BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches. Front Oncol 2019;9:1143. [PMID: 31737570 DOI: 10.3389/fonc.2019.01143] [Cited by in Crossref: 117] [Cited by in F6Publishing: 215] [Article Influence: 39.0] [Reference Citation Analysis]
Number Citing Articles
1 Mahar R, Ragavan M, Chang MC, Hardiman S, Moussatche N, Behar A, Renne R, Merritt ME. Metabolic signatures associated with oncolytic myxoma viral infections. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-15562-3] [Reference Citation Analysis]
2 Shegay PV, Zabolotneva AA, Shatova OP, Shestopalov AV, Kaprin AD. Evolutionary View on Lactate-Dependent Mechanisms of Maintaining Cancer Cell Stemness and Reprimitivization. Cancers 2022;14:4552. [DOI: 10.3390/cancers14194552] [Reference Citation Analysis]
3 Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F, Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022;15. [DOI: 10.1186/s13045-022-01349-6] [Reference Citation Analysis]
4 Nair R, Gupta P, Shanmugam M. Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy. Front Oncol 2022;12:1000106. [DOI: 10.3389/fonc.2022.1000106] [Reference Citation Analysis]
5 Xiang J, Su R, Wu S, Zhou L. Construction of a prognostic signature for serous ovarian cancer based on lactate metabolism-related genes. Front Oncol 2022;12:967342. [DOI: 10.3389/fonc.2022.967342] [Reference Citation Analysis]
6 Chen L, Yang P, Al Haq AT, Hwang P, Lai Y, Weng Y, Chen MA, Hsu H. Oligo-Fucoidan supplementation enhances the effect of Olaparib on preventing metastasis and recurrence of triple-negative breast cancer in mice. J Biomed Sci 2022;29. [DOI: 10.1186/s12929-022-00855-6] [Reference Citation Analysis]
7 Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, Wu J, Sun C. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol 2022;13:979116. [DOI: 10.3389/fimmu.2022.979116] [Reference Citation Analysis]
8 Maschari D, Saxena G, Law TD, Walsh E, Campbell MC, Consitt LA. Lactate-induced lactylation in skeletal muscle is associated with insulin resistance in humans. Front Physiol 2022;13:951390. [DOI: 10.3389/fphys.2022.951390] [Reference Citation Analysis]
9 Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F, Moiseyenko V. Tumor acidity: From hallmark of cancer to target of treatment. Front Oncol 2022;12:979154. [DOI: 10.3389/fonc.2022.979154] [Reference Citation Analysis]
10 Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022;9:924192. [PMID: 35990343 DOI: 10.3389/fnut.2022.924192] [Reference Citation Analysis]
11 Brandão AS, Borbinha J, Pereira T, Brito PH, Lourenço R, Bensimon-brito A, Jacinto A. A regeneration-triggered metabolic adaptation is necessary for cell identity transitions and cell cycle re-entry to support blastema formation and bone regeneration. eLife 2022;11:e76987. [DOI: 10.7554/elife.76987] [Reference Citation Analysis]
12 Kwon YJ, Seo EB, Jeong AJ, Lee SH, Noh KH, Lee S, Cho CH, Lee CH, Shin HM, Kim HR, Moon HG, Ye SK. The acidic tumor microenvironment enhances PD-L1 expression via activation of STAT3 in MDA-MB-231 breast cancer cells. BMC Cancer 2022;22:852. [PMID: 35927628 DOI: 10.1186/s12885-022-09956-9] [Reference Citation Analysis]
13 Bagué S, León X, Terra X, Lejeune M, Camacho M, Avilés‐jurado F. Prognostic capacity of the transcriptional expression of lactate dehydrogenase A in patients with head and neck squamous cell carcinoma. Head & Neck. [DOI: 10.1002/hed.27161] [Reference Citation Analysis]
14 Hsieh C, Sung C, Shen Y(, Lai Y, Lu K, Lin G. Developing a Method to Estimate the Downstream Metabolite Signals from Hyperpolarized [1-13C]Pyruvate. Sensors 2022;22:5480. [DOI: 10.3390/s22155480] [Reference Citation Analysis]
15 Gillson J, Abd El-aziz YS, Leck LYW, Jansson PJ, Pavlakis N, Samra JS, Mittal A, Sahni S. Autophagy: A Key Player in Pancreatic Cancer Progression and a Potential Drug Target. Cancers 2022;14:3528. [DOI: 10.3390/cancers14143528] [Reference Citation Analysis]
16 Pereira M, Matuszewska K, Glogova A, Petrik J. Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers 2022;14:3500. [DOI: 10.3390/cancers14143500] [Reference Citation Analysis]
17 Wang C, Qu Z, Chen L, Pan Y, Tang Y, Hu G, Gao R, Niu R, Liu Q, Gao X, Fang Y. Characterization of Lactate Metabolism Score in Breast and Thyroid Cancers to Assist Immunotherapy via Large-Scale Transcriptomic Data Analysis. Front Pharmacol 2022;13:928419. [DOI: 10.3389/fphar.2022.928419] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Gu J, Sun J, Liu Y, Chong G, Li Y, Dong H. Nanosystem-mediated lactate modulation in the tumor micro environment for enhanced cancer therapy. Nano Res . [DOI: 10.1007/s12274-022-4620-z] [Reference Citation Analysis]
19 De Re V, Rossetto A, Rosignoli A, Muraro E, Racanelli V, Tornesello ML, Zompicchiatti A, Uzzau A. Hepatocellular Carcinoma Intrinsic Cell Death Regulates Immune Response and Prognosis. Front Oncol 2022;12:897703. [DOI: 10.3389/fonc.2022.897703] [Reference Citation Analysis]
20 Mortezaee K, Majidpoor J. Dysregulated metabolism: A friend-to-foe skewer of macrophages. International Reviews of Immunology. [DOI: 10.1080/08830185.2022.2095374] [Reference Citation Analysis]
21 Ng YS, Lee D, Liu C, Tung C, He S, Wang H. White Spot Syndrome Virus Triggers a Glycolytic Pathway in Shrimp Immune Cells (Hemocytes) to Benefit Its Replication. Front Immunol 2022;13:901111. [DOI: 10.3389/fimmu.2022.901111] [Reference Citation Analysis]
22 Kalyanaraman B, Cheng G, Hardy M. Therapeutic Targeting of Tumor Cells and Tumor Immune Microenvironment Vulnerabilities. Front Oncol 2022;12:816504. [PMID: 35756631 DOI: 10.3389/fonc.2022.816504] [Reference Citation Analysis]
23 Passaniti A, Kim MS, Polster BM, Shapiro P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol Carcinog 2022. [PMID: 35723497 DOI: 10.1002/mc.23436] [Reference Citation Analysis]
24 Navarro C, Ortega Á, Santeliz R, Garrido B, Chacín M, Galban N, Vera I, De Sanctis JB, Bermúdez V. Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches. Pharmaceutics 2022;14:1303. [PMID: 35745875 DOI: 10.3390/pharmaceutics14061303] [Reference Citation Analysis]
25 Tian H, Zhou L, Wang Y, Nice EC, Huang C, Zhang H. A targeted nanomodulator capable of manipulating tumor microenvironment against metastasis. J Control Release 2022;348:590-600. [PMID: 35716882 DOI: 10.1016/j.jconrel.2022.06.022] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
26 Bandopadhyay S, Prasad P, Ray U, Das Ghosh D, Roy SS. SIRT6 promotes mitochondrial fission and subsequent cellular invasion in ovarian cancer. FEBS Open Bio 2022. [PMID: 35686673 DOI: 10.1002/2211-5463.13452] [Reference Citation Analysis]
27 Tian LR, Lin MZ, Zhong HH, Cai YJ, Li B, Xiao ZC, Shuai XT. Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Biomater Sci 2022. [PMID: 35686599 DOI: 10.1039/d2bm00650b] [Reference Citation Analysis]
28 Simula L, Ollivier E, Icard P, Donnadieu E. Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration? Cells 2022;11:1854. [PMID: 35681548 DOI: 10.3390/cells11111854] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Reyna-Hernández MA, Alarcón-Romero LDC, Ortiz-Ortiz J, Illades-Aguiar B, Jiménez-López MA, Ocampo-Bárcenas A, Morrugares-Ixtepan MO, Torres-Rojas FI. GLUT1, LDHA, and MCT4 Expression Is Deregulated in Cervical Cancer and Precursor Lesions. J Histochem Cytochem 2022;70:437-46. [PMID: 35615882 DOI: 10.1369/00221554221101662] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Ding M, Kong X, Chen W, Yan L, Huang H, Lv Z, Jiang P, Mu A, Huang C, Shi J. Efficient starvation therapy with three-pathway blocking in combination with PTT/CDT for TME reversal and tumor apoptosis. Journal of Industrial and Engineering Chemistry 2022;110:456-70. [DOI: 10.1016/j.jiec.2022.03.022] [Reference Citation Analysis]
31 Kim SK, Cho SW. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front Pharmacol 2022;13:868695. [DOI: 10.3389/fphar.2022.868695] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Zhang Y, Xu L, Ge J. Multienzyme System in Amorphous Metal–Organic Frameworks for Intracellular Lactate Detection. Nano Lett . [DOI: 10.1021/acs.nanolett.2c01154] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Gupta GS. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022. [PMID: 35588340 DOI: 10.1007/s10753-022-01680-7] [Reference Citation Analysis]
34 Sitter B, Forsmark A, Solheim O. Elevated Serum Lactate in Glioma Patients: Associated Factors. Front Oncol 2022;12:831079. [DOI: 10.3389/fonc.2022.831079] [Reference Citation Analysis]
35 Ma S, Adzavon YM, Wen X, Zhao P, Xie F, Liu M, Ma X. Novel Insights in the Regulatory Mechanisms of Ferroptosis in Hepatocellular Carcinoma. Front Cell Dev Biol 2022;10:873029. [DOI: 10.3389/fcell.2022.873029] [Reference Citation Analysis]
36 Freire Jorge P, Goodwin ML, Renes MH, Nijsten MW, Pamenter M. Low Cancer Incidence in Naked Mole-Rats May Be Related to Their Inability to Express the Warburg Effect. Front Physiol 2022;13:859820. [DOI: 10.3389/fphys.2022.859820] [Reference Citation Analysis]
37 Erbani J, Boon M, Akkari L. Therapy-induced shaping of the glioblastoma microenvironment: Macrophages at play. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.05.003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Gu I, Gregory E, Atwood C, Lee SO, Song YH. Exploring the Role of Metabolites in Cancer and the Associated Nerve Crosstalk. Nutrients 2022;14:1722. [PMID: 35565690 DOI: 10.3390/nu14091722] [Reference Citation Analysis]
39 Zhao L, Liu Y, Zhang S, Wei L, Cheng H, Wang J, Wang J. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death Dis 2022;13:378. [PMID: 35444235 DOI: 10.1038/s41419-022-04821-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
40 Xu W, Wang Y, Yang Z, Li J, Li R, Liu F. New Insights Into a Classification-Based Microvascular Invasion Prediction Model in Hepatocellular Carcinoma: A Multicenter Study. Front Oncol 2022;12:796311. [PMID: 35433417 DOI: 10.3389/fonc.2022.796311] [Reference Citation Analysis]
41 Ishihara S, Hata K, Hirose K, Okui T, Toyosawa S, Uzawa N, Nishimura R, Yoneda T. The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer. Sci Rep 2022;12:6261. [PMID: 35428832 DOI: 10.1038/s41598-022-10143-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Lei L, Ma B, Xu C, Liu H. Emerging Tumor-on-Chips with Electrochemical Biosensors. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116640] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Torrisi F, Alberghina C, D’aprile S, Pavone AM, Longhitano L, Giallongo S, Tibullo D, Di Rosa M, Zappalà A, Cammarata FP, Russo G, Ippolito M, Cuttone G, Li Volti G, Vicario N, Parenti R. The Hallmarks of Glioblastoma: Heterogeneity, Intercellular Crosstalk and Molecular Signature of Invasiveness and Progression. Biomedicines 2022;10:806. [DOI: 10.3390/biomedicines10040806] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
44 Kumar M, Nanga RPR, Verma G, Wilson N, Brisset JC, Nath K, Chawla S. Emerging MR Imaging and Spectroscopic Methods to Study Brain Tumor Metabolism. Front Neurol 2022;13:789355. [DOI: 10.3389/fneur.2022.789355] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Wang W, Hao LP, Song H, Chu XY, Wang R. The Potential Roles of Exosomal Non-Coding RNAs in Hepatocellular Carcinoma. Front Oncol 2022;12:790916. [PMID: 35280805 DOI: 10.3389/fonc.2022.790916] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Wik JA, Skålhegg BS. T Cell Metabolism in Infection. Front Immunol 2022;13:840610. [DOI: 10.3389/fimmu.2022.840610] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
47 Ma H, Liu Z, Koshy P, Sorrell CC, Hart JN. Density Functional Theory Investigation of the Biocatalytic Mechanisms of pH-Driven Biomimetic Behavior in CeO2. ACS Appl Mater Interfaces 2022;14:11937-49. [PMID: 35229603 DOI: 10.1021/acsami.1c24686] [Reference Citation Analysis]
48 Hönigova K, Navratil J, Peltanova B, Polanska HH, Raudenska M, Masarik M. Metabolic tricks of cancer cells. Biochim Biophys Acta Rev Cancer 2022;:188705. [PMID: 35276232 DOI: 10.1016/j.bbcan.2022.188705] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
49 Govoni M, Rossi V, Di Stefano G, Manerba M. Lactate Upregulates the Expression of DNA Repair Genes, Causing Intrinsic Resistance of Cancer Cells to Cisplatin. Pathol Oncol Res 2021;27:1609951. [PMID: 34987311 DOI: 10.3389/pore.2021.1609951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Chu X, Di C, Chang P, Li L, Feng Z, Xiao S, Yan X, Xu X, Li H, Qi R, Gong H, Zhao Y, Xiao F, Chang Z. Lactylated Histone H3K18 as a Potential Biomarker for the Diagnosis and Predicting the Severity of Septic Shock. Front Immunol 2021;12:786666. [PMID: 35069560 DOI: 10.3389/fimmu.2021.786666] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
51 Jaiswara PK, Kumar A. Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis. Environ Toxicol 2022. [PMID: 35199915 DOI: 10.1002/tox.23497] [Reference Citation Analysis]
52 Aramini B, Masciale V, Grisendi G, Bertolini F, Maur M, Guaitoli G, Chrystel I, Morandi U, Stella F, Dominici M, Haider KH. Dissecting Tumor Growth: The Role of Cancer Stem Cells in Drug Resistance and Recurrence. Cancers (Basel) 2022;14:976. [PMID: 35205721 DOI: 10.3390/cancers14040976] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
53 Chakraborty P, Ahil SB, Jamma T, Yogeeswari P. Combining structure-based and 3D QSAR pharmacophore models to discover diverse ligands against EGFR in oral cancer. Future Med Chem 2022. [PMID: 35167330 DOI: 10.4155/fmc-2021-0205] [Reference Citation Analysis]
54 Baryła M, Semeniuk-Wojtaś A, Róg L, Kraj L, Małyszko M, Stec R. Oncometabolites-A Link between Cancer Cells and Tumor Microenvironment. Biology (Basel) 2022;11:270. [PMID: 35205136 DOI: 10.3390/biology11020270] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Xu Y, Zhou X, Zhang S, Nanding A, Xuan Q. Expression and Prognostic Value of Glucose Transporter 3 in Diffuse Large B Cell Lymphoma. OTT 2022;Volume 15:181-91. [DOI: 10.2147/ott.s338826] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Miller HA, Lowengrub J, Frieboes HB. Modeling of Tumor Growth with Input from Patient-Specific Metabolomic Data. Ann Biomed Eng 2022. [PMID: 35083584 DOI: 10.1007/s10439-022-02904-5] [Reference Citation Analysis]
57 Raj S, Kesari KK, Kumar A, Rathi B, Sharma A, Gupta PK, Jha SK, Jha NK, Slama P, Roychoudhury S, Kumar D. Molecular mechanism(s) of regulation(s) of c-MET/HGF signaling in head and neck cancer. Mol Cancer 2022;21. [DOI: 10.1186/s12943-022-01503-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
58 Bienkowska KJ, Hanley CJ, Thomas GJ. Cancer-Associated Fibroblasts in Oral Cancer: A Current Perspective on Function and Potential for Therapeutic Targeting. Front Oral Health 2021;2:686337. [PMID: 35048030 DOI: 10.3389/froh.2021.686337] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
59 Suteau V, Bukasa-Kakamba J, Virjogh-Cenciu B, Adenis A, Sabbah N, Drak Alsibai K. Pathological Significance of GLUT-1 Expression in Breast Cancer Cells in Diabetic and Obese Patients: The French Guiana Study. Cancers (Basel) 2022;14:437. [PMID: 35053598 DOI: 10.3390/cancers14020437] [Reference Citation Analysis]
60 Harrison MAA, Hochreiner EM, Benjamin BP, Lawler SE, Zwezdaryk KJ. Metabolic Reprogramming of Glioblastoma Cells during HCMV Infection Induces Secretome-Mediated Paracrine Effects in the Microenvironment. Viruses 2022;14:103. [PMID: 35062307 DOI: 10.3390/v14010103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Rostamian H, Khakpoor-Koosheh M, Jafarzadeh L, Masoumi E, Fallah-Mehrjardi K, Tavassolifar MJ, M Pawelek J, Mirzaei HR, Hadjati J. Restricting tumor lactic acid metabolism using dichloroacetate improves T cell functions. BMC Cancer 2022;22:39. [PMID: 34991504 DOI: 10.1186/s12885-021-09151-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Filippi L, Pini A, Cammalleri M, Bagnoli P, Dal Monte M. β3-Adrenoceptor, a novel player in the round-trip from neonatal diseases to cancer: Suggestive clues from embryo. Med Res Rev 2021. [PMID: 34967048 DOI: 10.1002/med.21874] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
63 Monteiro MV, Gaspar VM, Mendes L, Duarte IF, Mano JF. Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies. Small Methods 2021;5:e2001207. [PMID: 34928079 DOI: 10.1002/smtd.202001207] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
64 Manoj KM, Nirusimhan V, Parashar A, Edward J, Gideon DA. Murburn precepts for lactic-acidosis, Cori cycle, and Warburg effect: Interactive dynamics of dehydrogenases, protons, and oxygen. J Cell Physiol 2021. [PMID: 34927737 DOI: 10.1002/jcp.30661] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
65 Dikshit A, Lu J, Ford AE, Degan S, Jin YJ, Sun H, Nichols A, Salama AKS, Beasley G, Gooden D, Zhang JY. Potential Utility of Synthetic D-Lactate Polymers in Skin Cancer. JID Innov 2021;1:100043. [PMID: 34909738 DOI: 10.1016/j.xjidi.2021.100043] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Pavel P, Leman G, Hermann M, Ploner C, Eichmann TO, Minzaghi D, Radner FPW, Del Frari B, Gruber R, Dubrac S. Peroxisomal Fatty Acid Oxidation and Glycolysis Are Triggered in Mouse Models of Lesional Atopic Dermatitis. JID Innov 2021;1:100033. [PMID: 34909730 DOI: 10.1016/j.xjidi.2021.100033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
67 Schenz J, Heilig L, Lohse T, Tichy L, Bomans K, Büttner M, Weigand MA, Uhle F. Extracellular Lactate Acts as a Metabolic Checkpoint and Shapes Monocyte Function Time Dependently. Front Immunol 2021;12:729209. [PMID: 34899690 DOI: 10.3389/fimmu.2021.729209] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
68 Bi Q, Luo R, Li Y, Zhao J, Fu X, Chen H, Lv Y, Liu Z, Liang Q, Tang Q. Low Inorganic Phosphate Stress Inhibits Liver Cancer Progression: from In Vivo to In Vitro. Advanced Therapeutics 2022;5:2100224. [DOI: 10.1002/adtp.202100224] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Mishra D, Banerjee D. Metabolic Interactions Between Tumor and Stromal Cells in the Tumor Microenvironment. Adv Exp Med Biol 2021;1350:101-21. [PMID: 34888846 DOI: 10.1007/978-3-030-83282-7_5] [Reference Citation Analysis]
70 Chakraborty S, Carnazza M, Jarboe T, DeSouza N, Li XM, Moscatello A, Geliebter J, Tiwari RK. Disruption of Cell-Cell Communication in Anaplastic Thyroid Cancer as an Immunotherapeutic Opportunity. Adv Exp Med Biol 2021;1350:33-66. [PMID: 34888843 DOI: 10.1007/978-3-030-83282-7_2] [Reference Citation Analysis]
71 Pansy K, Uhl B, Krstic J, Szmyra M, Fechter K, Santiso A, Thüminger L, Greinix H, Kargl J, Prochazka K, Feichtinger J, Deutsch AJ. Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. Int J Mol Sci 2021;22:13311. [PMID: 34948104 DOI: 10.3390/ijms222413311] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
72 Huang S, Zhu W, Zhang F, Chen G, Kou X, Yang X, Ouyang G, Shen J. Silencing of Pyruvate Kinase M2 via a Metal-Organic Framework Based Theranostic Gene Nanomedicine for Triple-Negative Breast Cancer Therapy. ACS Appl Mater Interfaces 2021;13:56972-87. [PMID: 34797638 DOI: 10.1021/acsami.1c18053] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
73 Baker F, Polat IH, Abou-El-Ardat K, Alshamleh I, Thoelken M, Hymon D, Gubas A, Koschade SE, Vischedyk JB, Kaulich M, Schwalbe H, Shaid S, Brandts CH. Metabolic Rewiring Is Essential for AML Cell Survival to Overcome Autophagy Inhibition by Loss of ATG3. Cancers (Basel) 2021;13:6142. [PMID: 34885250 DOI: 10.3390/cancers13236142] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
74 Yu J, Zhang H, Zhao C, Li G, Zhang Y, Sun Y. CircRNA circ_0008037 facilitates tumor growth and the Warburg effect via upregulating NUCKS1 by binding to miR-433-3p in non-small cell lung cancer. Thorac Cancer 2021. [PMID: 34850570 DOI: 10.1111/1759-7714.14235] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
75 Ringquist R, Ghoshal D, Jain R, Roy K. Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021;179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
76 Tian F, Wang S, Shi K, Zhong X, Gu Y, Fan Y, Zhang Y, Yang M. Dual-Depletion of Intratumoral Lactate and ATP with Radicals Generation for Cascade Metabolic-Chemodynamic Therapy. Adv Sci (Weinh) 2021;8:e2102595. [PMID: 34716681 DOI: 10.1002/advs.202102595] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
77 Reynolds S, Kazan SM, Anton A, Alizadeh T, Gunn RN, Paley MN, Tozer GM, Cunningham VJ. Kinetic modelling of dissolution dynamic nuclear polarisation 13 C magnetic resonance spectroscopy data for analysis of pyruvate delivery and fate in tumours. NMR Biomed 2021;:e4650. [PMID: 34841602 DOI: 10.1002/nbm.4650] [Reference Citation Analysis]
78 Li R, Li H, Zhu L, Zhang X, Liu D, Li Q, Ni B, Hu L, Zhang Z, Zhang Y, Wang X, Jiang SH. Reciprocal regulation of LOXL2 and HIF1α drives the Warburg effect to support pancreatic cancer aggressiveness. Cell Death Dis 2021;12:1106. [PMID: 34836938 DOI: 10.1038/s41419-021-04391-3] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
79 Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021;26:7134. [PMID: 34885716 DOI: 10.3390/molecules26237134] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Wang J, Delfarah A, Gelbach PE, Fong E, Macklin P, Mumenthaler SM, Graham NA, Finley SD. Elucidating tumor-stromal metabolic crosstalk in colorectal cancer through integration of constraint-based models and LC-MS metabolomics. Metab Eng 2021;69:175-87. [PMID: 34838998 DOI: 10.1016/j.ymben.2021.11.006] [Reference Citation Analysis]
81 Ito R, Yashiro M, Tsukioka T, Izumi N, Komatsu H, Inoue H, Yamamoto Y, Nishiyama N. Pyruvate dehydrogenase E1α represents a reliable prognostic predictor for patients with non-small cell lung cancer resected via curative operation. J Thorac Dis 2021;13:5691-700. [PMID: 34795919 DOI: 10.21037/jtd-21-1463] [Reference Citation Analysis]
82 Liu Y, Duan C, Dai R, Zeng Y. Ferroptosis-mediated Crosstalk in the Tumor Microenvironment Implicated in Cancer Progression and Therapy. Front Cell Dev Biol 2021;9:739392. [PMID: 34796174 DOI: 10.3389/fcell.2021.739392] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
83 Skibbe K, Brethack AK, Sünderhauf A, Ragab M, Raschdorf A, Hicken M, Schlichting H, Preira J, Brandt J, Castven D, Föh B, Pagel R, Marquardt JU, Sina C, Derer S. Colorectal Cancer Progression Is Potently Reduced by a Glucose-Free, High-Protein Diet: Comparison to Anti-EGFR Therapy. Cancers (Basel) 2021;13:5817. [PMID: 34830971 DOI: 10.3390/cancers13225817] [Reference Citation Analysis]
84 Ravera S, Bertola N, Pasquale C, Bruno S, Benedicenti S, Ferrando S, Zekiy A, Arany P, Amaroli A. 808-nm Photobiomodulation Affects the Viability of a Head and Neck Squamous Carcinoma Cellular Model, Acting on Energy Metabolism and Oxidative Stress Production. Biomedicines 2021;9:1717. [PMID: 34829946 DOI: 10.3390/biomedicines9111717] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
85 Kopecka J, Salaroglio IC, Perez-Ruiz E, Sarmento-Ribeiro AB, Saponara S, De Las Rivas J, Riganti C. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat 2021;:100787. [PMID: 34840068 DOI: 10.1016/j.drup.2021.100787] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
86 Karki P, Sensenbach S, Angardi V, Orman MA. BRAF-Inhibitor-Induced Metabolic Alterations in A375 Melanoma Cells. Metabolites 2021;11:777. [PMID: 34822435 DOI: 10.3390/metabo11110777] [Reference Citation Analysis]
87 Noe JT, Rendon BE, Geller AE, Conroy LR, Morrissey SM, Young LEA, Bruntz RC, Kim EJ, Wise-Mitchell A, Barbosa de Souza Rizzo M, Relich ER, Baby BV, Johnson LA, Affronti HC, McMasters KM, Clem BF, Gentry MS, Yan J, Wellen KE, Sun RC, Mitchell RA. Lactate supports a metabolic-epigenetic link in macrophage polarization. Sci Adv 2021;7:eabi8602. [PMID: 34767443 DOI: 10.1126/sciadv.abi8602] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
88 Roy S, Kumaravel S, Banerjee P, White TK, O'Brien A, Seelig C, Chauhan R, Ekser B, Bayless KJ, Alpini G, Glaser SS, Chakraborty S. Tumor Lymphatic Interactions Induce CXCR2-CXCL5 Axis and Alter Cellular Metabolism and Lymphangiogenic Pathways to Promote Cholangiocarcinoma. Cells 2021;10:3093. [PMID: 34831316 DOI: 10.3390/cells10113093] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
89 Wang Z, Wang D, Jiang K, Guo Y, Li Z, Jiang R, Han R, Li G, Tian Y, Li H, Kang X, Liu X. A Comprehensive Proteome and Acetyl-Proteome Atlas Reveals Molecular Mechanisms Adapting to the Physiological Changes From Pre-laying to Peak-Laying Stage in Liver of Hens (Gallus gallus). Front Vet Sci 2021;8:700669. [PMID: 34746273 DOI: 10.3389/fvets.2021.700669] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
90 Cargill KR, Hasken WL, Gay CM, Byers LA. Alternative Energy: Breaking Down the Diverse Metabolic Features of Lung Cancers. Front Oncol 2021;11:757323. [PMID: 34745994 DOI: 10.3389/fonc.2021.757323] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
91 Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021;:101389. [PMID: 34749013 DOI: 10.1016/j.molmet.2021.101389] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
92 Kooshki L, Mahdavi P, Fakhri S, Akkol EK, Khan H. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors 2021. [PMID: 34724274 DOI: 10.1002/biof.1799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
93 Drapela S, Gomes AP. Metabolic requirements of the metastatic cascade. Curr Opin Syst Biol 2021;28:100381. [PMID: 34693082 DOI: 10.1016/j.coisb.2021.100381] [Reference Citation Analysis]
94 Alhusban AA, Hamadneh LA, Albustanji S, Shallan AI. Lactate and pyruvate levels correlation with lactate dehydrogenase gene expression and glucose consumption in Tamoxifen-resistant MCF-7 cells using capillary electrophoresis with contactless conductivity detection (CE-C4 D). Electrophoresis 2021. [PMID: 34687464 DOI: 10.1002/elps.202100217] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
95 Dall'Olio FG, Marabelle A, Caramella C, Garcia C, Aldea M, Chaput N, Robert C, Besse B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021. [PMID: 34642484 DOI: 10.1038/s41571-021-00564-3] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
96 Truong LH, Pauklin S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers (Basel) 2021;13:5028. [PMID: 34638513 DOI: 10.3390/cancers13195028] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
97 Wei G, Sun H, Dong K, Hu L, Wang Q, Zhuang Q, Zhu Y, Zhang X, Shao Y, Tang H, Li Z, Chen S, Lu J, Wang Y, Gan X, Zhong TP, Gui D, Hu X, Wang L, Liu J. The thermogenic activity of adjacent adipocytes fuels the progression of ccRCC and compromises anti-tumor therapeutic efficacy. Cell Metab 2021;33:2021-2039.e8. [PMID: 34508696 DOI: 10.1016/j.cmet.2021.08.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
98 da Costa VR, Araldi RP, Vigerelli H, D'Ámelio F, Mendes TB, Gonzaga V, Policíquio B, Colozza-Gama GA, Valverde CW, Kerkis I. Exosomes in the Tumor Microenvironment: From Biology to Clinical Applications. Cells 2021;10:2617. [PMID: 34685596 DOI: 10.3390/cells10102617] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
99 Suwannakul N, Armartmuntree N, Thanan R, Midorikawa K, Kon T, Oikawa S, Kobayashi H, Ma N, Kawanishi S, Murata M. Targeting fructose metabolism by glucose transporter 5 regulation in human cholangiocarcinoma. Genes & Diseases 2021. [DOI: 10.1016/j.gendis.2021.09.002] [Reference Citation Analysis]
100 Zhu P, Luo W, Qian J, Meng C, Shan W, Xu Z, Zhang W, Liu X, Ling Y. GSH/ROS Dual-Responsive Supramolecular Nanoparticles Based on Pillar[6]arene and Betulinic Acid Prodrug for Chemo-Chemodynamic Combination Therapy. Molecules 2021;26:5900. [PMID: 34641443 DOI: 10.3390/molecules26195900] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
101 Zhang A, Zhong G, Wang L, Cai R, Han R, Xu C, Chen S, Sun P, Chen H. Dynamic serum biomarkers to predict the efficacy of PD-1 in patients with nasopharyngeal carcinoma. Cancer Cell Int 2021;21:518. [PMID: 34583688 DOI: 10.1186/s12935-021-02217-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
102 Kozal K, Jóźwiak P, Krześlak A. Contemporary Perspectives on the Warburg Effect Inhibition in Cancer Therapy. Cancer Control 2021;28:10732748211041243. [PMID: 34554006 DOI: 10.1177/10732748211041243] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
103 Lu Q, Tian X, Wu H, Huang J, Li M, Mei Z, Zhou L, Xie H, Zheng S. Metabolic Changes of Hepatocytes in NAFLD. Front Physiol 2021;12:710420. [PMID: 34526911 DOI: 10.3389/fphys.2021.710420] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
104 Cao L, Huang C, Cui Zhou D, Hu Y, Lih TM, Savage SR, Krug K, Clark DJ, Schnaubelt M, Chen L, da Veiga Leprevost F, Eguez RV, Yang W, Pan J, Wen B, Dou Y, Jiang W, Liao Y, Shi Z, Terekhanova NV, Cao S, Lu RJ, Li Y, Liu R, Zhu H, Ronning P, Wu Y, Wyczalkowski MA, Easwaran H, Danilova L, Mer AS, Yoo S, Wang JM, Liu W, Haibe-Kains B, Thiagarajan M, Jewell SD, Hostetter G, Newton CJ, Li QK, Roehrl MH, Fenyö D, Wang P, Nesvizhskii AI, Mani DR, Omenn GS, Boja ES, Mesri M, Robles AI, Rodriguez H, Bathe OF, Chan DW, Hruban RH, Ding L, Zhang B, Zhang H; Clinical Proteomic Tumor Analysis Consortium. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021;184:5031-5052.e26. [PMID: 34534465 DOI: 10.1016/j.cell.2021.08.023] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
105 Lee S, Shanti A. Effect of Exogenous pH on Cell Growth of Breast Cancer Cells. Int J Mol Sci 2021;22:9910. [PMID: 34576073 DOI: 10.3390/ijms22189910] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
106 Frades I, Foguet C, Cascante M, Araúzo-Bravo MJ. Genome Scale Modeling to Study the Metabolic Competition between Cells in the Tumor Microenvironment. Cancers (Basel) 2021;13:4609. [PMID: 34572839 DOI: 10.3390/cancers13184609] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
107 Zhang L, Gui X, Zhang X, Dai Y, Wang X, Tong X, Li S. Endothelial Cell: Lactate Metabolic Player in Organ Regeneration. Front Cell Dev Biol 2021;9:701672. [PMID: 34485288 DOI: 10.3389/fcell.2021.701672] [Reference Citation Analysis]
108 Chamseddine AN, Assi T, Mir O, Chouaib S. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. Pharmacol Ther 2021;:107986. [PMID: 34481812 DOI: 10.1016/j.pharmthera.2021.107986] [Reference Citation Analysis]
109 Kubicka A, Matczak K, Łabieniec-Watała M. More Than Meets the Eye Regarding Cancer Metabolism. Int J Mol Sci 2021;22:9507. [PMID: 34502416 DOI: 10.3390/ijms22179507] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
110 Nguyen KTL, Chiou JY, Liu YC, Cheng FJ, Shen YC, Chen CJ, Tang CH, Huang WC, Chen CH, Tu CY. l-lactic acidosis confers insensitivity to PKC inhibitors by competing for uptake via monocarboxylate transporters. J Cell Physiol 2021. [PMID: 34472101 DOI: 10.1002/jcp.30570] [Reference Citation Analysis]
111 Gumà J, Adriá-Cebrián J, Ruiz-Aguado B, Albacar C, Girona J, Rodríguez-Calvo R, Martínez-Micaelo N, Lam EWF, Masana L, Guaita-Esteruelas S. Altered Serum Metabolic Profile Assessed by Advanced 1H-NMR in Breast Cancer Patients. Cancers (Basel) 2021;13:4281. [PMID: 34503091 DOI: 10.3390/cancers13174281] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
112 Hui SCN, Zöllner HJ, Oeltzschner G, Edden RAE, Saleh MG. In vivo spectral editing of phosphorylethanolamine. Magn Reson Med 2021. [PMID: 34411324 DOI: 10.1002/mrm.28976] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
113 Tan JL, Djayakarsana D, Wang H, Chan RW, Bailey C, Lau AZ. Deuterium MRS of early treatment-induced changes in tumour lactate in vitro. NMR Biomed 2021;:e4599. [PMID: 34405471 DOI: 10.1002/nbm.4599] [Reference Citation Analysis]
114 D'Amico F, Perrone AM, Rampelli S, Coluccelli S, Barone M, Ravegnini G, Fabbrini M, Brigidi P, De Iaco P, Turroni S. Gut Microbiota Dynamics during Chemotherapy in Epithelial Ovarian Cancer Patients Are Related to Therapeutic Outcome. Cancers (Basel) 2021;13:3999. [PMID: 34439153 DOI: 10.3390/cancers13163999] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
115 Manoharan I, Prasad PD, Thangaraju M, Manicassamy S. Lactate-Dependent Regulation of Immune Responses by Dendritic Cells and Macrophages. Front Immunol 2021;12:691134. [PMID: 34394085 DOI: 10.3389/fimmu.2021.691134] [Cited by in F6Publishing: 15] [Reference Citation Analysis]
116 Mishra A, Srivastava A, Pateriya A, Tomar MS, Mishra AK, Shrivastava A. Metabolic reprograming confers tamoxifen resistance in breast cancer. Chem Biol Interact 2021;347:109602. [PMID: 34331906 DOI: 10.1016/j.cbi.2021.109602] [Reference Citation Analysis]
117 Brito A, Merle C, Lagarde P, Faustin B, Devin A, Lartigue L, Chibon F. Cell fusion enhances energy metabolism of mesenchymal tumor hybrid cells to sustain their proliferation and invasion. BMC Cancer 2021;21:863. [PMID: 34320948 DOI: 10.1186/s12885-021-08561-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
118 Liao ZX, Kempson IM, Hsieh CC, Tseng SJ, Yang PC. Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer. Drug Discov Today 2021:S1359-6446(21)00322-6. [PMID: 34325010 DOI: 10.1016/j.drudis.2021.07.014] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
119 Lee YB, Min JK, Kim JG, Cap KC, Islam R, Hossain AJ, Dogsom O, Hamza A, Mahmud S, Choi DR, Kim YS, Koh YH, Kim HA, Chung WS, Suh SW, Park JB. Multiple functions of pyruvate kinase M2 in various cell types. J Cell Physiol 2021. [PMID: 34311499 DOI: 10.1002/jcp.30536] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
120 Banstola A, Poudel K, Kim JO, Jeong JH, Yook S. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. J Control Release 2021;337:505-20. [PMID: 34314800 DOI: 10.1016/j.jconrel.2021.07.038] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
121 Liu KX, Everdell E, Pal S, Haas-Kogan DA, Milligan MG. Harnessing Lactate Metabolism for Radiosensitization. Front Oncol 2021;11:672339. [PMID: 34367959 DOI: 10.3389/fonc.2021.672339] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
122 Maravat M, Bertrand M, Landon C, Fayon F, Morisset-Lopez S, Sarou-Kanian V, Decoville M. Complementary Nuclear Magnetic Resonance-Based Metabolomics Approaches for Glioma Biomarker Identification in a Drosophila melanogaster Model. J Proteome Res 2021;20:3977-91. [PMID: 34286978 DOI: 10.1021/acs.jproteome.1c00304] [Reference Citation Analysis]
123 Ying M, You D, Zhu X, Cai L, Zeng S, Hu X. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol 2021;46:102065. [PMID: 34293554 DOI: 10.1016/j.redox.2021.102065] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
124 Lam Wong KK, Verheyen EM. Metabolic reprogramming in cancer: mechanistic insights from Drosophila. Dis Model Mech 2021;14:1-17. [PMID: 34240146 DOI: 10.1242/dmm.048934] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
125 Bao MH, Wong CC. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021;10:1715. [PMID: 34359884 DOI: 10.3390/cells10071715] [Cited by in F6Publishing: 22] [Reference Citation Analysis]
126 Mannelli M, Gamberi T, Magherini F, Fiaschi T. A Metabolic Change towards Fermentation Drives Cancer Cachexia in Myotubes. Biomedicines 2021;9:698. [PMID: 34203023 DOI: 10.3390/biomedicines9060698] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
127 Wu Q, Yu X, Li J, Sun S, Tu Y. Metabolic regulation in the immune response to cancer. Cancer Commun (Lond) 2021;41:661-94. [PMID: 34145990 DOI: 10.1002/cac2.12182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
128 Kaweme NM, Zhou F. Optimizing NK Cell-Based Immunotherapy in Myeloid Leukemia: Abrogating an Immunosuppressive Microenvironment. Front Immunol 2021;12:683381. [PMID: 34220833 DOI: 10.3389/fimmu.2021.683381] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
129 Mohan AA, Tomaszewski WH, Haskell-Mendoza AP, Hotchkiss KM, Singh K, Reedy JL, Fecci PE, Sampson JH, Khasraw M. Targeting Immunometabolism in Glioblastoma. Front Oncol 2021;11:696402. [PMID: 34222022 DOI: 10.3389/fonc.2021.696402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
130 Cascardo F, Anselmino N, Páez A, Labanca E, Sanchis P, Antico-Arciuch V, Navone N, Gueron G, Vázquez E, Cotignola J. HO-1 Modulates Aerobic Glycolysis through LDH in Prostate Cancer Cells. Antioxidants (Basel) 2021;10:966. [PMID: 34208670 DOI: 10.3390/antiox10060966] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
131 Wan M, Liu Z, Li T, Chen H, Wang Q, Chen T, Tao Y, Mao C. Zwitterion-Based Hydrogen Sulfide Nanomotors Induce Multiple Acidosis in Tumor Cells by Destroying Tumor Metabolic Symbiosis. Angew Chem Int Ed Engl 2021;60:16139-48. [PMID: 33914416 DOI: 10.1002/anie.202104304] [Cited by in F6Publishing: 15] [Reference Citation Analysis]
132 Wang Y, Xiu J, Yang T, Ren C, Yu Z. HSF1 promotes endometriosis development and glycolysis by up-regulating PFKFB3 expression. Reprod Biol Endocrinol 2021;19:86. [PMID: 34107992 DOI: 10.1186/s12958-021-00770-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Dias AS, Helguero L, Almeida CR, Duarte IF. Natural Compounds as Metabolic Modulators of the Tumor Microenvironment. Molecules 2021;26:3494. [PMID: 34201298 DOI: 10.3390/molecules26123494] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
134 Chandel V, Maru S, Kumar A, Kumar A, Sharma A, Rathi B, Kumar D. Role of monocarboxylate transporters in head and neck squamous cell carcinoma. Life Sci 2021;279:119709. [PMID: 34102188 DOI: 10.1016/j.lfs.2021.119709] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
135 Li J, Ma X, Chakravarti D, Shalapour S, DePinho RA. Genetic and biological hallmarks of colorectal cancer. Genes Dev 2021;35:787-820. [PMID: 34074695 DOI: 10.1101/gad.348226.120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
136 Li S, Liu Y, Bai Y, Chen M, Cheng D, Wu M, Xia J. Ras Homolog Family Member F, Filopodia Associated Promotes Hepatocellular Carcinoma Metastasis by Altering the Metabolic Status of Cancer Cells Through RAB3D. Hepatology 2021;73:2361-79. [PMID: 33205519 DOI: 10.1002/hep.31641] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
137 Md Shakhih MF, Rosslan AS, Noor AM, Ramanathan S, Lazim AM, Wahab AA. Review-Enzymatic and Non-Enzymatic Electrochemical Sensor for Lactate Detection in Human Biofluids. J Electrochem Soc 2021;168:067502. [DOI: 10.1149/1945-7111/ac0360] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
138 Pakravan N, Abbasi A, Hassan ZM. Immunotherapy Using Oxygenated Water and Tumor-Derived Exosomes Potentiates Antitumor Immune Response and Attenuates Malignancy Tendency in Mice Model of Breast Cancer. Oxid Med Cell Longev 2021;2021:5529484. [PMID: 34194604 DOI: 10.1155/2021/5529484] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
139 Infantino V, Santarsiero A, Convertini P, Todisco S, Iacobazzi V. Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int J Mol Sci 2021;22:5703. [PMID: 34071836 DOI: 10.3390/ijms22115703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
140 Lee YJ, Park KS, Lee SH. Curcumin Targets Both Apoptosis and Necroptosis in Acidity-Tolerant Prostate Carcinoma Cells. Biomed Res Int 2021;2021:8859181. [PMID: 34095313 DOI: 10.1155/2021/8859181] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
141 Hamadneh L, Al-Lakkis L, Alhusban AA, Tarawneh S, Abu-Irmaileh B, Albustanji S, Al-Bawab AQ. Changes in Lactate Production, Lactate Dehydrogenase Genes Expression and DNA Methylation in Response to Tamoxifen Resistance Development in MCF-7 Cell Line. Genes (Basel) 2021;12:777. [PMID: 34069745 DOI: 10.3390/genes12050777] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
142 Mazzio E, Badisa R, Mack N, Cassim S, Zdralevic M, Pouyssegur J, Soliman KFA. Whole-transcriptome Analysis of Fully Viable Energy Efficient Glycolytic-null Cancer Cells Established by Double Genetic Knockout of Lactate Dehydrogenase A/B or Glucose-6-Phosphate Isomerase. Cancer Genomics Proteomics 2020;17:469-97. [PMID: 32859627 DOI: 10.21873/cgp.20205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
143 Huang J, Zhao X, Li X, Peng J, Yang W, Mi S. HMGCR inhibition stabilizes the glycolytic enzyme PKM2 to support the growth of renal cell carcinoma. PLoS Biol 2021;19:e3001197. [PMID: 33905408 DOI: 10.1371/journal.pbio.3001197] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
144 Pandkar MR, Dhamdhere SG, Shukla S. Oxygen gradient and tumor heterogeneity: The chronicle of a toxic relationship. Biochim Biophys Acta Rev Cancer 2021;1876:188553. [PMID: 33915221 DOI: 10.1016/j.bbcan.2021.188553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
145 Haupt S, Caramia F, Klein SL, Rubin JB, Haupt Y. Sex disparities matter in cancer development and therapy. Nat Rev Cancer 2021;21:393-407. [PMID: 33879867 DOI: 10.1038/s41568-021-00348-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
146 Choksi A, Parulekar A, Pant R, Shah VK, Nimma R, Firmal P, Singh S, Kundu GC, Shukla S, Chattopadhyay S. Tumor suppressor SMAR1 regulates PKM alternative splicing by HDAC6-mediated deacetylation of PTBP1. Cancer Metab 2021;9:16. [PMID: 33863392 DOI: 10.1186/s40170-021-00252-x] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
147 Miller HA, Yin X, Smith SA, Hu X, Zhang X, Yan J, Miller DM, van Berkel VH, Frieboes HB. Evaluation of disease staging and chemotherapeutic response in non-small cell lung cancer from patient tumor-derived metabolomic data. Lung Cancer 2021;156:20-30. [PMID: 33882406 DOI: 10.1016/j.lungcan.2021.04.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
148 Cui J, Guo Y, Wu H, Xiong J, Peng T. Everolimus regulates the activity of gemcitabine-resistant pancreatic cancer cells by targeting the Warburg effect via PI3K/AKT/mTOR signaling. Mol Med 2021;27:38. [PMID: 33849427 DOI: 10.1186/s10020-021-00300-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
149 Su J, Song Q, Qasem S, O'Neill S, Lee J, Furdui CM, Pasche B, Metheny-Barlow L, Masters AH, Lo HW, Xing F, Watabe K, Miller LD, Tatter SB, Laxton AW, Whitlow CT, Chan MD, Soike MH, Ruiz J. Multi-Omics Analysis of Brain Metastasis Outcomes Following Craniotomy. Front Oncol 2020;10:615472. [PMID: 33889540 DOI: 10.3389/fonc.2020.615472] [Cited by in F6Publishing: 21] [Reference Citation Analysis]
150 Wang X, Zhao Y, Shi L, Hu Y, Song G, Cai K, Li M, Luo Z. Tumor-Targeted Disruption of Lactate Transport with Reactivity-Reversible Nanocatalysts to Amplify Oxidative Damage. Small 2021;:e2100130. [PMID: 33811464 DOI: 10.1002/smll.202100130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
151 Prochownik EV, Wang H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021;10:762. [PMID: 33808495 DOI: 10.3390/cells10040762] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
152 Ho JML, Miller CA, Parks SE, Mattia JR, Bennett MR. A suppressor tRNA-mediated feedforward loop eliminates leaky gene expression in bacteria. Nucleic Acids Res 2021;49:e25. [PMID: 33290521 DOI: 10.1093/nar/gkaa1179] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
153 Nadal-Bufi F, Mason JM, Chan LY, Craik DJ, Kaas Q, Troeira Henriques S. Designed β-Hairpins Inhibit LDH5 Oligomerization and Enzymatic Activity. J Med Chem 2021;64:3767-79. [PMID: 33765386 DOI: 10.1021/acs.jmedchem.0c01898] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
154 Ruiz-Iglesias A, Mañes S. The Importance of Mitochondrial Pyruvate Carrier in Cancer Cell Metabolism and Tumorigenesis. Cancers (Basel) 2021;13:1488. [PMID: 33804985 DOI: 10.3390/cancers13071488] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
155 Drexler K, Schmidt KM, Jordan K, Federlin M, Milenkovic VM, Liebisch G, Artati A, Schmidl C, Madej G, Tokarz J, Cecil A, Jagla W, Haerteis S, Aung T, Wagner C, Kolodziejczyk M, Heinke S, Stanton EH, Schwertner B, Riegel D, Wetzel CH, Buchalla W, Proescholdt M, Klein CA, Berneburg M, Schlitt HJ, Brabletz T, Ziegler C, Parkinson EK, Gaumann A, Geissler EK, Adamski J, Haferkamp S, Mycielska ME. Cancer-associated cells release citrate to support tumour metastatic progression. Life Sci Alliance 2021;4:e202000903. [PMID: 33758075 DOI: 10.26508/lsa.202000903] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
156 Läsche M, Urban H, Gallwas J, Gründker C. HPV and Other Microbiota; Who's Good and Who's Bad: Effects of the Microbial Environment on the Development of Cervical Cancer-A Non-Systematic Review. Cells 2021;10:714. [PMID: 33807087 DOI: 10.3390/cells10030714] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
157 Marzano M, Fosso B, Piancone E, Defazio G, Pesole G, De Robertis M. Stem Cell Impairment at the Host-Microbiota Interface in Colorectal Cancer. Cancers (Basel) 2021;13:996. [PMID: 33673612 DOI: 10.3390/cancers13050996] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
158 Arienti C, Pignatta S, Zanoni M, Zamagni A, Cortesi M, Sarnelli A, Romeo A, Arpa D, Longobardi P, Bartolini D, Tosatto L, Naldini A, Tesei A. High-pressure oxygen rewires glucose metabolism of patient-derived glioblastoma cells and fuels inflammasome response. Cancer Lett 2021;506:152-66. [PMID: 33652086 DOI: 10.1016/j.canlet.2021.02.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Qiu J, Zheng Q, Meng X. Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response. Front Oncol 2021;11:628359. [PMID: 33718202 DOI: 10.3389/fonc.2021.628359] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
160 Ornell KJ, Mistretta KS, Ralston CQ, Coburn JM. Development of a stacked, porous silk scaffold neuroblastoma model for investigating spatial differences in cell and drug responsiveness. Biomater Sci 2021;9:1272-90. [PMID: 33336667 DOI: 10.1039/d0bm01153c] [Reference Citation Analysis]
161 Lee TY. Lactate: a multifunctional signaling molecule. Yeungnam Univ J Med 2021;38:183-93. [PMID: 33596629 DOI: 10.12701/yujm.2020.00892] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
162 Arana Echarri A, Beresford M, Campbell JP, Jones RH, Butler R, Gollob KJ, Brum PC, Thompson D, Turner JE. A Phenomic Perspective on Factors Influencing Breast Cancer Treatment: Integrating Aging and Lifestyle in Blood and Tissue Biomarker Profiling. Front Immunol 2020;11:616188. [PMID: 33597950 DOI: 10.3389/fimmu.2020.616188] [Reference Citation Analysis]
163 Weng CY, Kao CX, Chang TS, Huang YH. Immuno-Metabolism: The Role of Cancer Niche in Immune Checkpoint Inhibitor Resistance. Int J Mol Sci 2021;22:1258. [PMID: 33514004 DOI: 10.3390/ijms22031258] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
164 Malkani N, Rashid MU. SARS-COV-2 infection and lung tumor microenvironment. Mol Biol Rep 2021;48:1925-34. [PMID: 33486674 DOI: 10.1007/s11033-021-06149-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
165 Wu S, Kuang H, Ke J, Pi M, Yang DH. Metabolic Reprogramming Induces Immune Cell Dysfunction in the Tumor Microenvironment of Multiple Myeloma. Front Oncol 2020;10:591342. [PMID: 33520703 DOI: 10.3389/fonc.2020.591342] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
166 Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. Adv Therap 2021;4:2000248. [DOI: 10.1002/adtp.202000248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
167 Paredes F, Williams HC, San Martin A. Metabolic adaptation in hypoxia and cancer. Cancer Lett 2021;502:133-42. [PMID: 33444690 DOI: 10.1016/j.canlet.2020.12.020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
168 Li F, Wen N, Hu Q, Yang D, Yue C, Li Z, Lu H. Circular RNA Circ_0001017 Acts as ceRNA Adsorbing miR-197-3p to Regulate PNLIP Signaling and Affect the Proliferation, Apoptosis and Glycolysis of Pancreatic Ductal Adenocarcinoma Cells. J hard tissue biol 2021;30:239-50. [DOI: 10.2485/jhtb.30.239] [Reference Citation Analysis]
169 Cheng MHY, Mo Y, Zheng G. Nano versus Molecular: Optical Imaging Approaches to Detect and Monitor Tumor Hypoxia. Adv Healthc Mater 2021;10:e2001549. [PMID: 33241672 DOI: 10.1002/adhm.202001549] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
170 Esteves M, Monteiro MP, Duarte JA. Role of Regular Physical Exercise in Tumor Vasculature: Favorable Modulator of Tumor Milieu. Int J Sports Med 2021;42:389-406. [PMID: 33307553 DOI: 10.1055/a-1308-3476] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
171 Fischbeck AJ, Ruehland S, Ettinger A, Paetzold K, Masouris I, Noessner E, Mendler AN. Tumor Lactic Acidosis: Protecting Tumor by Inhibiting Cytotoxic Activity Through Motility Arrest and Bioenergetic Silencing. Front Oncol 2020;10:589434. [PMID: 33364193 DOI: 10.3389/fonc.2020.589434] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
172 Peitzsch C, Gorodetska I, Klusa D, Shi Q, Alves TC, Pantel K, Dubrovska A. Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020:S1044-579X(20)30261-3. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
173 Belisario DC, Kopecka J, Pasino M, Akman M, De Smaele E, Donadelli M, Riganti C. Hypoxia Dictates Metabolic Rewiring of Tumors: Implications for Chemoresistance. Cells 2020;9:E2598. [PMID: 33291643 DOI: 10.3390/cells9122598] [Cited by in Crossref: 10] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
174 Chebotarev AS, Pochechuev MS, Lanin AA, Kelmanson IV, Kotova DA, Fetisova ES, Panova AS, Bilan DS, Fedotov AB, Belousov VV, Zheltikov AM. Enhanced-contrast two-photon optogenetic pH sensing and pH-resolved brain imaging. J Biophotonics 2021;14:e202000301. [PMID: 33205577 DOI: 10.1002/jbio.202000301] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
175 Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020;11:543564. [PMID: 33335484 DOI: 10.3389/fphys.2020.543564] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
176 Taddei ML, Pardella E, Pranzini E, Raugei G, Paoli P. Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2020;1874:188442. [DOI: 10.1016/j.bbcan.2020.188442] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
177 Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2021;1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
178 Madda R, Chen CM, Chen CF, Wang JY, Wu PK, Chen WM. Exploring the Proteomic Alterations from Untreated and Cryoablation and Irradiation Treated Giant Cell Tumors of Bone Using Liquid-Chromatography Tandem Mass Spectrometry. Molecules 2020;25:E5355. [PMID: 33207819 DOI: 10.3390/molecules25225355] [Reference Citation Analysis]
179 Ji H, Tan Y, Gan N, Zhang J, Li S, Zheng X, Wang Z, Yi W. Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactatetransportinhibitors. Bioorg Med Chem 2021;29:115870. [PMID: 33221062 DOI: 10.1016/j.bmc.2020.115870] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
180 Madan E, Peixoto ML, Dimitrion P, Eubank TD, Yekelchyk M, Talukdar S, Fisher PB, Mi QS, Moreno E, Gogna R. Cell Competition Boosts Clonal Evolution and Hypoxic Selection in Cancer. Trends Cell Biol 2020;30:967-78. [PMID: 33160818 DOI: 10.1016/j.tcb.2020.10.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
181 Akbulut H. Immune gene therapy of cancer. Turk J Med Sci 2020;50:1679-90. [PMID: 32512674 DOI: 10.3906/sag-2005-327] [Reference Citation Analysis]
182 Yu T, Dong T, Eyvani H, Fang Y, Wang X, Zhang X, Lu X. Metabolic interventions: A new insight into the cancer immunotherapy. Arch Biochem Biophys 2021;697:108659. [PMID: 33144083 DOI: 10.1016/j.abb.2020.108659] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
183 Rashid MM, Lee H, Jung BH. Evaluation of the antitumor effects of PP242 in a colon cancer xenograft mouse model using comprehensive metabolomics and lipidomics. Sci Rep 2020;10:17523. [PMID: 33067464 DOI: 10.1038/s41598-020-73721-w] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
184 Wu F, Cheng Y, Wu L, Zhang W, Zheng W, Wang Q, Cao H, Pan X, Tang W. Emerging Landscapes of Tumor Immunity and Metabolism. Front Oncol 2020;10:575037. [PMID: 33117713 DOI: 10.3389/fonc.2020.575037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
185 Yang K, Xu J, Fan M, Tu F, Wang X, Ha T, Williams DL, Li C. Lactate Suppresses Macrophage Pro-Inflammatory Response to LPS Stimulation by Inhibition of YAP and NF-κB Activation via GPR81-Mediated Signaling. Front Immunol 2020;11:587913. [PMID: 33123172 DOI: 10.3389/fimmu.2020.587913] [Cited by in Crossref: 11] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
186 Allen R, Ivtchenko E, Thuamsang B, Sangsuwan R, Lewis JS. Polymer-loaded hydrogels serve as depots for lactate and mimic "cold" tumor microenvironments. Biomater Sci 2020;8:6056-68. [PMID: 33000781 DOI: 10.1039/d0bm01196g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
187 Zhang X, Duan S, Tao S, Huang J, Liu C, Xing S, Ren Z, Lei Z, Li Y, Wei G. Polysaccharides from Dendrobium officinale inhibit proliferation of osteosarcoma cells and enhance cisplatin-induced apoptosis. Journal of Functional Foods 2020;73:104143. [DOI: 10.1016/j.jff.2020.104143] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
188 Craig DJ, Creeden JF, Einloth KR, Gillman CE, Stanbery L, Hamouda D, Edelman G, Dworkin L, Nemunaitis JJ. Resident Memory T Cells and Their Effect on Cancer. Vaccines (Basel) 2020;8:E562. [PMID: 33019493 DOI: 10.3390/vaccines8040562] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
189 Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell 2020;78:1019-33. [PMID: 32559423 DOI: 10.1016/j.molcel.2020.05.034] [Cited by in Crossref: 45] [Cited by in F6Publishing: 148] [Article Influence: 22.5] [Reference Citation Analysis]
190 Greene TT, Jo YR, Zuniga EI. Infection and cancer suppress pDC derived IFN-I. Curr Opin Immunol 2020;66:114-22. [PMID: 32947131 DOI: 10.1016/j.coi.2020.08.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
191 Umar SM, Kashyap A, Kahol S, Mathur SR, Gogia A, Deo SVS, Prasad CP. Prognostic and therapeutic relevance of phosphofructokinase platelet-type (PFKP) in breast cancer. Exp Cell Res 2020;396:112282. [PMID: 32919954 DOI: 10.1016/j.yexcr.2020.112282] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
192 Lai Z, Wei T, Li Q, Wang X, Zhang Y, Zhang S. Exosomal circFBLIM1 Promotes Hepatocellular Carcinoma Progression and Glycolysis by Regulating the miR-338/LRP6 Axis. Cancer Biother Radiopharm 2020. [PMID: 32907351 DOI: 10.1089/cbr.2020.3564] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
193 Keimpema E, Harkany T, Alpár A. The p(l)ot thickens: cannabinoid receptors on astroglial mitochondria coordinate animal behaviors by regulating lactate availability for neurons. Signal Transduct Target Ther 2020;5:189. [PMID: 32883953 DOI: 10.1038/s41392-020-00298-1] [Reference Citation Analysis]
194 Hu M, Zhao Y, Cao Y, Tang Q, Feng Z, Ni J, Zhou X. DRP1 promotes lactate utilization in KRAS-mutant non-small-cell lung cancer cells. Cancer Sci 2020;111:3588-99. [PMID: 32767829 DOI: 10.1111/cas.14603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
195 Bosshart PD, Charles RP, Garibsingh RA, Schlessinger A, Fotiadis D. SLC16 Family: From Atomic Structure to Human Disease. Trends Biochem Sci 2021;46:28-40. [PMID: 32828650 DOI: 10.1016/j.tibs.2020.07.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
196 Li F, Zhan L, Dong Q, Wang Q, Wang Y, Li X, Zhang Y, Zhang J. Tumor-Derived Exosome-Educated Hepatic Stellate Cells Regulate Lactate Metabolism of Hypoxic Colorectal Tumor Cells via the IL-6/STAT3 Pathway to Confer Drug Resistance. Onco Targets Ther 2020;13:7851-64. [PMID: 32821126 DOI: 10.2147/OTT.S253485] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
197 Qian CJ, Xu ZR, Chen LY, Wang YC, Yao J. LncRNA MAFG-AS1 Accelerates Cell Migration, Invasion and Aerobic Glycolysis of Esophageal Squamous Cell Carcinoma Cells via miR-765/PDX1 Axis. Cancer Manag Res 2020;12:6895-908. [PMID: 32801913 DOI: 10.2147/CMAR.S262075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
198 Puthenveetil A, Dubey S. Metabolic reprograming of tumor-associated macrophages. Ann Transl Med 2020;8:1030. [PMID: 32953830 DOI: 10.21037/atm-20-2037] [Cited by in Crossref: 12] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
199 Miranda-Galvis M, Teng Y. Targeting Hypoxia-Driven Metabolic Reprogramming to Constrain Tumor Progression and Metastasis. Int J Mol Sci 2020;21:E5487. [PMID: 32751958 DOI: 10.3390/ijms21155487] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
200 Jo Y, Ali LA, Shim JA, Lee BH, Hong C. Innovative CAR-T Cell Therapy for Solid Tumor; Current Duel between CAR-T Spear and Tumor Shield. Cancers (Basel) 2020;12:E2087. [PMID: 32731404 DOI: 10.3390/cancers12082087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
201 Mane MM, Cohen IJ, Ackerstaff E, Shalaby K, Ijoma JN, Ko M, Maeda M, Albeg AS, Vemuri K, Satagopan J, Moroz A, Zurita J, Shenker L, Shindo M, Nickles T, Nikolov E, Moroz MA, Koutcher JA, Serganova I, Ponomarev V, Blasberg RG. Lactate Dehydrogenase A Depletion Alters MyC-CaP Tumor Metabolism, Microenvironment, and CAR T Cell Therapy. Mol Ther Oncolytics 2020;18:382-95. [PMID: 32913888 DOI: 10.1016/j.omto.2020.07.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
202 Zangari J, Petrelli F, Maillot B, Martinou JC. The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules 2020;10:E1068. [PMID: 32708919 DOI: 10.3390/biom10071068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
203 Khatib-Massalha E, Bhattacharya S, Massalha H, Biram A, Golan K, Kollet O, Kumari A, Avemaria F, Petrovich-Kopitman E, Gur-Cohen S, Itkin T, Brandenburger I, Spiegel A, Shulman Z, Gerhart-Hines Z, Itzkovitz S, Gunzer M, Offermanns S, Alon R, Ariel A, Lapidot T. Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat Commun 2020;11:3547. [PMID: 32669546 DOI: 10.1038/s41467-020-17402-2] [Cited by in Crossref: 19] [Cited by in F6Publishing: 33] [Article Influence: 9.5] [Reference Citation Analysis]
204 Li F, Simon MC. Cancer Cells Don't Live Alone: Metabolic Communication within Tumor Microenvironments. Dev Cell 2020;54:183-95. [PMID: 32640203 DOI: 10.1016/j.devcel.2020.06.018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
205 Mossenta M, Busato D, Dal Bo M, Toffoli G. Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies. Cancers (Basel) 2020;12:E1668. [PMID: 32585931 DOI: 10.3390/cancers12061668] [Cited by in Crossref: 9] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
206 Cirotti C, Contadini C, Barilà D. SRC Kinase in Glioblastoma News from an Old Acquaintance. Cancers (Basel) 2020;12:E1558. [PMID: 32545574 DOI: 10.3390/cancers12061558] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
207 Singleton DC, Dechaume AL, Murray PM, Katt WP, Baguley BC, Leung EY. Pyruvate anaplerosis is a mechanism of resistance to pharmacological glutaminase inhibition in triple-receptor negative breast cancer. BMC Cancer 2020;20:470. [PMID: 32450839 DOI: 10.1186/s12885-020-06885-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
208 Dominiak A, Chełstowska B, Olejarz W, Nowicka G. Communication in the Cancer Microenvironment as a Target for Therapeutic Interventions. Cancers (Basel) 2020;12:E1232. [PMID: 32422889 DOI: 10.3390/cancers12051232] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
209 Miranda-Gonçalves V, Lameirinhas A, Macedo-Silva C, Lobo J, C Dias P, Ferreira V, Henrique R, Jerónimo C. Lactate Increases Renal Cell Carcinoma Aggressiveness through Sirtuin 1-Dependent Epithelial Mesenchymal Transition Axis Regulation. Cells 2020;9:E1053. [PMID: 32340156 DOI: 10.3390/cells9041053] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
210 Soni VK, Shukla D, Kumar A, Vishvakarma NK. Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1. Int J Biochem Cell Biol 2020;123:105752. [PMID: 32325281 DOI: 10.1016/j.biocel.2020.105752] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
211 Baltazar F, Afonso J, Costa M, Granja S. Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy. Front Oncol 2020;10:231. [PMID: 32257942 DOI: 10.3389/fonc.2020.00231] [Cited by in Crossref: 21] [Cited by in F6Publishing: 46] [Article Influence: 10.5] [Reference Citation Analysis]
212 Lin X, Xiao Z, Chen T, Liang SH, Guo H. Glucose Metabolism on Tumor Plasticity, Diagnosis, and Treatment. Front Oncol 2020;10:317. [PMID: 32211335 DOI: 10.3389/fonc.2020.00317] [Cited by in Crossref: 12] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
213 Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin Cancer Biol 2020:S1044-579X(20)30040-7. [PMID: 32081639 DOI: 10.1016/j.semcancer.2020.02.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
214 Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E. Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism? Trends Microbiol. 2020;28:401-423. [PMID: 32298617 DOI: 10.1016/j.tim.2020.01.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
215 Obara-Michlewska M, Szeliga M. Targeting Glutamine Addiction in Gliomas. Cancers (Basel) 2020;12:E310. [PMID: 32013066 DOI: 10.3390/cancers12020310] [Cited by in Crossref: 17] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]