BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ryan Q, Ibrahim A, Cohen MH, Johnson J, Ko CW, Sridhara R, Justice R, Pazdur R. FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist. 2008;13:1114-1119. [PMID: 18849320 DOI: 10.1634/theoncologist.2008-0816] [Cited by in Crossref: 159] [Cited by in F6Publishing: 134] [Article Influence: 12.2] [Reference Citation Analysis]
Number Citing Articles
1 Nasrazadani A, Brufsky A. Neratinib: the emergence of a new player in the management of HER2+ breast cancer brain metastasis. Future Oncol 2020;16:247-54. [PMID: 32057254 DOI: 10.2217/fon-2019-0719] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
2 Jathal MK, Steele TM, Siddiqui S, Mooso BA, D'Abronzo LS, Drake CM, Whang YE, Ghosh PM. Dacomitinib, but not lapatinib, suppressed progression in castration-resistant prostate cancer models by preventing HER2 increase. Br J Cancer 2019;121:237-48. [PMID: 31209328 DOI: 10.1038/s41416-019-0496-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
3 Eroglu Z, Tagawa T, Somlo G. Human epidermal growth factor receptor family-targeted therapies in the treatment of HER2-overexpressing breast cancer. Oncologist 2014;19:135-50. [PMID: 24436312 DOI: 10.1634/theoncologist.2013-0283] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
4 Grill AE, Shahani K, Koniar B, Panyam J. Chemopreventive efficacy of curcumin-loaded PLGA microparticles in a transgenic mouse model of HER-2-positive breast cancer. Drug Deliv Transl Res 2018;8:329-41. [PMID: 28417445 DOI: 10.1007/s13346-017-0377-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
5 Wu X, Li M, Tang W, Zheng Y, Lian J, Xu L, Ji M. Design, synthesis, and in vitro antitumor activity evaluation of novel 4-pyrrylamino quinazoline derivatives. Chem Biol Drug Des 2011;78:932-40. [PMID: 21895983 DOI: 10.1111/j.1747-0285.2011.01234.x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ferreira PMP, Pessoa C. Molecular biology of human epidermal receptors, signaling pathways and targeted therapy against cancers: new evidences and old challenges. Braz J Pharm Sci 2017;53. [DOI: 10.1590/s2175-97902017000216076] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
7 Jazieh K, Bell R, Agarwal N, Abraham J. Novel targeted therapies for metastatic breast cancer. Ann Transl Med 2020;8:907. [PMID: 32793751 DOI: 10.21037/atm.2020.03.43] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
8 Chaar M, Kamta J, Ait-Oudhia S. Mechanisms, monitoring, and management of tyrosine kinase inhibitors-associated cardiovascular toxicities. Onco Targets Ther 2018;11:6227-37. [PMID: 30288058 DOI: 10.2147/OTT.S170138] [Cited by in Crossref: 33] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
9 Sollena P, Mannino M, Tassone F, Calegari MA, D'Argento E, Peris K. Efficacy of topical beta-blockers in the management of EGFR-inhibitor induced paronychia and pyogenic granuloma-like lesions: case series and review of the literature. Drugs Context 2019;8:212613. [PMID: 31798664 DOI: 10.7573/dic.212613] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
10 Stein MK, Oluoha O, Patel K, VanderWalde A. Precision Medicine in Oncology: A Review of Multi-Tumor Actionable Molecular Targets with an Emphasis on Non-Small Cell Lung Cancer. J Pers Med 2021;11:518. [PMID: 34198738 DOI: 10.3390/jpm11060518] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 D'Amato V, Raimondo L, Formisano L, Giuliano M, De Placido S, Rosa R, Bianco R. Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat Rev. 2015;41:877-883. [PMID: 26276735 DOI: 10.1016/j.ctrv.2015.08.001] [Cited by in Crossref: 70] [Cited by in F6Publishing: 57] [Article Influence: 11.7] [Reference Citation Analysis]
12 Saura C, Oliveira M, Feng YH, Dai MS, Chen SW, Hurvitz SA, Kim SB, Moy B, Delaloge S, Gradishar W, Masuda N, Palacova M, Trudeau ME, Mattson J, Yap YS, Hou MF, De Laurentiis M, Yeh YM, Chang HT, Yau T, Wildiers H, Haley B, Fagnani D, Lu YS, Crown J, Lin J, Takahashi M, Takano T, Yamaguchi M, Fujii T, Yao B, Bebchuk J, Keyvanjah K, Bryce R, Brufsky A; NALA Investigators. Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated With ≥ 2 HER2-Directed Regimens: Phase III NALA Trial. J Clin Oncol 2020;38:3138-49. [PMID: 32678716 DOI: 10.1200/JCO.20.00147] [Cited by in Crossref: 67] [Cited by in F6Publishing: 35] [Article Influence: 67.0] [Reference Citation Analysis]
13 Wu C, Tang Z, Fan W, Zhu W, Wang C, Somoza E, Owino N, Li R, Ma PC, Wang Y. In vivo positron emission tomography (PET) imaging of mesenchymal-epithelial transition (MET) receptor. J Med Chem 2010;53:139-46. [PMID: 19968287 DOI: 10.1021/jm900803q] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
14 Eskander RN, Tewari KS. Targeting angiogenesis in advanced cervical cancer. Ther Adv Med Oncol 2014;6:280-92. [PMID: 25364393 DOI: 10.1177/1758834014543794] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
15 Teng WC, Oh JW, New LS, Wahlin MD, Nelson SD, Ho HK, Chan ECY. Mechanism-Based Inactivation of Cytochrome P450 3A4 by Lapatinib. Mol Pharmacol 2010;78:693-703. [DOI: 10.1124/mol.110.065839] [Cited by in Crossref: 82] [Cited by in F6Publishing: 66] [Article Influence: 7.5] [Reference Citation Analysis]
16 Ju Y, Wu J, Yuan X, Zhao L, Zhang G, Li C, Qiao R. Design and Evaluation of Potent EGFR Inhibitors through the Incorporation of Macrocyclic Polyamine Moieties into the 4-Anilinoquinazoline Scaffold. J Med Chem 2018;61:11372-83. [PMID: 30508379 DOI: 10.1021/acs.jmedchem.8b01612] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
17 Yu Z, Cui B, Jin Y, Chen H, Wang X. Novel irreversible EGFR tyrosine kinase inhibitor 324674 sensitizes human colon carcinoma HT29 and SW480 cells to apoptosis by blocking the EGFR pathway. Biochem Biophys Res Commun 2011;411:751-6. [PMID: 21782788 DOI: 10.1016/j.bbrc.2011.07.019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
18 Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020;10:584. [PMID: 32391269 DOI: 10.3389/fonc.2020.00584] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
19 Wu S, Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 2018;17:25. [PMID: 29455646 DOI: 10.1186/s12943-018-0775-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 13.7] [Reference Citation Analysis]
20 Parma J, Pavlick A, Schiff R, Osborne CK, Chang JC, Rimawi M, Trivedi MV. Development of acneiform rash does not predict response to lapatinib treatment in patients with breast cancer. Pharmacotherapy 2013;33:1126-9. [PMID: 23744830 DOI: 10.1002/phar.1308] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
21 Srivastava S, Mohibi S, Mirza S, Band H, Band V. Epidermal Growth Factor Receptor activation promotes ADA3 acetylation through the AKT-p300 pathway. Cell Cycle 2017;16:1515-25. [PMID: 28759294 DOI: 10.1080/15384101.2017.1339846] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
22 Sutherland S, Ashley S, Miles D, Chan S, Wardley A, Davidson N, Bhatti R, Shehata M, Nouras H, Camburn T, Johnston SR. Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases--the UK experience. Br J Cancer 2010;102:995-1002. [PMID: 20179708 DOI: 10.1038/sj.bjc.6605586] [Cited by in Crossref: 94] [Cited by in F6Publishing: 79] [Article Influence: 8.5] [Reference Citation Analysis]
23 Tóth G, Szöőr Á, Simon L, Yarden Y, Szöllősi J, Vereb G. The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibody-dependent cell-mediated cytotoxicity. MAbs 2016;8:1361-70. [PMID: 27380003 DOI: 10.1080/19420862.2016.1204503] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 7.6] [Reference Citation Analysis]
24 Maennling AE, Tur MK, Niebert M, Klockenbring T, Zeppernick F, Gattenlöhner S, Meinhold-Heerlein I, Hussain AF. Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. Cancers (Basel) 2019;11:E1826. [PMID: 31756933 DOI: 10.3390/cancers11121826] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 23.0] [Reference Citation Analysis]
25 Fang C, Zhao Y, Guo B. MiR-199b-5p targets HER2 in breast cancer cells. J Cell Biochem 2013;114:1457-63. [DOI: 10.1002/jcb.24487] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 5.9] [Reference Citation Analysis]
26 Morancho B, Parra-palau JL, Ibrahim YH, Bernadó Morales C, Peg V, Bech-serra JJ, Pandiella A, Canals F, Baselga J, Rubio I, Arribas J. A dominant-negative N-terminal fragment of HER2 frequently expressed in breast cancers. Oncogene 2013;32:1452-9. [DOI: 10.1038/onc.2012.152] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
27 Zhou W, Zhao Z, Wang R, Han Y, Wang C, Yang F, Han Y, Liang H, Qi L, Wang C, Guo Z, Gu Y. Identification of driver copy number alterations in diverse cancer types and application in drug repositioning. Mol Oncol 2017;11:1459-74. [PMID: 28719033 DOI: 10.1002/1878-0261.12112] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
28 Zhang Y, Hou Q, Li X, Zhu J, Wang W, Li B, Zhao L, Xia H. Enrichment of novel quinazoline derivatives with high antitumor activity in mitochondria tracked by its self-fluorescence. European Journal of Medicinal Chemistry 2019;178:417-32. [DOI: 10.1016/j.ejmech.2019.06.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
29 Bowen JM, Mayo BJ, Plews E, Bateman E, Wignall A, Stringer AM, Boyle FM, Keefe DM. Determining the mechanisms of lapatinib-induced diarrhoea using a rat model. Cancer Chemother Pharmacol 2014;74:617-27. [PMID: 25055934 DOI: 10.1007/s00280-014-2519-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
30 Beretta GL, Cassinelli G, Pennati M, Zuco V, Gatti L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem. 2017;142:271-289. [PMID: 28851502 DOI: 10.1016/j.ejmech.2017.07.062] [Cited by in Crossref: 76] [Cited by in F6Publishing: 70] [Article Influence: 19.0] [Reference Citation Analysis]
31 Ismail RSM, Abou-Seri SM, Eldehna WM, Ismail NSM, Elgazwi SM, Ghabbour HA, Ahmed MS, Halaweish FT, Abou El Ella DA. Novel series of 6-(2-substitutedacetamido)-4-anilinoquinazolines as EGFR-ERK signal transduction inhibitors in MCF-7 breast cancer cells. Eur J Med Chem 2018;155:782-96. [PMID: 30047410 DOI: 10.1016/j.ejmech.2018.06.024] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
32 Shah S, Chen B. Testing for HER2 in Breast Cancer: A Continuing Evolution. Patholog Res Int 2010;2011:903202. [PMID: 21188214 DOI: 10.4061/2011/903202] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
33 Du J, Yu Y, Zhan J, Zhang H. Targeted Therapies Against Growth Factor Signaling in Breast Cancer. Adv Exp Med Biol 2017;1026:125-46. [PMID: 29282682 DOI: 10.1007/978-981-10-6020-5_6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
34 Batoo S, Bayraktar S, Al-Hattab E, Basu S, Okuno S, Glück S. Recent advances and optimal management of human epidermal growth factor receptor-2-positive early-stage breast cancer. J Carcinog 2019;18:5. [PMID: 31949426 DOI: 10.4103/jcar.JCar_14_19] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Macfarlane RJ, Gelmon KA. Lapatinib for breast cancer: a review of the current literature. Expert Opinion on Drug Safety 2010;10:109-21. [DOI: 10.1517/14740338.2011.533168] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
36 Takakusa H, Wahlin MD, Zhao C, Hanson KL, New LS, Chan EC, Nelson SD. Metabolic intermediate complex formation of human cytochrome P450 3A4 by lapatinib. Drug Metab Dispos 2011;39:1022-30. [PMID: 21363997 DOI: 10.1124/dmd.110.037531] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
37 Lyu H, Yang XH, Edgerton SM, Thor AD, Wu X, He Z, Liu B. The erbB3- and IGF-1 receptor-initiated signaling pathways exhibit distinct effects on lapatinib sensitivity against trastuzumab-resistant breast cancer cells. Oncotarget 2016;7:2921-35. [PMID: 26621843 DOI: 10.18632/oncotarget.6404] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
38 Karakashev SV, Reginato MJ. Hypoxia/HIF1α induces lapatinib resistance in ERBB2-positive breast cancer cells via regulation of DUSP2. Oncotarget 2015;6:1967-80. [PMID: 25596742 DOI: 10.18632/oncotarget.2806] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
39 Araujo J, Logothetis C. Dasatinib: a potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev 2010;36:492-500. [PMID: 20226597 DOI: 10.1016/j.ctrv.2010.02.015] [Cited by in Crossref: 138] [Cited by in F6Publishing: 112] [Article Influence: 12.5] [Reference Citation Analysis]
40 Zhang Y, Wang L, Sun B, Li X, Hou Q, Wang W, Li B. Synthesis and Antiproliferative Activities of Novel Substituted 5-Anilino-α-Glucofuranose Derivatives. Chem Biodivers 2020;17:e1900739. [PMID: 32141216 DOI: 10.1002/cbdv.201900739] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Frampton JE. Lapatinib: a review of its use in the treatment of HER2-overexpressing, trastuzumab-refractory, advanced or metastatic breast cancer. Drugs 2009;69:2125-48. [PMID: 19791830 DOI: 10.2165/11203240-000000000-00000] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
42 Bowen JM, Mayo BJ, Plews E, Bateman E, Stringer AM, Boyle FM, Finnie JW, Keefe DM. Development of a rat model of oral small molecule receptor tyrosine kinase inhibitor-induced diarrhea. Cancer Biol Ther. 2012;13:1269-1275. [PMID: 22895076 DOI: 10.4161/cbt.21783] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
43 Lee YY, Kim HP, Kang MJ, Cho BK, Han SW, Kim TY, Yi EC. Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line. Exp Mol Med. 2013;45:e64. [PMID: 24263233 DOI: 10.1038/emm.2013.115] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
44 Juchum M, Günther M, Laufer SA. Fighting cancer drug resistance: Opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resist Updat 2015;20:12-28. [PMID: 26021435 DOI: 10.1016/j.drup.2015.05.002] [Cited by in Crossref: 68] [Cited by in F6Publishing: 60] [Article Influence: 11.3] [Reference Citation Analysis]
45 Chen L, Zhang Y, Liu J, Wang W, Li X, Zhao L, Wang W, Li B. Novel 4-arylaminoquinazoline derivatives with (E)-propen-1-yl moiety as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells. Eur J Med Chem 2017;138:689-97. [PMID: 28711703 DOI: 10.1016/j.ejmech.2017.06.023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
46 Sambade MJ, Camp JT, Kimple RJ, Sartor CI, Shields JM. Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf>MEK>ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK. Radiother Oncol 2009;93:639-44. [PMID: 19853943 DOI: 10.1016/j.radonc.2009.09.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 3.1] [Reference Citation Analysis]
47 Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012;12:553-63. [PMID: 22785351 DOI: 10.1038/nrc3309] [Cited by in Crossref: 507] [Cited by in F6Publishing: 424] [Article Influence: 56.3] [Reference Citation Analysis]
48 Sadek MM, Serrya RA, Kafafy AH, Ahmed M, Wang F, Abouzid KA. Discovery of new HER2/EGFR dual kinase inhibitors based on the anilinoquinazoline scaffold as potential anti-cancer agents. J Enzyme Inhib Med Chem 2014;29:215-22. [PMID: 23402383 DOI: 10.3109/14756366.2013.765417] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
49 Yu L, Fu F, Li J, Huang M, Zeng B, Lin Y, Mei Q, Lv J, Wang C. Dual HER2 Blockade versus a Single Agent in Trastuzumab-Containing Regimens for HER2-Positive Early Breast Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Oncol 2020;2020:5169278. [PMID: 32256583 DOI: 10.1155/2020/5169278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
50 Edderkaoui M, Chheda C, Soufi B, Zayou F, Hu RW, Ramanujan VK, Pan X, Boros LG, Tajbakhsh J, Madhav A, Bhowmick NA, Wang Q, Lewis M, Tuli R, Habtezion A, Murali R, Pandol SJ. An Inhibitor of GSK3B and HDACs Kills Pancreatic Cancer Cells and Slows Pancreatic Tumor Growth and Metastasis in Mice. Gastroenterology 2018;155:1985-1998.e5. [PMID: 30144430 DOI: 10.1053/j.gastro.2018.08.028] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
51 Wu CC, Weng CS, Hsu YT, Chang CL. Antitumor effects of BMS-777607 on ovarian cancer cells with constitutively activated c-MET. Taiwan J Obstet Gynecol 2019;58:145-52. [PMID: 30638469 DOI: 10.1016/j.tjog.2018.11.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
52 Zhang Y, Zhang Y, Liu J, Chen L, Zhao L, Li B, Wang W. Synthesis and in vitro biological evaluation of novel quinazoline derivatives. Bioorg Med Chem Lett 2017;27:1584-7. [PMID: 28238614 DOI: 10.1016/j.bmcl.2017.02.027] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
53 Wang Q, Quan H, Zhao J, Xie C, Wang L, Lou L. RON confers lapatinib resistance in HER2-positive breast cancer cells. Cancer Letters 2013;340:43-50. [DOI: 10.1016/j.canlet.2013.06.022] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
54 Wang L, Wang Q, Gao M, Fu L, Li Y, Quan H, Lou L. STAT3 activation confers trastuzumab-emtansine (T-DM1) resistance in HER2-positive breast cancer. Cancer Sci 2018;109:3305-15. [PMID: 30076657 DOI: 10.1111/cas.13761] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
55 Haddad TC, He J, O'Sullivan CC, Chen B, Northfelt D, Dueck AC, Ballman KV, Tenner KS, Linden H, Sparano JA, Hopkins JO, De Silva C, Perez EA, Haluska P, Goetz MP. Randomized Phase II Trial of Capecitabine and Lapatinib with or without IMC-A12 (Cituxumumab) in Patients with HER2-Positive Advanced Breast Cancer Previously Treated with Trastuzumab and Chemotherapy: NCCTG N0733 (Alliance). Breast Cancer Res Treat 2021;188:477-87. [PMID: 33852121 DOI: 10.1007/s10549-021-06221-8] [Reference Citation Analysis]
56 Lev S. Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis. Biochemical Society Transactions 2020;48:657-65. [DOI: 10.1042/bst20191055] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 13.0] [Reference Citation Analysis]
57 Showalter L, Czerniecki BJ, Koski GK. Th1 cytokines in conjunction with pharmacological Akt inhibition potentiate apoptosis of breast cancer cells in vitro and suppress tumor growth in vivo. Oncotarget 2020;11:2873-88. [PMID: 32774769 DOI: 10.18632/oncotarget.27556] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
58 Watson SS, Dane M, Chin K, Tatarova Z, Liu M, Liby T, Thompson W, Smith R, Nederlof M, Bucher E, Kilburn D, Whitman M, Sudar D, Mills GB, Heiser LM, Jonas O, Gray JW, Korkola JE. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Syst 2018;6:329-342.e6. [PMID: 29550255 DOI: 10.1016/j.cels.2018.02.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 11.3] [Reference Citation Analysis]
59 Caumanns JJ, Berns K, Wisman GBA, Fehrmann RSN, Tomar T, Klip H, Meersma GJ, Hijmans EM, Gennissen AMC, Duiker EW, Weening D, Itamochi H, Kluin RJC, Reyners AKL, Birrer MJ, Salvesen HB, Vergote I, van Nieuwenhuysen E, Brenton J, Braicu EI, Kupryjanczyk J, Spiewankiewicz B, Mittempergher L, Bernards R, van der Zee AGJ, de Jong S. Integrative Kinome Profiling Identifies mTORC1/2 Inhibition as Treatment Strategy in Ovarian Clear Cell Carcinoma. Clin Cancer Res 2018;24:3928-40. [PMID: 29685880 DOI: 10.1158/1078-0432.CCR-17-3060] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
60 van der Noll R, Smit WM, Wymenga AN, Boss DS, Grob M, Huitema AD, Rosing H, Tibben MM, Keessen M, Rehorst H, Beijnen JH, Schellens JH. Phase I and pharmacological trial of lapatinib in combination with gemcitabine in patients with advanced breast cancer. Invest New Drugs 2015;33:1197-205. [PMID: 26362459 DOI: 10.1007/s10637-015-0281-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
61 O'Connell K, Li J, Engler F, Hennessy K, O'Neill F, Straubinger RM, Qu J, O'Connor R. Determination of the Proteomic Response to Lapatinib Treatment using a comprehensive and reproducible ion-current-based proteomics strategy. J Proteom Genom Res 2013;1:27-42. [PMID: 29046878 DOI: 10.14302/issn.2326-0793.jpgr-13-257] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
62 Modjtahedi H, Essapen S. Epidermal growth factor receptor inhibitors in cancer treatment: advances, challenges and opportunities. Anticancer Drugs. 2009;20:851-855. [PMID: 19826350 DOI: 10.1097/cad.0b013e3283330590] [Cited by in Crossref: 119] [Cited by in F6Publishing: 50] [Article Influence: 9.9] [Reference Citation Analysis]
63 Whang YE, Armstrong AJ, Rathmell WK, Godley PA, Kim WY, Pruthi RS, Wallen EM, Crane JM, Moore DT, Grigson G. A phase II study of lapatinib, a dual EGFR and HER-2 tyrosine kinase inhibitor, in patients with castration-resistant prostate cancer. Urol Oncol. 2013;31:82-86. [PMID: 21396844 DOI: 10.1016/j.urolonc.2010.09.018] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 4.8] [Reference Citation Analysis]
64 Lui VWY, Lau CPY, Ho K, Ng MHL, Cheng SH, Tsao S, Tsang CM, Lei KIK, Chan AT, Mok TSK. Anti-invasion, anti-proliferation and anoikis-sensitization activities of lapatinib in nasopharyngeal carcinoma cells. Invest New Drugs 2011;29:1241-52. [DOI: 10.1007/s10637-010-9470-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
65 Chen YJ, Fang LW, Su WC, Hsu WY, Yang KC, Huang HL. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia. Onco Targets Ther 2016;9:4453-64. [PMID: 27499639 DOI: 10.2147/OTT.S105664] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
66 McCarthy PM, Clifton GT, Vreeland TJ, Adams AM, O'Shea AE, Peoples GE. AE37: a HER2-targeted vaccine for the prevention of breast cancer recurrence. Expert Opin Investig Drugs 2021;30:5-11. [PMID: 33191799 DOI: 10.1080/13543784.2021.1849140] [Reference Citation Analysis]
67 Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFRvIII: An Oncogene with Ambiguous Role. J Oncol 2019;2019:1092587. [PMID: 32089685 DOI: 10.1155/2019/1092587] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
68 Elwaie TA, Abbas SE, Aly EI, George RF, Ali H, Kraiouchkine N, Abdelwahed KS, Fandy TE, El Sayed KA, Abd Elmageed ZY, Ali HI. HER2 Kinase-Targeted Breast Cancer Therapy: Design, Synthesis, and In Vitro and In Vivo Evaluation of Novel Lapatinib Congeners as Selective and Potent HER2 Inhibitors with Favorable Metabolic Stability. J Med Chem 2020;63:15906-45. [PMID: 33314925 DOI: 10.1021/acs.jmedchem.0c01647] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
69 Bowen JM. Development of the rat model of lapatinib-induced diarrhoea. Scientifica (Cairo) 2014;2014:194185. [PMID: 25126444 DOI: 10.1155/2014/194185] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
70 Lee H, Saini N, Howard EW, Parris AB, Ma Z, Zhao Q, Zhao M, Liu B, Edgerton SM, Thor AD, Yang X. Ganetespib targets multiple levels of the receptor tyrosine kinase signaling cascade and preferentially inhibits ErbB2-overexpressing breast cancer cells. Sci Rep 2018;8:6829. [PMID: 29717218 DOI: 10.1038/s41598-018-25284-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
71 Khan M, Zhao Z, Arooj S, Zheng T, Liao G. Lapatinib Plus Local Radiation Therapy for Brain Metastases From HER-2 Positive Breast Cancer Patients and Role of Trastuzumab: A Systematic Review and Meta-Analysis. Front Oncol 2020;10:576926. [PMID: 33240815 DOI: 10.3389/fonc.2020.576926] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Hedley BD, Chambers AF. Tumor dormancy and metastasis. Adv Cancer Res 2009;102:67-101. [PMID: 19595307 DOI: 10.1016/S0065-230X(09)02003-X] [Cited by in Crossref: 69] [Cited by in F6Publishing: 37] [Article Influence: 5.8] [Reference Citation Analysis]
73 Howe LR, Brown PH. Targeting the HER/EGFR/ErbB family to prevent breast cancer. Cancer Prev Res (Phila) 2011;4:1149-57. [PMID: 21816844 DOI: 10.1158/1940-6207.CAPR-11-0334] [Cited by in Crossref: 61] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
74 Shome R, Ghosh SS. Tweaking EMT and MDR dynamics to constrain triple-negative breast cancer invasiveness by EGFR and Wnt/β-catenin signaling regulation. Cell Oncol (Dordr) 2021;44:405-22. [PMID: 33398673 DOI: 10.1007/s13402-020-00576-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
75 Ung MH, Wang GL, Varn FS, Cheng C. Application of pharmacologically induced transcriptomic profiles to interrogate PI3K-Akt-mTOR pathway activity associated with cancer patient prognosis. Oncotarget 2016;7:84142-54. [PMID: 27589846 DOI: 10.18632/oncotarget.11776] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
76 Doroshow DB, LoRusso PM. Trastuzumab emtansine: determining its role in management of HER2+ breast cancer. Future Oncol 2018;14:589-602. [PMID: 29214842 DOI: 10.2217/fon-2017-0477] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
77 Singer J, Jensen-Jarolim E. IgE-based Immunotherapy of Cancer -A Comparative Oncology Approach. J Carcinog Mutagen 2014;5:1000176. [PMID: 25264496 DOI: 10.4172/2157-2518.1000176] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
78 Gori S, Montemurro F, Spazzapan S, Metro G, Foglietta J, Bisagni G, Ferzi A, Silva R, Gamucci T, Clavarezza M, Stocchi L, Fabi A, Cognetti F, Torrisi E, Crivellari D. Retreatment with trastuzumab-based therapy after disease progression following lapatinib in HER2-positive metastatic breast cancer. Annals of Oncology 2012;23:1436-41. [DOI: 10.1093/annonc/mdr474] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
79 Silipo M, Gautrey H, Satam S, Lennard T, Tyson-Capper A. How is Herstatin, a tumor suppressor splice variant of the oncogene HER2, regulated? RNA Biol 2017;14:536-43. [PMID: 27935425 DOI: 10.1080/15476286.2016.1267074] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
80 Zhou X, Shi K, Hao Y, Yang C, Zha R, Yi C, Qian Z. Advances in nanotechnology-based delivery systems for EGFR tyrosine kinases inhibitors in cancer therapy. Asian J Pharm Sci 2020;15:26-41. [PMID: 32175016 DOI: 10.1016/j.ajps.2019.06.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
81 Collins DM, Conlon NT, Kannan S, Verma CS, Eli LD, Lalani AS, Crown J. Preclinical Characteristics of the Irreversible Pan-HER Kinase Inhibitor Neratinib Compared with Lapatinib: Implications for the Treatment of HER2-Positive and HER2-Mutated Breast Cancer. Cancers (Basel) 2019;11:E737. [PMID: 31141894 DOI: 10.3390/cancers11060737] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
82 Dent P, Curiel DT, Fisher PB, Grant S. Synergistic combinations of signaling pathway inhibitors: mechanisms for improved cancer therapy. Drug Resist Updat 2009;12:65-73. [PMID: 19395305 DOI: 10.1016/j.drup.2009.03.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 2.7] [Reference Citation Analysis]
83 Alrobaian M, Panda SS, Almalki WH, Afzal O, Kazmi I, Alossaimi MA, Al-Abbasi FA, Katouah HA, Rub RA, Kumar BVVR, Rahman M, Beg S. Development and Validation of Chemometrics-Assisted Green UPLC-MS/MS Bioanalytical Method for Simultaneous Estimation of Capecitabine and Lapatinib in Rat Plasma. J Chromatogr Sci 2021:bmab094. [PMID: 34318311 DOI: 10.1093/chromsci/bmab094] [Reference Citation Analysis]
84 Balagula Y, Garbe C, Myskowski PL, Hauschild A, Rapoport BL, Boers-Doets CB, Lacouture ME. Clinical presentation and management of dermatological toxicities of epidermal growth factor receptor inhibitors. Int J Dermatol. 2011;50:129-146. [PMID: 21244375 DOI: 10.1111/j.1365-4632.2010.04791.x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
85 Lucchini E, Pilotto S, Spada E, Melisi D, Bria E, Tortora G. Targeting the epidermal growth factor receptor in solid tumors: focus on safety. Expert Opinion on Drug Safety 2014;13:535-49. [DOI: 10.1517/14740338.2014.904283] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
86 Aird KM, Ghanayem RB, Peplinski S, Lyerly HK, Devi GR. X-linked inhibitor of apoptosis protein inhibits apoptosis in inflammatory breast cancer cells with acquired resistance to an ErbB1/2 tyrosine kinase inhibitor. Mol Cancer Ther 2010;9:1432-42. [PMID: 20406946 DOI: 10.1158/1535-7163.MCT-10-0160] [Cited by in Crossref: 45] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
87 Xie N, Tian C, Wu H, Yang X, Liu L, Li J, Xiao H, Gao J, Lu J, Hu X, Cao M, Shui Z, Tang Y, Wang X, Yang J, Hu ZY, Ouyang Q. FGFR aberrations increase the risk of brain metastases and predict poor prognosis in metastatic breast cancer patients. Ther Adv Med Oncol 2020;12:1758835920915305. [PMID: 32499836 DOI: 10.1177/1758835920915305] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
88 Huang J, Wang S, Lyu H, Cai B, Yang X, Wang J, Liu B. The anti-erbB3 antibody MM-121/SAR256212 in combination with trastuzumab exerts potent antitumor activity against trastuzumab-resistant breast cancer cells. Mol Cancer 2013;12:134. [PMID: 24215614 DOI: 10.1186/1476-4598-12-134] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 5.6] [Reference Citation Analysis]
89 Chan HT, Chin YM, Low SK. The Roles of Common Variation and Somatic Mutation in Cancer Pharmacogenomics. Oncol Ther 2019;7:1-32. [PMID: 32700193 DOI: 10.1007/s40487-018-0090-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
90 Ma Z, Parris AB, Xiao Z, Howard EW, Kosanke SD, Feng X, Yang X. Short-term early exposure to lapatinib confers lifelong protection from mammary tumor development in MMTV-erbB-2 transgenic mice. J Exp Clin Cancer Res 2017;36:6. [PMID: 28061785 DOI: 10.1186/s13046-016-0479-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
91 Emde A, Köstler WJ, Yarden Y; Association of Radiotherapy and Oncology of the Mediterranean arEa (AROME). Therapeutic strategies and mechanisms of tumorigenesis of HER2-overexpressing breast cancer. Crit Rev Oncol Hematol 2012;84 Suppl 1:e49-57. [PMID: 20951604 DOI: 10.1016/j.critrevonc.2010.09.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
92 Furrer D, Sanschagrin F, Jacob S, Diorio C. Advantages and disadvantages of technologies for HER2 testing in breast cancer specimens. Am J Clin Pathol 2015;144:686-703. [PMID: 26486732 DOI: 10.1309/AJCPT41TCBUEVDQC] [Cited by in Crossref: 24] [Cited by in F6Publishing: 5] [Article Influence: 4.8] [Reference Citation Analysis]
93 Xue L, Maihle NJ, Yu X, Tang SC, Liu HY. Synergistic Targeting HER2 and EGFR with Bivalent Aptamer-siRNA Chimera Efficiently Inhibits HER2-Positive Tumor Growth. Mol Pharm 2018;15:4801-13. [PMID: 30222359 DOI: 10.1021/acs.molpharmaceut.8b00388] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
94 Redmond AM, Omarjee S, Chernukhin I, Le Romancer M, Carroll JS. Analysis of HER2 genomic binding in breast cancer cells identifies a global role in direct gene regulation. PLoS One 2019;14:e0225180. [PMID: 31747426 DOI: 10.1371/journal.pone.0225180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Wahler J, Suh N. Targeting HER2 Positive Breast Cancer with Chemopreventive Agents. Curr Pharmacol Rep 2015;1:324-35. [PMID: 26442201 DOI: 10.1007/s40495-015-0040-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
96 Vinciguerra D, Jacobs M, Denis S, Mougin J, Guillaneuf Y, Lazzari G, Zhu C, Mura S, Couvreur P, Nicolas J. Heterotelechelic polymer prodrug nanoparticles: Adaptability to different drug combinations and influence of the dual functionalization on the cytotoxicity. Journal of Controlled Release 2019;295:223-36. [DOI: 10.1016/j.jconrel.2018.12.047] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
97 Figueroa-Magalhães MC, Jelovac D, Connolly R, Wolff AC. Treatment of HER2-positive breast cancer. Breast 2014;23:128-36. [PMID: 24360619 DOI: 10.1016/j.breast.2013.11.011] [Cited by in Crossref: 113] [Cited by in F6Publishing: 89] [Article Influence: 14.1] [Reference Citation Analysis]
98 Soria J, Cortes J, Massard C, Armand J, De Andreis D, Ropert S, Lopez E, Catteau A, James J, Marier J, Beliveau M, Martell R, Baselga J. Phase I safety, pharmacokinetic and pharmacodynamic trial of BMS-599626 (AC480), an oral pan-HER receptor tyrosine kinase inhibitor, in patients with advanced solid tumors. Annals of Oncology 2012;23:463-71. [DOI: 10.1093/annonc/mdr137] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
99 Yadav BS, Sharma SC, Chanana P, Jhamb S. Systemic treatment strategies for triple-negative breast cancer. World J Clin Oncol 2014;5:125-33. [PMID: 24829859 DOI: 10.5306/wjco.v5.i2.125] [Cited by in CrossRef: 72] [Cited by in F6Publishing: 65] [Article Influence: 10.3] [Reference Citation Analysis]
100 Hammerman A, Greenberg-Dotan S, Feldhamer I, Bitterman H, Yerushalmi R. Second-Line Treatment of Her2-Positive Metastatic Breast Cancer: Trastuzumab beyond Progression or Lapatinib? A Population Based Cohort Study. PLoS One 2015;10:e0138229. [PMID: 26375590 DOI: 10.1371/journal.pone.0138229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
101 Rosenfeldt H, Kropp T, Benson K, Ricci MS, Mcguinn WD, Verbois SL. Regulatory aspects of oncology drug safety evaluation: Past practice, current issues, and the challenge of new drugs. Toxicology and Applied Pharmacology 2010;243:125-33. [DOI: 10.1016/j.taap.2009.12.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
102 Gaynor N, Crown J, Collins DM. Immune checkpoint inhibitors: Key trials and an emerging role in breast cancer. Semin Cancer Biol 2020:S1044-579X(20)30152-8. [PMID: 32623044 DOI: 10.1016/j.semcancer.2020.06.016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 22.0] [Reference Citation Analysis]
103 Díaz-Rodríguez E, Pérez-Peña J, Ríos-Luci C, Arribas J, Ocaña A, Pandiella A. TRAIL receptor activation overcomes resistance to trastuzumab in HER2 positive breast cancer cells. Cancer Lett 2019;453:34-44. [PMID: 30928382 DOI: 10.1016/j.canlet.2019.03.042] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
104 Liu Y, Zhao L, Xue L, Hou Y. Selected updates in molecular and genomic pathology of esophageal cancer. Ann N Y Acad Sci 2020;1482:225-35. [PMID: 33215736 DOI: 10.1111/nyas.14527] [Reference Citation Analysis]
105 Lackner MR, Wilson TR, Settleman J. Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol. 2012;8:999-1014. [PMID: 22894672 DOI: 10.2217/fon.12.86] [Cited by in Crossref: 118] [Cited by in F6Publishing: 92] [Article Influence: 13.1] [Reference Citation Analysis]
106 Schick J, Ritchie RP, Restini C. Breast Cancer Therapeutics and Biomarkers: Past, Present, and Future Approaches. Breast Cancer (Auckl) 2021;15:1178223421995854. [PMID: 33994789 DOI: 10.1177/1178223421995854] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
107 McKnight BN, Viola-Villegas NT. Monitoring Src status after dasatinib treatment in HER2+ breast cancer with 89Zr-trastuzumab PET imaging. Breast Cancer Res 2018;20:130. [PMID: 30359299 DOI: 10.1186/s13058-018-1055-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
108 Christoph S, Deryckere D, Schlegel J, Frazer JK, Batchelor LA, Trakhimets AY, Sather S, Hunter DM, Cummings CT, Liu J, Yang C, Kireev D, Simpson C, Norris-Drouin J, Hull-Ryde EA, Janzen WP, Johnson GL, Wang X, Frye SV, Earp HS 3rd, Graham DK. UNC569, a novel small-molecule mer inhibitor with efficacy against acute lymphoblastic leukemia in vitro and in vivo. Mol Cancer Ther 2013;12:2367-77. [PMID: 23997116 DOI: 10.1158/1535-7163.MCT-13-0040] [Cited by in Crossref: 36] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
109 Chau CH, Steeg PS, Figg WD. Antibody–drug conjugates for cancer. The Lancet 2019;394:793-804. [DOI: 10.1016/s0140-6736(19)31774-x] [Cited by in Crossref: 123] [Cited by in F6Publishing: 45] [Article Influence: 61.5] [Reference Citation Analysis]
110 Brandes AA, Franceschi E, Tosoni A, Degli Esposti R. Trastuzumab and lapatinib beyond trastuzumab progression for metastatic breast cancer: strategies and pitfalls. Expert Rev Anticancer Ther 2010;10:179-84. [PMID: 20131994 DOI: 10.1586/era.09.156] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
111 Dunne G, Breen L, Collins DM, Roche S, Clynes M, O’connor R. Modulation of P-gp expression by lapatinib. Invest New Drugs 2011;29:1284-93. [DOI: 10.1007/s10637-010-9482-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
112 Carabajal MA, Asquith CRM, Laitinen T, Tizzard GJ, Yim L, Rial A, Chabalgoity JA, Zuercher WJ, García Véscovi E. Quinazoline-Based Antivirulence Compounds Selectively Target Salmonella PhoP/PhoQ Signal Transduction System. Antimicrob Agents Chemother 2019;64:e01744-19. [PMID: 31611347 DOI: 10.1128/AAC.01744-19] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
113 Kitagawa D, Yokota K, Gouda M, Narumi Y, Ohmoto H, Nishiwaki E, Akita K, Kirii Y. Activity-based kinase profiling of approved tyrosine kinase inhibitors. Genes Cells 2013;18:110-22. [PMID: 23279183 DOI: 10.1111/gtc.12022] [Cited by in Crossref: 123] [Cited by in F6Publishing: 96] [Article Influence: 13.7] [Reference Citation Analysis]
114 Arslan C, Altundag K, Dizdar O. Emerging drugs in metastatic breast cancer: an update. Expert Opin Emerg Drugs 2011;16:647-67. [PMID: 22122529 DOI: 10.1517/14728214.2011.640672] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
115 Doheny D, Sirkisoon S, Carpenter RL, Aguayo NR, Regua AT, Anguelov M, Manore SG, Arrigo A, Jalboush SA, Wong GL, Yu Y, Wagner CJ, Chan M, Ruiz J, Thomas A, Strowd R, Lin J, Lo HW. Combined inhibition of JAK2-STAT3 and SMO-GLI1/tGLI1 pathways suppresses breast cancer stem cells, tumor growth, and metastasis. Oncogene 2020;39:6589-605. [PMID: 32929154 DOI: 10.1038/s41388-020-01454-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
116 Yang X, Wu D, Yuan S. Tyrosine Kinase Inhibitors in the Combination Therapy of HER2 Positive Breast Cancer. Technol Cancer Res Treat 2020;19:1533033820962140. [PMID: 33034269 DOI: 10.1177/1533033820962140] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
117 Monk BJ, Mas Lopez L, Zarba JJ, Oaknin A, Tarpin C, Termrungruanglert W, Alber JA, Ding J, Stutts MW, Pandite LN. Phase II, Open-Label Study of Pazopanib or Lapatinib Monotherapy Compared With Pazopanib Plus Lapatinib Combination Therapy in Patients With Advanced and Recurrent Cervical Cancer. JCO 2010;28:3562-9. [DOI: 10.1200/jco.2009.26.9571] [Cited by in Crossref: 162] [Cited by in F6Publishing: 62] [Article Influence: 14.7] [Reference Citation Analysis]
118 Bonde GV, Yadav SK, Chauhan S, Mittal P, Ajmal G, Thokala S, Mishra B. Lapatinib nano-delivery systems: a promising future for breast cancer treatment. Expert Opinion on Drug Delivery 2018;15:495-507. [DOI: 10.1080/17425247.2018.1449832] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
119 Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, Gril B, Hua E, Palmieri D, Polli JW, Castellino S, Rubin SD, Lockman PR, Steeg PS, Smith QR. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res 2012;29:770-81. [PMID: 22011930 DOI: 10.1007/s11095-011-0601-8] [Cited by in Crossref: 152] [Cited by in F6Publishing: 130] [Article Influence: 15.2] [Reference Citation Analysis]
120 Xu CF, Reck BH, Xue Z, Huang L, Baker KL, Chen M, Chen EP, Ellens HE, Mooser VE, Cardon LR. Pazopanib-induced hyperbilirubinemia is associated with Gilbert’s syndrome UGT1A1 polymorphism. Br J Cancer. 2010;102:1371-1377. [PMID: 20389299 DOI: 10.1038/sj.bjc.6605653] [Cited by in Crossref: 84] [Cited by in F6Publishing: 72] [Article Influence: 7.6] [Reference Citation Analysis]
121 Dahal BK, Cornitescu T, Tretyn A, Pullamsetti SS, Kosanovic D, Dumitrascu R, Ghofrani HA, Weissmann N, Voswinckel R, Banat G, Seeger W, Grimminger F, Schermuly RT. Role of Epidermal Growth Factor Inhibition in Experimental Pulmonary Hypertension. Am J Respir Crit Care Med 2010;181:158-67. [DOI: 10.1164/rccm.200811-1682oc] [Cited by in Crossref: 91] [Cited by in F6Publishing: 36] [Article Influence: 8.3] [Reference Citation Analysis]
122 Adachi R, Horiuchi S, Sakurazawa Y, Hasegawa T, Sato K, Sakamaki T. ErbB2 down-regulates microRNA-205 in breast cancer. Biochem Biophys Res Commun 2011;411:804-8. [PMID: 21787752 DOI: 10.1016/j.bbrc.2011.07.033] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
123 Ding X, Sanchez DJ, Shahangian A, Al-Shyoukh I, Cheng G, Ho CM. Cascade search for HSV-1 combinatorial drugs with high antiviral efficacy and low toxicity. Int J Nanomedicine 2012;7:2281-92. [PMID: 22654513 DOI: 10.2147/IJN.S27540] [Cited by in Crossref: 5] [Cited by in F6Publishing: 17] [Article Influence: 0.6] [Reference Citation Analysis]
124 Rodríguez J, Viúdez A, Ponz-Sarvisé M, Gil-Aldea I, Chopitea A, García-Foncillas J, Gil-Bazo I. Improving disease control in advanced colorectal cancer: Panitumumab and cetuximab. Crit Rev Oncol Hematol. 2010;74:193-202. [PMID: 19700342 DOI: 10.1016/j.critrevonc.2009.07.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
125 Conlon NT, Kooijman JJ, van Gerwen SJC, Mulder WR, Zaman GJR, Diala I, Eli LD, Lalani AS, Crown J, Collins DM. Comparative analysis of drug response and gene profiling of HER2-targeted tyrosine kinase inhibitors. Br J Cancer 2021;124:1249-59. [PMID: 33473169 DOI: 10.1038/s41416-020-01257-x] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
126 Kay C, Martínez-Pérez C, Meehan J, Gray M, Webber V, Dixon JM, Turnbull AK. Current trends in the treatment of HR+/HER2+ breast cancer. Future Oncol 2021;17:1665-81. [PMID: 33726508 DOI: 10.2217/fon-2020-0504] [Reference Citation Analysis]
127 Chen HX, Cleck JN, Coelho R, Dancey JE. Epidermal Growth Factor Receptor Inhibitors: Current Status and Future Directions. Current Problems in Cancer 2009;33:245-94. [DOI: 10.1016/j.currproblcancer.2009.10.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
128 Mayo BJ, Secombe KR, Wignall AD, Bateman E, Thorpe D, Pietra C, Keefe DM, Bowen JM. The GLP-2 analogue elsiglutide reduces diarrhoea caused by the tyrosine kinase inhibitor lapatinib in rats. Cancer Chemother Pharmacol 2020;85:793-803. [PMID: 32060615 DOI: 10.1007/s00280-020-04040-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
129 Huang X, Wang S, Lee CK, Yang X, Liu B. HDAC inhibitor SNDX-275 enhances efficacy of trastuzumab in erbB2-overexpressing breast cancer cells and exhibits potential to overcome trastuzumab resistance. Cancer Lett 2011;307:72-9. [PMID: 21497990 DOI: 10.1016/j.canlet.2011.03.019] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
130 Ayoub NM, Al-Shami KM, Yaghan RJ. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. Breast Cancer (Dove Med Press) 2019;11:53-69. [PMID: 30697064 DOI: 10.2147/BCTT.S175360] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 12.5] [Reference Citation Analysis]
131 Garcia-Alvarez A, Papakonstantinou A, Oliveira M. Brain Metastases in HER2-Positive Breast Cancer: Current and Novel Treatment Strategies. Cancers (Basel) 2021;13:2927. [PMID: 34208287 DOI: 10.3390/cancers13122927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
132 Roskoski R. ErbB/HER protein-tyrosine kinases: Structures and small molecule inhibitors. Pharmacol Res. 2014;87:42-59. [PMID: 24928736 DOI: 10.1016/j.phrs.2014.06.001] [Cited by in Crossref: 114] [Cited by in F6Publishing: 98] [Article Influence: 16.3] [Reference Citation Analysis]
133 Mignogna MD, Fortuna G, Falleti J, Leuci S. Capecitabine-induced stomatitis: a likely pathogenetic mechanism of oral lichenoid mucositis. Eur J Clin Pharmacol 2009;65:1057-9. [PMID: 19521695 DOI: 10.1007/s00228-009-0674-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
134 Li CJ, Tzeng YT, Chiu YH, Lin HY, Hou MF, Chu PY. Pathogenesis and Potential Therapeutic Targets for Triple-Negative Breast Cancer. Cancers (Basel) 2021;13:2978. [PMID: 34198652 DOI: 10.3390/cancers13122978] [Reference Citation Analysis]