BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gandhi N, Das GM. Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications. Cells 2019;8:E89. [PMID: 30691108 DOI: 10.3390/cells8020089] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, Chen F. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front Oncol 2022;12:971288. [DOI: 10.3389/fonc.2022.971288] [Reference Citation Analysis]
2 Wang S, Hao H, Jiao Y, Fu J, Guo Z, Guo Y, Yuan Y, Li P, Han S. Dandelion extract inhibits triple-negative breast cancer cell proliferation by interfering with glycerophospholipids and unsaturated fatty acids metabolism. Front Pharmacol 2022;13:942996. [DOI: 10.3389/fphar.2022.942996] [Reference Citation Analysis]
3 Very N, El Yazidi-belkoura I. Targeting O-GlcNAcylation to overcome resistance to anti-cancer therapies. Front Oncol 2022;12:960312. [DOI: 10.3389/fonc.2022.960312] [Reference Citation Analysis]
4 Cioce M, Sacconi A, Donzelli S, Bonomo C, Perracchio L, Carosi M, Telera S, Michele Fazio V, Botti C, Strano S, Blandino G. Breast cancer metastasis: is it a matter of OMICS and proper ex-vivo models? Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.07.044] [Reference Citation Analysis]
5 Passaniti A, Kim MS, Polster BM, Shapiro P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol Carcinog 2022. [PMID: 35723497 DOI: 10.1002/mc.23436] [Reference Citation Analysis]
6 Navarro C, Ortega Á, Santeliz R, Garrido B, Chacín M, Galban N, Vera I, De Sanctis JB, Bermúdez V. Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches. Pharmaceutics 2022;14:1303. [PMID: 35745875 DOI: 10.3390/pharmaceutics14061303] [Reference Citation Analysis]
7 Chi R, Yao C, Chen S, Liu Y, He Y, Zhang J, Ellies LG, Wu X, Zhao Q, Zhou C, Wang Y, Sun H. Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Front Oncol 2022;12:887257. [DOI: 10.3389/fonc.2022.887257] [Reference Citation Analysis]
8 Hoskinson C, Zheng K, Gabel J, Kump A, German R, Podicheti R, Marino N, Stiemsma LT. Composition and Functional Potential of the Human Mammary Microbiota Prior to and Following Breast Tumor Diagnosis. mSystems 2022;:e0148921. [PMID: 35642922 DOI: 10.1128/msystems.01489-21] [Reference Citation Analysis]
9 Meng Z, Ye Z, Zhu P, Zhu J, Fang S, Qiu T, Li Y, Meng L. New Developments and Opportunities of Microbiota in Treating Breast Cancers. Front Microbiol 2022;13:818793. [DOI: 10.3389/fmicb.2022.818793] [Reference Citation Analysis]
10 Rohatgi N, Ghoshdastider U, Baruah P, Kulshrestha T, Skanderup AJ. A pan-cancer metabolic atlas of the tumor microenvironment. Cell Rep 2022;39:110800. [PMID: 35545044 DOI: 10.1016/j.celrep.2022.110800] [Reference Citation Analysis]
11 Yu R, Peng M, Zhao S, Wang Z, Ma Y, Zhang X, Lv X, Wang S, Ju S, Zhao R, Zhou Q, Lian W, Bukhari I. Comprehensive Characterization of the Function of Metabolic Genes and Establishment of a Prediction Model in Breast Cancer. Disease Markers 2022;2022:1-18. [DOI: 10.1155/2022/3846010] [Reference Citation Analysis]
12 Araújo R, Fabris V, Lamb CA, Lanari C, Helguero LA, Gil AM. Metabolic Adaptations in an Endocrine-Related Breast Cancer Mouse Model Unveil Potential Markers of Tumor Response to Hormonal Therapy. Front Oncol 2022;12:786931. [PMID: 35299741 DOI: 10.3389/fonc.2022.786931] [Reference Citation Analysis]
13 Costa B, Vale N. Drug Metabolism for the Identification of Clinical Biomarkers in Breast Cancer. Int J Mol Sci 2022;23:3181. [PMID: 35328602 DOI: 10.3390/ijms23063181] [Reference Citation Analysis]
14 Zhelev Z, Aoki I, Lazarova D, Vlaykova T, Higashi T, Bakalova R, Giudetti AM. A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-38. [DOI: 10.1155/2022/2339584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
15 Liu B, Zhang X. Metabolic Reprogramming Underlying Brain Metastasis of Breast Cancer. Front Mol Biosci 2021;8:791927. [PMID: 35071325 DOI: 10.3389/fmolb.2021.791927] [Reference Citation Analysis]
16 Han X, Long Y, Duan X, Liu Z, Hu X, Zhou J, Li N, Wang Y, Qin J. ZEB1 induces ROS generation through directly promoting MCT4 transcription to facilitate breast cancer. Experimental Cell Research 2022. [DOI: 10.1016/j.yexcr.2022.113044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Galindo CM, Oliveira Ganzella FAD, Klassen G, Souza Ramos EAD, Acco A. Nuances of PFKFB3 signaling in breast cancer. Clinical Breast Cancer 2022. [DOI: 10.1016/j.clbc.2022.01.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev 2021. [PMID: 34967927 DOI: 10.1007/s10555-021-10013-3] [Reference Citation Analysis]
19 Bertok T, Pinkova Gajdosova V, Bertokova A, Svecova N, Kasak P, Tkac J. Breast cancer glycan biomarkers: their link to tumour cell metabolism and their perspectives in clinical practice. Expert Rev Proteomics 2021;:1-30. [PMID: 34711108 DOI: 10.1080/14789450.2021.1996231] [Reference Citation Analysis]
20 Alberti G, Sánchez-lópez CM, Andres A, Santonocito R, Campanella C, Cappello F, Marcilla A. Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. Applied Sciences 2021;11:10787. [DOI: 10.3390/app112210787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Liu S, Sun Y, Hou Y, Yang L, Wan X, Qin Y, Liu Y, Wang R, Zhu P, Teng Y, Liu M. A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties. J Hematol Oncol 2021;14:178. [PMID: 34715882 DOI: 10.1186/s13045-021-01194-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
22 Wei G, Chen J, Jing Z, Li Y, Li Z, Zheng W, Sun X, Zhao W, Zhang Z, Wang X, Han H, Li C, Zhang Y, Ma P. Glucose transporter 1 (GLUT1)-targeting and hypoxia-activated mitochondria-specific chemo-thermal therapy via a glycosylated poly(amido amine)/celastrol (PAMAM/Cel) complex. J Colloid Interface Sci 2021;608:1355-65. [PMID: 34742058 DOI: 10.1016/j.jcis.2021.10.129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Ma P, Wei G, Chen J, Jing Z, Wang X, Wang Z. GLUT1 targeting and hypoxia-activating polymer-drug conjugate-based micelle for tumor chemo-thermal therapy. Drug Deliv 2021;28:2256-67. [PMID: 34668823 DOI: 10.1080/10717544.2021.1992039] [Reference Citation Analysis]
24 Hussein S, Khanna P, Yunus N, Gatza ML. Nuclear Receptor-Mediated Metabolic Reprogramming and the Impact on HR+ Breast Cancer. Cancers (Basel) 2021;13:4808. [PMID: 34638293 DOI: 10.3390/cancers13194808] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Mustafa MF, Saliluddin SM, Fakurazi S, Tizen Laim NMS, Md Pauzi SH, Nik Yahya NH, S Raja Gopal N, Abdullah MA, Maniam S. Expression of Autophagy and Mitophagy Markers in Breast Cancer Tissues. Front Oncol 2021;11:612009. [PMID: 34490076 DOI: 10.3389/fonc.2021.612009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Liu X, Liu Y, Liu Z, Lin C, Meng F, Xu L, Zhang X, Zhang C, Zhang P, Gong S, Wu N, Ren Z, Song J, Zhang Y. CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer 2021;20:114. [PMID: 34496888 DOI: 10.1186/s12943-021-01412-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
27 Feng H, Sun SZ, Cheng F, Zhang NQ. Mediation of circ_RPPH1 on miR-146b-3p/E2F2 pathway to hinder the growth and metastasis of breast carcinoma cells. Aging (Albany NY) 2021;13:20552-68. [PMID: 34433131 DOI: 10.18632/aging.203439] [Reference Citation Analysis]
28 Hua Y, Gao L, Li X. Comprehensive Analysis of Metabolic Genes in Breast Cancer Based on Multi-Omics Data. Pathol Oncol Res 2021;27:1609789. [PMID: 34408553 DOI: 10.3389/pore.2021.1609789] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
29 Emens LA, Adams S, Cimino-Mathews A, Disis ML, Gatti-Mays ME, Ho AY, Kalinsky K, McArthur HL, Mittendorf EA, Nanda R, Page DB, Rugo HS, Rubin KM, Soliman H, Spears PA, Tolaney SM, Litton JK. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. J Immunother Cancer 2021;9:e002597. [PMID: 34389617 DOI: 10.1136/jitc-2021-002597] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
30 Kuo WL, Tseng LL, Chang CC, Chen CJ, Cheng ML, Cheng HH, Wu MJ, Chen YL, Chang RT, Tang HY, Hsu YC, Lin WJ, Kao CY, Hsieh WP, Kung HJ, Wang WC. Prognostic Significance of O-GlcNAc and PKM2 in Hormone Receptor-Positive and HER2-Nonenriched Breast Cancer. Diagnostics (Basel) 2021;11:1460. [PMID: 34441396 DOI: 10.3390/diagnostics11081460] [Reference Citation Analysis]
31 Zaher DM, Talaat IM, Hussein A, Hachim MY, Omar HA. Differential expression of pyruvate dehydrogenase E1A and its inactive phosphorylated form among breast cancer subtypes. Life Sci 2021;284:119885. [PMID: 34384830 DOI: 10.1016/j.lfs.2021.119885] [Reference Citation Analysis]
32 Saha T, Solomon J, Samson AO, Gil-Henn H. Invasion and Metastasis as a Central Hallmark of Breast Cancer. J Clin Med 2021;10:3498. [PMID: 34441794 DOI: 10.3390/jcm10163498] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F, Kumar-Sinha C, Dou Y, Reva B, Kane MH, Avanessian SC, Vasaikar SV, Krek A, Lei JT, Jaehnig EJ, Omelchenko T, Geffen Y, Bergstrom EJ, Stathias V, Christianson KE, Heiman DI, Cieslik MP, Cao S, Song X, Ji J, Liu W, Li K, Wen B, Li Y, Gümüş ZH, Selvan ME, Soundararajan R, Visal TH, Raso MG, Parra ER, Babur Ö, Vats P, Anand S, Schraink T, Cornwell M, Rodrigues FM, Zhu H, Mo CK, Zhang Y, da Veiga Leprevost F, Huang C, Chinnaiyan AM, Wyczalkowski MA, Omenn GS, Newton CJ, Schurer S, Ruggles KV, Fenyö D, Jewell SD, Thiagarajan M, Mesri M, Rodriguez H, Mani SA, Udeshi ND, Getz G, Suh J, Li QK, Hostetter G, Paik PK, Dhanasekaran SM, Govindan R, Ding L, Robles AI, Clauser KR, Nesvizhskii AI, Wang P, Carr SA, Zhang B, Mani DR, Gillette MA; Clinical Proteomic Tumor Analysis Consortium. A proteogenomic portrait of lung squamous cell carcinoma. Cell 2021;184:4348-4371.e40. [PMID: 34358469 DOI: 10.1016/j.cell.2021.07.016] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Reinsalu L, Puurand M, Chekulayev V, Miller S, Shevchuk I, Tepp K, Rebane-Klemm E, Timohhina N, Terasmaa A, Kaambre T. Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Front Oncol 2021;11:698951. [PMID: 34381722 DOI: 10.3389/fonc.2021.698951] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
35 Ma JY, Liu SH, Chen J, Liu Q. Metabolism-related long non-coding RNAs (lncRNAs) as potential biomarkers for predicting risk of recurrence in breast cancer patients. Bioengineered 2021;12:3726-36. [PMID: 34254565 DOI: 10.1080/21655979.2021.1953216] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Catala A, Dzieciatkowska M, Wang G, Gutierrez-Hartmann A, Simberg D, Hansen KC, D'Alessandro A, Catalano CE. Targeted Intracellular Delivery of Trastuzumab Using Designer Phage Lambda Nanoparticles Alters Cellular Programs in Human Breast Cancer Cells. ACS Nano 2021. [PMID: 34189924 DOI: 10.1021/acsnano.1c02864] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
37 Ye Z, Zheng M, Zeng Y, Wei S, Huang H, Wang Y, Liu Q, Lin Z, Chen S, Zheng Q, Chen L. A 13-Gene Metabolic Prognostic Signature Is Associated With Clinical and Immune Features in Stomach Adenocarcinoma. Front Oncol 2021;11:612952. [PMID: 34235071 DOI: 10.3389/fonc.2021.612952] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
38 Holloway RW, Marignani PA. Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Cancers (Basel) 2021;13:2922. [PMID: 34208071 DOI: 10.3390/cancers13122922] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Tian H, Sparvero LJ, Anthonymuthu TS, Sun WY, Amoscato AA, He RR, Bayır H, Kagan VE, Winograd N. Successive High-Resolution (H2O)n-GCIB and C60-SIMS Imaging Integrates Multi-Omics in Different Cell Types in Breast Cancer Tissue. Anal Chem 2021;93:8143-51. [PMID: 34075742 DOI: 10.1021/acs.analchem.0c05311] [Reference Citation Analysis]
40 Anwar SL, Cahyono R, Prabowo D, Avanti WS, Choridah L, Dwianingsih EK, Harahap WA, Aryandono T. Metabolic comorbidities and the association with risks of recurrent metastatic disease in breast cancer survivors. BMC Cancer 2021;21:590. [PMID: 34022845 DOI: 10.1186/s12885-021-08343-0] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
41 Akinyele O, Wallace HM. Characterising the Response of Human Breast Cancer Cells to Polyamine Modulation. Biomolecules 2021;11:743. [PMID: 34067619 DOI: 10.3390/biom11050743] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Long NP, Heo D, Kim HY, Kim TH, Shin JG, Lee A, Kim DH. Metabolomics-guided global pathway analysis reveals better insights into the metabolic alterations of breast cancer. J Pharm Biomed Anal 2021;202:114134. [PMID: 34052553 DOI: 10.1016/j.jpba.2021.114134] [Reference Citation Analysis]
43 Malla R, Surepalli N, Farran B, Malhotra SV, Nagaraju GP. Reactive oxygen species (ROS): Critical roles in breast tumor microenvironment. Critical Reviews in Oncology/Hematology 2021;160:103285. [DOI: 10.1016/j.critrevonc.2021.103285] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Kaul K, Misri S, Ramaswamy B, Ganju RK. Contribution of the tumor and obese microenvironment to triple negative breast cancer. Cancer Lett 2021;509:115-20. [PMID: 33798632 DOI: 10.1016/j.canlet.2021.03.024] [Reference Citation Analysis]
45 de Miranda FS, Guimarães JPT, Menikdiwela KR, Mabry B, Dhakal R, Rahman RL, Moussa H, Moustaid-Moussa N. Breast cancer and the renin-angiotensin system (RAS): Therapeutic approaches and related metabolic diseases. Mol Cell Endocrinol 2021;528:111245. [PMID: 33753205 DOI: 10.1016/j.mce.2021.111245] [Reference Citation Analysis]
46 Lu G, Li J, Ding L, Wang C, Tang L, Liu X, Xu J, Zhou Q, Sun J, Wang W, Ding X. The Deubiquitinating Enzyme UCHL1 Induces Resistance to Doxorubicin in HER2+ Breast Cancer by Promoting Free Fatty Acid Synthesis. Front Oncol 2021;11:629640. [PMID: 33718207 DOI: 10.3389/fonc.2021.629640] [Reference Citation Analysis]
47 Daniyal A, Santoso I, Gunawan NHP, Barliana MI, Abdulah R. Genetic Influences in Breast Cancer Drug Resistance. Breast Cancer (Dove Med Press) 2021;13:59-85. [PMID: 33603458 DOI: 10.2147/BCTT.S284453] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Božović A, Mandušić V, Todorović L, Krajnović M. Estrogen Receptor Beta: The Promising Biomarker and Potential Target in Metastases. Int J Mol Sci 2021;22:1656. [PMID: 33562134 DOI: 10.3390/ijms22041656] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 16.0] [Reference Citation Analysis]
49 Xu Y, Chen W, Liang J, Zeng X, Ji K, Zhou J, Liao S, Wu J, Xing K, He Z, Yang Y, Liu Q, Zhu P, Liu Y, Li L, Liu M, Chen W, Huang W. The miR-1185-2-3p-GOLPH3L pathway promotes glucose metabolism in breast cancer by stabilizing p53-induced SERPINE1. J Exp Clin Cancer Res 2021;40:47. [PMID: 33509226 DOI: 10.1186/s13046-020-01767-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
50 Mosaoa R, Kasprzyk-Pawelec A, Fernandez HR, Avantaggiati ML. The Mitochondrial Citrate Carrier SLC25A1/CIC and the Fundamental Role of Citrate in Cancer, Inflammation and Beyond. Biomolecules 2021;11:141. [PMID: 33499062 DOI: 10.3390/biom11020141] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
51 Brockmueller A, Sameri S, Liskova A, Zhai K, Varghese E, Samuel SM, Büsselberg D, Kubatka P, Shakibaei M. Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers (Basel) 2021;13:E188. [PMID: 33430318 DOI: 10.3390/cancers13020188] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
52 Wang L, Zhang S, Wang X. The Metabolic Mechanisms of Breast Cancer Metastasis. Front Oncol 2020;10:602416. [PMID: 33489906 DOI: 10.3389/fonc.2020.602416] [Cited by in Crossref: 3] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
53 Vazquez Rodriguez G, Abrahamsson A, Turkina MV, Dabrosin C. Lysine in Combination With Estradiol Promote Dissemination of Estrogen Receptor Positive Breast Cancer via Upregulation of U2AF1 and RPN2 Proteins. Front Oncol 2020;10:598684. [PMID: 33330095 DOI: 10.3389/fonc.2020.598684] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
54 Maniam S, Maniam S. Cancer Cell Metabolites: Updates on Current Tracing Methods. Chembiochem 2020;21:3476-88. [PMID: 32639076 DOI: 10.1002/cbic.202000290] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Kozar N, Kruusmaa K, Bitenc M, Argamasilla R, Adsuar A, Takač I, Arko D. Identification of Novel Diagnostic Biomarkers in Breast Cancer Using Targeted Metabolomic Profiling. Clin Breast Cancer 2021;21:e204-11. [PMID: 33281038 DOI: 10.1016/j.clbc.2020.09.006] [Reference Citation Analysis]
56 Pinto B, Henriques AC, Silva PMA, Bousbaa H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics. 2020;12. [PMID: 33291351 DOI: 10.3390/pharmaceutics12121186] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
57 Pham DV, Tilija Pun N, Park PH. Autophagy activation and SREBP-1 induction contribute to fatty acid metabolic reprogramming by leptin in breast cancer cells. Mol Oncol 2021;15:657-78. [PMID: 33226729 DOI: 10.1002/1878-0261.12860] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
58 Cardoso HJ, Carvalho TMA, Fonseca LRS, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Med Res Rev 2021;41:1499-538. [PMID: 33274768 DOI: 10.1002/med.21766] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
59 Naik A, Decock J. Lactate Metabolism and Immune Modulation in Breast Cancer: A Focused Review on Triple Negative Breast Tumors. Front Oncol 2020;10:598626. [PMID: 33324565 DOI: 10.3389/fonc.2020.598626] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
60 Chong ZX, Yeap SK, Ho WY. Roles of circulating microRNA(s) in human breast cancer. Archives of Biochemistry and Biophysics 2020;695:108583. [DOI: 10.1016/j.abb.2020.108583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Guo R, Chen Y, Borgard H, Jijiwa M, Nasu M, He M, Deng Y. The Function and Mechanism of Lipid Molecules and Their Roles in The Diagnosis and Prognosis of Breast Cancer. Molecules 2020;25:E4864. [PMID: 33096860 DOI: 10.3390/molecules25204864] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
62 Zhang M, Xiang Z, Wang F, Shan R, Li L, Chen J, Liu BA, Huang J, Sun LQ, Zhou WB. STARD4 promotes breast cancer cell malignancy. Oncol Rep 2020;44:2487-502. [PMID: 33125124 DOI: 10.3892/or.2020.7802] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
63 Tang J, Meka AK, Theivendran S, Wang Y, Yang Y, Song H, Fu J, Ban W, Gu Z, Lei C, Li S, Yu C. Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation. Angew Chem Int Ed Engl 2020;59:22054-62. [PMID: 32705778 DOI: 10.1002/anie.202001469] [Cited by in Crossref: 10] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
64 Tang J, Meka AK, Theivendran S, Wang Y, Yang Y, Song H, Fu J, Ban W, Gu Z, Lei C, Li S, Yu C. Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation. Angew Chem 2020;132:22238-46. [DOI: 10.1002/ange.202001469] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
65 Roda N, Gambino V, Giorgio M. Metabolic Constrains Rule Metastasis Progression. Cells 2020;9:E2081. [PMID: 32932943 DOI: 10.3390/cells9092081] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
66 Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, Varghese E, Abotaleb M, Qaradakhi T, Zulli A, Kello M, Mojzis J, Zubor P, Kwon TK, Shakibaei M, Büsselberg D, Sarria GR, Golubnitschaja O, Kubatka P. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J 2020;11:377-98. [PMID: 32843908 DOI: 10.1007/s13167-020-00217-y] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 16.0] [Reference Citation Analysis]
67 Cuyàs E, Fernández-Arroyo S, Buxó M, Pernas S, Dorca J, Álvarez I, Martínez S, Pérez-Garcia JM, Batista-López N, Rodríguez-Sánchez CA, Amillano K, Domínguez S, Luque M, Morilla I, Stradella A, Viñas G, Cortés J, Verdura S, Brunet J, López-Bonet E, Garcia M, Saidani S, Joven J, Martin-Castillo B, Menendez JA. Metformin induces a fasting- and antifolate-mimicking modification of systemic host metabolism in breast cancer patients. Aging (Albany NY) 2019;11:2874-88. [PMID: 31076561 DOI: 10.18632/aging.101960] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
68 Fan S, Shahid M, Jin P, Asher A, Kim J. Identification of Metabolic Alterations in Breast Cancer Using Mass Spectrometry-Based Metabolomic Analysis. Metabolites 2020;10:E170. [PMID: 32344578 DOI: 10.3390/metabo10040170] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Ranganathan P, Chakrabarty A, Hiscox S, Limaye AM, Vella V. Editorial: Resistance to Endocrine Therapies in Cancer. Front Endocrinol (Lausanne) 2020;11:196. [PMID: 32328035 DOI: 10.3389/fendo.2020.00196] [Reference Citation Analysis]
70 Cai D, Zhang X, Chen HW. A master regulator of cholesterol biosynthesis constitutes a therapeutic liability of triple negative breast cancer. Mol Cell Oncol 2020;7:1701362. [PMID: 32158915 DOI: 10.1080/23723556.2019.1701362] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
71 Cordover E, Wei J, Patel C, Shan NL, Gionco J, Sargsyan D, Wu R, Cai L, Kong AN, Jacinto E, Minden A. KPT-9274, an Inhibitor of PAK4 and NAMPT, Leads to Downregulation of mTORC2 in Triple Negative Breast Cancer Cells. Chem Res Toxicol 2020;33:482-91. [PMID: 31876149 DOI: 10.1021/acs.chemrestox.9b00376] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
72 Tofovic SP, Jackson EK. Estradiol Metabolism: Crossroads in Pulmonary Arterial Hypertension. Int J Mol Sci 2019;21:E116. [PMID: 31877978 DOI: 10.3390/ijms21010116] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
73 Xu Q, Long Q, Zhu D, Fu D, Zhang B, Han L, Qian M, Guo J, Xu J, Cao L, Chin YE, Coppé JP, Lam EW, Campisi J, Sun Y. Targeting amphiregulin (AREG) derived from senescent stromal cells diminishes cancer resistance and averts programmed cell death 1 ligand (PD-L1)-mediated immunosuppression. Aging Cell 2019;18:e13027. [PMID: 31493351 DOI: 10.1111/acel.13027] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 10.7] [Reference Citation Analysis]
74 Liu L, Cao J, Zhao J, Li X, Suo Z, Li H. PDHA1 Gene Knockout In Human Esophageal Squamous Cancer Cells Resulted In Greater Warburg Effect And Aggressive Features In Vitro And In Vivo. Onco Targets Ther 2019;12:9899-913. [PMID: 31819487 DOI: 10.2147/OTT.S226851] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
75 Wang Q, Zhang L, Cui Y, Zhang C, Chen H, Gu J, Qian J, Luo C. Increased RLIP76 expression in IDH1 wild‑type glioblastoma multiforme is associated with worse prognosis. Oncol Rep 2020;43:188-200. [PMID: 31746408 DOI: 10.3892/or.2019.7394] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
76 Newman DL, Gregory SL. Co-Operation between Aneuploidy and Metabolic Changes in Driving Tumorigenesis. Int J Mol Sci 2019;20:E4611. [PMID: 31540349 DOI: 10.3390/ijms20184611] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
77 Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DT. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019;8:E1055. [PMID: 31500396 DOI: 10.3390/cells8091055] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 15.3] [Reference Citation Analysis]
78 Anderson G. Breast cancer: Occluded role of mitochondria N-acetylserotonin/melatonin ratio in co-ordinating pathophysiology. Biochem Pharmacol 2019;168:259-68. [PMID: 31310736 DOI: 10.1016/j.bcp.2019.07.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
79 Mikó E, Kovács T, Sebő É, Tóth J, Csonka T, Ujlaki G, Sipos A, Szabó J, Méhes G, Bai P. Microbiome-Microbial Metabolome-Cancer Cell Interactions in Breast Cancer-Familiar, but Unexplored. Cells 2019;8:E293. [PMID: 30934972 DOI: 10.3390/cells8040293] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 15.3] [Reference Citation Analysis]
80 Adrián P, Alexis RG, Roderick A, Kaylie D, Miguel XF, Giovanna B, José MP. Naphthol-derived Betti bases as potential SLC6A14 blockers. Journal of Molecular and Clinical Medicine 2019;2:35. [DOI: 10.31083/j.jmcm.2019.02.7181] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]