. An update of nanotopographical surfaces in modulating stem cell fate: a narrative review. Biomater Transl 2022;3:55-64. [PMID: 35837345 DOI: 10.12336/biomatertransl.2022.01.006] [Reference Citation Analysis]
28 Mei P, Jiang S, Mao L, Zhou Y, Gu K, Zhang C, Wang X, Lin K, Zhao C, Zhu M. In situ construction of flower-like nanostructured calcium silicate bioceramics for enhancing bone regeneration mediated via FAK/p38 signaling pathway. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01361-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
29 Liu Z, Yi Y, Song L, Chen Y, Tian L, Zhao J, Ren L. Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomater 2022;141:198-208. [PMID: 35066170 DOI: 10.1016/j.actbio.2022.01.038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
30 Yeste J, Illa X, Shashikanth N, Guimerà-brunet A, Villa R, Turner JR. Epithelial monolayer development and tight junction assembly on nanopillar arrays.. [DOI: 10.1101/2022.03.09.483692] [Reference Citation Analysis]
31 Ganjian M, Modaresifar K, Rompolas D, Fratila-Apachitei LE, Zadpoor AA. Nanoimprinting for high-throughput replication of geometrically precise pillars in fused silica to regulate cell behavior. Acta Biomater 2022;140:717-29. [PMID: 34875357 DOI: 10.1016/j.actbio.2021.12.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Gu Q, Lv J, Mo X, Jiang X. High aspect ratio metamaterials and their applications. Sensors and Actuators A: Physical 2022;335:113376. [DOI: 10.1016/j.sna.2022.113376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Li Z, Hu J, Jiang L, Li C, Liu W, Liu H, Qiu Z, Ma Y, Meng Y, Zhao X, Zhao B. Shaped femtosecond laser-regulated deposition sites of galvanic replacement for simple preparation of large-area controllable noble metal nanoparticles. Applied Surface Science 2022;579:152123. [DOI: 10.1016/j.apsusc.2021.152123] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
34 Guo R, Qi L, Xu L, Zou H. Fabrication of sub-50 nm nanochannel array by an angle forming lift-off method. Journal of Manufacturing Processes 2022;75:584-92. [DOI: 10.1016/j.jmapro.2022.01.034] [Reference Citation Analysis]
35 Gu Q, Josephs EA, Ye T. Hybridization and self‐assembly behaviors of surface‐immobilized DNA in close proximity: A single‐molecule perspective. Aggregate. [DOI: 10.1002/agt2.186] [Reference Citation Analysis]
36 Rehnlund D, Lim G, Philipp LA, Gescher J. Nanowired electrodes as outer membrane cytochrome-independent electronic conduit in Shewanella oneidensis. iScience 2022;25:103853. [PMID: 35198904 DOI: 10.1016/j.isci.2022.103853] [Reference Citation Analysis]
37 Mu H, Zeng Y, Zhuang Y, Gao W, Zhou Y, Rajalingam K, Zhao W. Patterning of Oncogenic Ras Clustering in Live Cells Using Vertically Aligned Nanostructure Arrays. Nano Lett 2022. [PMID: 35044178 DOI: 10.1021/acs.nanolett.1c03886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Zhao S, Li Z, Linklater DP, Han L, Jin P, Wen L, Chen C, Xing D, Ren N, Sun K, Juodkazis S, Ivanova EP, Jiang L. Programmed Death of Injured Pseudomonas aeruginosa on Mechano-Bactericidal Surfaces. Nano Lett 2022. [PMID: 35040647 DOI: 10.1021/acs.nanolett.1c04243] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
39 Yoh H, Aslanoglou S, Lestrell E, Shokouhi A, Belcher S, Thissen H, Voelcker NH, Elnathan R. Cellular nanotechnologies: Orchestrating cellular processes by engineering silicon nanowires architectures. Semiconducting Silicon Nanowires for Biomedical Applications 2022. [DOI: 10.1016/b978-0-12-821351-3.00013-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
40 Lotito V, Zambelli T. Playing with sizes and shapes of colloidal particles via dry etching methods. Adv Colloid Interface Sci 2022;299:102538. [PMID: 34906837 DOI: 10.1016/j.cis.2021.102538] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
41 Fan N, Zou J, Feng G, Peng B. Overview of Living Cell Delivery Method Based on Biological Probe. Proceedings of the Eighth Asia International Symposium on Mechatronics 2022. [DOI: 10.1007/978-981-19-1309-9_192] [Reference Citation Analysis]
42 Zhang A, Fang J, Li X, Wang J, Chen M, Chen H, He G, Xie X. Cellular nanointerface of vertical nanostructure arrays and its applications. Nanoscale Adv . [DOI: 10.1039/d1na00775k] [Reference Citation Analysis]
43 Miao BA, Meng L, Tian B. Biology-guided engineering of bioelectrical interfaces. Nanoscale Horiz 2021. [PMID: 34904138 DOI: 10.1039/d1nh00538c] [Reference Citation Analysis]
44 Harberts J, Bours K, Siegmund M, Hedrich C, Glatza M, Schöler HR, Haferkamp U, Pless O, Zierold R, Blick RH. Culturing human iPSC-derived neural progenitor cells on nanowire arrays: mapping the impact of nanowire length and array pitch on proliferation, viability, and membrane deformation. Nanoscale 2021;13:20052-66. [PMID: 34842880 DOI: 10.1039/d1nr04352h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Choi JS, Lim S, Kim J, Chung SS, Moon SE, Im JP, Kim JH, Kang SM. Capillary-Induced Clustering of Thermoresponsive Micropillars. ACS Appl Mater Interfaces 2021;13:58201-8. [PMID: 34817151 DOI: 10.1021/acsami.1c18634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Tchoe Y, Lee J, Liu R, Bourhis AM, Vatsyayan R, Tonsfeldt KJ, Dayeh SA. Considerations and recent advances in nanoscale interfaces with neuronal and cardiac networks. Appl Phys Rev 2021;8:041317. [PMID: 34868443 DOI: 10.1063/5.0052666] [Reference Citation Analysis]
47 Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. Journal of Drug Delivery Science and Technology 2021;66:102790. [DOI: 10.1016/j.jddst.2021.102790] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
48 Oh E, Meckes B, Chang J, Shin D, Mirkin CA. Controlled Glioma Cell Migration and Confinement Using Biomimetic‐Patterned Hydrogels. Advanced NanoBiomed Research 2022;2:2100131. [DOI: 10.1002/anbr.202100131] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Garifullina A, Shen AQ. High-throughput fabrication of high aspect ratio Ag/Al nanopillars for optical detection of biomarkers. J Mater Chem B 2021;9:8851-61. [PMID: 34647953 DOI: 10.1039/d1tb01556g] [Reference Citation Analysis]
50 Sun M, Ji Z, He L, Zhao C, Ma L, Xu X, Cornel EJ, Fan Z, Xu X. Instant Intracellular Delivery of miRNA via Photothermal Effect Induced on Plasmonic Pyramid Arrays. Adv Funct Materials 2022;32:2107999. [DOI: 10.1002/adfm.202107999] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Shi J, Sun C, Liang E, Tian B. Semiconductor Nanowire‐Based Cellular and Subcellular Interfaces. Adv Funct Materials 2022;32:2107997. [DOI: 10.1002/adfm.202107997] [Reference Citation Analysis]
52 Iturriaga L, Van Gordon KD, Larrañaga-jaurrieta G, Camarero‐espinosa S. Strategies to Introduce Topographical and Structural Cues in 3D‐Printed Scaffolds and Implications in Tissue Regeneration. Adv NanoBio Res 2021;1:2100068. [DOI: 10.1002/anbr.202100068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
53 Low J, Chan B, Tay A. Targeted Therapeutics Delivery by Exploiting Biophysical Properties of Senescent Cells. Adv Funct Materials 2022;32:2107990. [DOI: 10.1002/adfm.202107990] [Reference Citation Analysis]
54 Lou J, Xu X, Huang Y, Yu Y, Wang J, Fang G, Liang J, Fan C, Chang C. Optically Controlled Ultrafast Terahertz Metadevices with Ultralow Pump Threshold. Small 2021;17:e2104275. [PMID: 34611988 DOI: 10.1002/smll.202104275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
55 Michalska M, Laney SK, Li T, Portnoi M, Mordan N, Allan E, Tiwari MK, Parkin IP, Papakonstantinou I. Bioinspired Multifunctional Glass Surfaces through Regenerative Secondary Mask Lithography. Adv Mater 2021;33:e2102175. [PMID: 34514638 DOI: 10.1002/adma.202102175] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
56 Harberts J, Siegmund M, Schnelle M, Zhang T, Lei Y, Yu L, Zierold R, Blick RH. Robust neuronal differentiation of human iPSC-derived neural progenitor cells cultured on densely-spaced spiky silicon nanowire arrays. Sci Rep 2021;11:18819. [PMID: 34552130 DOI: 10.1038/s41598-021-97820-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
57 Vinje JB, Guadagno NA, Progida C, Sikorski P. Analysis of Actin and Focal Adhesion Organisation in U2OS Cells on Polymer Nanostructures. Nanoscale Res Lett 2021;16:143. [PMID: 34524556 DOI: 10.1186/s11671-021-03598-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Liu X, Xiao C, Wang P, Yan M, Wang H, Xie P, Liu G, Zhou H, Zhang D, Fan T. Biomimetic Photonic Multiform Composite for High‐Performance Radiative Cooling. Advanced Optical Materials 2021;9:2101151. [DOI: 10.1002/adom.202101151] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
59 Podder C, Gong X, Yu X, Shou W, Pan H. Submicron Metal 3D Printing by Ultrafast Laser Heating and Induced Ligand Transformation of Nanocrystals. ACS Appl Mater Interfaces 2021;13:42154-63. [PMID: 34432433 DOI: 10.1021/acsami.1c10775] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Yoh HZ, Chen Y, Aslanoglou S, Wong S, Trifunovic Z, Crawford S, Lestrell E, Priest C, Alba M, Thissen H, Voelcker NH, Elnathan R. Polymeric Nanoneedle Arrays Mediate Stiffness‐Independent Intracellular Delivery. Adv Funct Materials 2022;32:2104828. [DOI: 10.1002/adfm.202104828] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
61 Chiappini C, Chen Y, Aslanoglou S, Mariano A, Mollo V, Mu H, De Rosa E, He G, Tasciotti E, Xie X, Santoro F, Zhao W, Voelcker NH, Elnathan R. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc 2021;16:4539-63. [PMID: 34426708 DOI: 10.1038/s41596-021-00600-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
62 Thangam R, Patel KD, Kang H, Paulmurugan R. Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy-Current Status and Future Perspectives. Vaccines (Basel) 2021;9:935. [PMID: 34452059 DOI: 10.3390/vaccines9080935] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
63 Hur J, Chung AJ. Microfluidic and Nanofluidic Intracellular Delivery. Adv Sci (Weinh) 2021;8:e2004595. [PMID: 34096197 DOI: 10.1002/advs.202004595] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
64 Nouri-Goushki M, Angeloni L, Modaresifar K, Minneboo M, Boukany PE, Mirzaali MJ, Ghatkesar MK, Fratila-Apachitei LE, Zadpoor AA. 3D-Printed Submicron Patterns Reveal the Interrelation between Cell Adhesion, Cell Mechanics, and Osteogenesis. ACS Appl Mater Interfaces 2021;13:33767-81. [PMID: 34250808 DOI: 10.1021/acsami.1c03687] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
65 Bettucci O, Matrone GM, Santoro F. Conductive Polymer‐Based Bioelectronic Platforms toward Sustainable and Biointegrated Devices: A Journey from Skin to Brain across Human Body Interfaces. Adv Materials Technologies 2022;7:2100293. [DOI: 10.1002/admt.202100293] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
66 Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial Shape Influence on Cell Behavior. Int J Mol Sci 2021;22:5266. [PMID: 34067696 DOI: 10.3390/ijms22105266] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
67 Spiteri C, Caprettini V, Chiappini C. Biomaterials-based approaches to model embryogenesis. Biomater Sci 2020;8:6992-7013. [PMID: 33136109 DOI: 10.1039/d0bm01485k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
68 Kumar ARK, Shou Y, Chan B, L K, Tay A. Materials for Improving Immune Cell Transfection. Adv Mater 2021;33:e2007421. [PMID: 33860598 DOI: 10.1002/adma.202007421] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
69 Mccormack JC, Podhorska L, Delaney C, Zhang F, Rodriguez BJ, Kelleher SM. High Aspect Ratio Polymeric Nanoneedle Arrays. Macromol Mater Eng 2021;306:2000754. [DOI: 10.1002/mame.202000754] [Reference Citation Analysis]
70 Ni K, Peng Q, Gao E, Wang K, Shao Q, Huang H, Xue L, Wang Z. Core-Shell Magnetic Micropillars for Reprogrammable Actuation. ACS Nano 2021;15:4747-58. [PMID: 33617237 DOI: 10.1021/acsnano.0c09298] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
71 Qian Y, Safiabadi Tail SA, Mejia E, Zhou W. Fixed-size double-resonant nanolaminate plasmonic nanoantennas with wide spectral tunability and high optical cross-sections. Optik 2021;230:166332. [DOI: 10.1016/j.ijleo.2021.166332] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
72 Min S, Ko MJ, Jung HJ, Kim W, Han SB, Kim Y, Bae G, Lee S, Thangam R, Choi H, Li N, Shin JE, Jeon YS, Park HS, Kim YJ, Sukumar UK, Song JJ, Park SK, Yu SH, Kang YC, Lee KB, Wei Q, Kim DH, Han SM, Paulmurugan R, Kim YK, Kang H. Remote Control of Time-Regulated Stretching of Ligand-Presenting Nanocoils In Situ Regulates the Cyclic Adhesion and Differentiation of Stem Cells. Adv Mater 2021;33:e2008353. [PMID: 33527502 DOI: 10.1002/adma.202008353] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
73 Calaresu I, Hernandez J, Rauti R, Rodilla BL, Arché‐núñez A, Perez L, Camarero J, Miranda R, González MT, Rodríguez I, Scaini D, Ballerini L. Polystyrene Nanopillars with Inbuilt Carbon Nanotubes Enable Synaptic Modulation and Stimulation in Interfaced Neuronal Networks. Adv Mater Interfaces 2021;8:2002121. [DOI: 10.1002/admi.202002121] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
74 Elnathan R, Holle AW, Young J, George MA, Heifler O, Goychuk A, Frey E, Kemkemer R, Spatz JP, Kosloff A, Patolsky F, Voelcker NH. Optically transparent vertical silicon nanowire arrays for live-cell imaging. J Nanobiotechnology 2021;19:51. [PMID: 33596905 DOI: 10.1186/s12951-021-00795-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
75 Thangam R, Kim MS, Bae G, Kim Y, Kang N, Lee S, Jung HJ, Jang J, Choi H, Li N, Kim M, Park S, Kim SY, Koo TM, Fu HE, Jeon YS, Ambriović‐ristov A, Song J, Kim SY, Park S, Wei Q, Ko C, Lee K, Paulmurugan R, Kim YK, Kang H. Remote Switching of Elastic Movement of Decorated Ligand Nanostructures Controls the Adhesion‐Regulated Polarization of Host Macrophages. Adv Funct Mater 2021;31:2008698. [DOI: 10.1002/adfm.202008698] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
76 Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. Micromachines (Basel) 2021;12:124. [PMID: 33498905 DOI: 10.3390/mi12020124] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
77 Bakhtina NA, Müller M, Wischnewski H, Arora R, Ciaudo C. 3D Synthetic Microstructures Fabricated by Two‐Photon Polymerization Promote Homogeneous Expression of NANOG and ESRRB in Mouse Embryonic Stem Cells. Adv Mater Interfaces 2021;8:2001964. [DOI: 10.1002/admi.202001964] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Kollu NV, LaJeunesse DR. Cell Rupture and Morphogenesis Control of the Dimorphic Yeast Candida albicans by Nanostructured Surfaces. ACS Omega 2021;6:1361-9. [PMID: 33490795 DOI: 10.1021/acsomega.0c04980] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Li Z, Xiong W, Tremolet de Villers BJ, Wu C, Hao J, Blackburn JL, Svedruzic D. Extracellular electron transfer across bio-nano interfaces for CO 2 electroreduction. Nanoscale 2021;13:1093-102. [DOI: 10.1039/d0nr07611b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
80 Sorgato M, Guidi E, Conconi MT, Lucchetta G. Surface nanostructuring of bioresorbable implants to induce osteogenic differentiation of human mesenchymal stromal cells. CIRP Annals 2021;70:463-466. [DOI: 10.1016/j.cirp.2021.04.011] [Reference Citation Analysis]
81 Li X, Zhang W, Tsai C, Cui B. Vertical nanostructures for probing live cells. Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms 2021. [DOI: 10.1016/b978-0-12-823990-2.00003-9] [Reference Citation Analysis]
82 Becce M, Klöckner A, Higgins SG, Penders J, Hachim D, Bashor CJ, Edwards AM, Stevens MM. Assessing the impact of silicon nanowires on bacterial transformation and viability of Escherichia coli. J Mater Chem B 2021;9:4906-14. [PMID: 34100486 DOI: 10.1039/d0tb02762f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
83 Sero JE, Stevens MM. Nanoneedle-Based Materials for Intracellular Studies. Adv Exp Med Biol 2021;1295:191-219. [PMID: 33543461 DOI: 10.1007/978-3-030-58174-9_9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
84 Lubrano C, Matrone GM, Forro C, Jahed Z, Offenhaeusser A, Salleo A, Cui B, Santoro F. Towards biomimetic electronics that emulate cells. MRS Communications 2020;10:398-412. [DOI: 10.1557/mrc.2020.56] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
85 Zou J, Li J, Chen T, Li X. Penetration mechanism of cells by vertical nanostructures. Phys Rev E 2020;102:052401. [PMID: 33327192 DOI: 10.1103/PhysRevE.102.052401] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
86 Teixeira H, Dias C, Aguiar P, Ventura J. Gold‐Mushroom Microelectrode Arrays and the Quest for Intracellular‐Like Recordings: Perspectives and Outlooks. Adv Mater Technol 2021;6:2000770. [DOI: 10.1002/admt.202000770] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
87 Belessiotis-Richards A, Higgins SG, Sansom MSP, Alexander-Katz A, Stevens MM. Coarse-Grained Simulations Suggest the Epsin N-Terminal Homology Domain Can Sense Membrane Curvature without Its Terminal Amphipathic Helix. ACS Nano 2020. [PMID: 33300799 DOI: 10.1021/acsnano.0c05960] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
88 Finbloom JA, Sousa F, Stevens MM, Desai TA. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 2020;167:89-108. [PMID: 32535139 DOI: 10.1016/j.addr.2020.06.007] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 12.3] [Reference Citation Analysis]
89 Zhang W, Yang Y, Cui B. New perspectives on the roles of nanoscale surface topography in modulating intracellular signaling. Curr Opin Solid State Mater Sci 2021;25:100873. [PMID: 33364912 DOI: 10.1016/j.cossms.2020.100873] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
90 Brooks J, Minnick G, Mukherjee P, Jaberi A, Chang L, Espinosa HD, Yang R. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. Small 2020;16:e2004917. [PMID: 33241661 DOI: 10.1002/smll.202004917] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
91 Lee T, Lim J, Park K, Lim EK, Lee JJ. Peptidoglycan-Binding Protein Metamaterials Mediated Enhanced and Selective Capturing of Gram-Positive Bacteria and Their Specific, Ultra-Sensitive, and Reproducible Detection via Surface-Enhanced Raman Scattering. ACS Sens 2020;5:3099-108. [PMID: 32786378 DOI: 10.1021/acssensors.0c01139] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
92 Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020;8:551505. [PMID: 33195116 DOI: 10.3389/fbioe.2020.551505] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
93 Higgins SG, Lo Fiego A, Patrick I, Creamer A, Stevens MM. Organic Bioelectronics: Using Highly Conjugated Polymers to Interface with Biomolecules, Cells, and Tissues in the Human Body. Adv Mater Technol 2020;5:2000384. [DOI: 10.1002/admt.202000384] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
94 Chen Y, Wang J, Li X, Hu N, Voelcker NH, Xie X, Elnathan R. Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions. Adv Mater 2020;32:e2001668. [PMID: 32844502 DOI: 10.1002/adma.202001668] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
95 Min S, Jeon YS, Jung HJ, Khatua C, Li N, Bae G, Choi H, Hong H, Shin JE, Ko MJ, Ko HS, Jun I, Fu HE, Kim SH, Thangam R, Song JJ, Dravid VP, Kim YK, Kang H. Independent Tuning of Nano-Ligand Frequency and Sequences Regulates the Adhesion and Differentiation of Stem Cells. Adv Mater 2020;32:e2004300. [PMID: 32820574 DOI: 10.1002/adma.202004300] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
96 Bakhtina NA, Müller M, Wischnewski H, Arora R, Ciaudo C. 3D synthetic microscaffolds promote homogenous expression of NANOG in mouse embryonic stem cells.. [DOI: 10.1101/2020.09.20.302885] [Reference Citation Analysis]
97 Vinje J, Guadagno NA, Progida C, Sikorski P. Analysis of actin and focal adhesion organisation in U2OS cells on polymer nanostructures.. [DOI: 10.1101/2020.09.14.289330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
98 Aslanoglou S, Chen Y, Oorschot V, Trifunovic Z, Hanssen E, Suu K, Voelcker NH, Elnathan R. Efficient Transmission Electron Microscopy Characterization of Cell-Nanostructure Interfacial Interactions. J Am Chem Soc 2020;142:15649-53. [PMID: 32869983 DOI: 10.1021/jacs.0c05919] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
99 Silva MM, Mota DR, Silva CB, de Oliveira HPM, Pellosi DS. Synthesis of Pluronic-based silver nanoparticles/methylene blue nanohybrids: Influence of the metal shape on photophysical properties. Materials Science and Engineering: C 2020;114:110987. [DOI: 10.1016/j.msec.2020.110987] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
100 Liu Y, Li L, Yang Y, Tian L, Wu X, Weng Z, Guo X, Lei Z, Qu K, Yan J, Wang Z. Investigating effects of silicon nanowire and nanohole arrays on fibroblasts via AFAM. Appl Nanosci 2020;10:3717-3724. [DOI: 10.1007/s13204-020-01470-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
101 Ferhan AR, Yoon BK, Jeon W, Jackman JA, Cho N. Unraveling how nanoscale curvature drives formation of lysozyme protein monolayers on inorganic oxide surfaces. Applied Materials Today 2020;20:100729. [DOI: 10.1016/j.apmt.2020.100729] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
102 Li X, Mo J, Fang J, Xu D, Yang C, Zhang M, Li H, Xie X, Hu N, Liu F. Vertical nanowire array-based biosensors: device design strategies and biomedical applications. J Mater Chem B 2020;8:7609-32. [PMID: 32744274 DOI: 10.1039/d0tb00990c] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
103 Liu W, Xiang S, Liu X, Yang B. Underwater Superoleophobic Surface Based on Silica Hierarchical Cylinder Arrays with a Low Aspect Ratio. ACS Nano 2020;14:9166-75. [PMID: 32644775 DOI: 10.1021/acsnano.0c04670] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
104 Wang J, Lee S, Bielinski AR, Meyer KA, Dhyani A, Ortiz‐ortiz AM, Tuteja A, Dasgupta NP. Rational Design of Transparent Nanowire Architectures with Tunable Geometries for Preventing Marine Fouling. Adv Mater Interfaces 2020;7:2000672. [DOI: 10.1002/admi.202000672] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
105 Fang Y, Meng L, Prominski A, Schaumann EN, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020;49:7978-8035. [PMID: 32672777 DOI: 10.1039/d0cs00333f] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
106 Choi H, Bae G, Khatua C, Min S, Jung HJ, Li N, Jun I, Liu H, Cho Y, Na K, Ko M, Shin H, Kim YH, Chung S, Song J, Dravid VP, Kang H. Remote Manipulation of Slidable Nano‐Ligand Switch Regulates the Adhesion and Regenerative Polarization of Macrophages. Adv Funct Mater 2020;30:2001446. [DOI: 10.1002/adfm.202001446] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
107 Qu Y, Zhang Y, Yu Q, Chen H. Surface-Mediated Intracellular Delivery by Physical Membrane Disruption. ACS Appl Mater Interfaces 2020;12:31054-78. [DOI: 10.1021/acsami.0c06978] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
108 Dai J, Gong J, Kong N, Yao Y. Cellular architecture response to aspect ratio tunable nanoarrays. Nanoscale 2020;12:12395-404. [PMID: 32490496 DOI: 10.1039/d0nr01003k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
109 Seong H, Higgins SG, Penders J, Armstrong JPK, Crowder SW, Moore AC, Sero JE, Becce M, Stevens MM. Size-Tunable Nanoneedle Arrays for Influencing Stem Cell Morphology, Gene Expression, and Nuclear Membrane Curvature. ACS Nano 2020;14:5371-81. [PMID: 32330008 DOI: 10.1021/acsnano.9b08689] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
110 Shokouhi A, Aslanoglou S, Nisbet D, Voelcker NH, Elnathan R. Vertically configured nanostructure-mediated electroporation: a promising route for intracellular regulations and interrogations. Mater Horiz 2020;7:2810-31. [DOI: 10.1039/d0mh01016b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
111 Dong H, Wei T, Ma X, Yang Q, Zhang Y, Sun Y, Shi B, Yao H, Zhang Y, Lin Q. 1,8-Naphthalimide-based fluorescent chemosensors: recent advances and perspectives. J Mater Chem C 2020;8:13501-29. [DOI: 10.1039/d0tc03681a] [Cited by in Crossref: 62] [Cited by in F6Publishing: 67] [Article Influence: 20.7] [Reference Citation Analysis]