BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018;130:17-38. [PMID: 30009886 DOI: 10.1016/j.addr.2018.07.007] [Cited by in Crossref: 606] [Cited by in F6Publishing: 584] [Article Influence: 151.5] [Reference Citation Analysis]
Number Citing Articles
1 AlSawaftah NM, Paul V, Kosaji D, Khabbaz L, Awad NS, Husseini GA. Ultrasound-sensitive cRGD-modified liposomes as a novel drug delivery system. Artif Cells Nanomed Biotechnol 2022;50:111-20. [PMID: 35543613 DOI: 10.1080/21691401.2022.2074439] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022;16:100358. [PMID: 35880099 DOI: 10.1016/j.mtbio.2022.100358] [Reference Citation Analysis]
3 Bajracharya R, Song JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Seo SH, Park JW, Jeong SH, Lee CH, Han HK. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 2022;29:1959-70. [PMID: 35762636 DOI: 10.1080/10717544.2022.2089296] [Reference Citation Analysis]
4 Kalyane D, Choudhary D, Polaka S, Goykar H, Karanwad T, Rajpoot K, Kumar Tekade R. Reactive oxygen nano-generators for cancer therapy. Progress in Materials Science 2022;130:100974. [DOI: 10.1016/j.pmatsci.2022.100974] [Reference Citation Analysis]
5 Momoh J, Kapsokalyvas D, Vogt M, Hak S, Kiessling F, van Zandvoort M, Lammers T, Sofias AM. Intravital microscopy for real-time monitoring of drug delivery and nanobiological processes. Adv Drug Deliv Rev 2022;189:114528. [PMID: 36067968 DOI: 10.1016/j.addr.2022.114528] [Reference Citation Analysis]
6 Chen L, Mao Z, Wang Y, Kang Y, Wang Y, Mei L, Ji X. Edge modification facilitated heterogenization and exfoliation of two-dimensional nanomaterials for cancer catalytic therapy. Sci Adv 2022;8:eabo7372. [PMID: 36179019 DOI: 10.1126/sciadv.abo7372] [Reference Citation Analysis]
7 Sokol MB, Yabbarov NG, Mollaeva MR, Chirkina MV, Mollaev MD, Zabolotsky AI, Kuznetsov SL, Nikolskaya ED. Alpha-fetoprotein mediated targeting of polymeric nanoparticles to treat solid tumors. Nanomedicine (Lond) 2022. [PMID: 36136593 DOI: 10.2217/nnm-2022-0097] [Reference Citation Analysis]
8 Shekhar S, Chauhan M, Sonali, Yadav B, Dutt R, Hu L, Muthu MS, Singh RP. Enhanced permeability and retention effect-focused tumor-targeted nanomedicines: latest trends, obstacles and future perspective. Nanomedicine (Lond) 2022. [PMID: 36136592 DOI: 10.2217/nnm-2022-0065] [Reference Citation Analysis]
9 Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. The Chemical Record. [DOI: 10.1002/tcr.202200152] [Reference Citation Analysis]
10 Vikas, Mehata AK, Suseela MNL, Behera C, Kumari P, Mahto SK, Muthu MS. Chitosan-alginate nanoparticles of cabazitaxel: Design, dual-receptor targeting and efficacy in lung cancer model. Int J Biol Macromol 2022;221:874-90. [PMID: 36089091 DOI: 10.1016/j.ijbiomac.2022.09.053] [Reference Citation Analysis]
11 Chakraborty P, Das SS, Dey A, Chakraborty A, Bhattacharyya C, Kandimalla R, Mukherjee B, Gopalakrishnan AV, Singh SK, Kant S, Nand P, Ojha S, Kumar P, Jha NK, Jha SK, Dewanjee S. Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J Control Release 2022;350:698-715. [PMID: 36057397 DOI: 10.1016/j.jconrel.2022.08.047] [Reference Citation Analysis]
12 Zhang L, Huang P, Huang S, Wang T, Chen S, Chen Z, Zhou Y, Qin L. Development of ligand modified erythrocyte coated polydopamine nanomedicine to codeliver chemotherapeutic agent and oxygen for chemo-photothermal synergistic cancer therapy. Int J Pharm 2022;:122156. [PMID: 36058410 DOI: 10.1016/j.ijpharm.2022.122156] [Reference Citation Analysis]
13 O’connell C, Vandenheuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. IJMS 2022;23:9981. [DOI: 10.3390/ijms23179981] [Reference Citation Analysis]
14 Hesemans E, Buttiens K, Manshian BB, Soenen SJ. The Role of Optical Imaging in Translational Nanomedicine. JFB 2022;13:137. [DOI: 10.3390/jfb13030137] [Reference Citation Analysis]
15 Zhao L, Gu X, Jiang F, Li B, Lu S, Wang F, Sun Y, Liu K, Li J. Long-Lasting Proteinaceous Nanoformulation for Tumor Imaging and Therapy. ACS Omega. [DOI: 10.1021/acsomega.2c03561] [Reference Citation Analysis]
16 Amin M, Lammers T, Ten Hagen TLM. Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: towards bypassing EPR. Adv Drug Deliv Rev 2022;:114503. [PMID: 35998827 DOI: 10.1016/j.addr.2022.114503] [Reference Citation Analysis]
17 Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. Nanomaterials 2022;12:2851. [DOI: 10.3390/nano12162851] [Reference Citation Analysis]
18 Dadpour S, Mehrabian A, Arabsalmani M, Mirhadi E, Askarizadeh A, Mashreghi M, Jaafari MR. The role of size in PEGylated liposomal doxorubicin biodistribution and anti-tumour activity. IET Nanobiotechnol 2022. [PMID: 35983586 DOI: 10.1049/nbt2.12094] [Reference Citation Analysis]
19 Yang L, Peng J, Shi A, Wang X, Li J, Su Y, Yin K, Zhao L, Zhao Y. Myocardium-Targeted Micelle Nanomedicine That Salvages the Heart from Ischemia/Reperfusion Injury. ACS Appl Mater Interfaces 2022. [PMID: 35973832 DOI: 10.1021/acsami.2c11117] [Reference Citation Analysis]
20 Barzegar Behrooz A, Talaie Z, Syahir A. Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics 2022;14:1697. [DOI: 10.3390/pharmaceutics14081697] [Reference Citation Analysis]
21 Lokesh KN, Raichur AM. Bioactive nutraceutical ligands and their efficiency to chelate elemental iron of varying dynamic oxidation states to mitigate associated clinical conditions. Crit Rev Food Sci Nutr 2022;:1-27. [PMID: 35943179 DOI: 10.1080/10408398.2022.2106936] [Reference Citation Analysis]
22 Zhou Q, Li J, Xiang J, Shao S, Zhou Z, Tang J, Shen Y. Transcytosis-enabled active extravasation of tumor nanomedicine. Adv Drug Deliv Rev 2022;189:114480. [PMID: 35952830 DOI: 10.1016/j.addr.2022.114480] [Reference Citation Analysis]
23 Gao M, Han Z, Zhou L, Li P, Xu H, Gu Y, Ma Y. DNA Framework-Programmed Ligand Positioning to Modulate the Targeting Performance. ACS Appl Mater Interfaces 2022. [PMID: 35921103 DOI: 10.1021/acsami.2c10300] [Reference Citation Analysis]
24 Zhou H, Lu X, Du C, Zhou Z, Feng J, Liang Z, Xu Y, Qiu X, Shen Z. Cycloacceleration of Reactive Oxygen Species Generation Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for Tumor Ferroptosis Therapy. Small 2022;:e2202705. [PMID: 35923138 DOI: 10.1002/smll.202202705] [Reference Citation Analysis]
25 Blee JA, Liu X, Harland AJ, Fatania K, Currie S, Kurian KM, Hauert S. Liquid biopsies for early diagnosis of brain tumours: in silico mathematical biomarker modelling. J R Soc Interface 2022;19:20220180. [PMID: 35919979 DOI: 10.1098/rsif.2022.0180] [Reference Citation Analysis]
26 Shibata A, Koseki Y, Tanita K, Suzuki R, Dao ATN, Kasai H. Development of camptothecin nano-prodrugs based on trimethyl lock groups toward selective drug release in cancer cells. Tetrahedron Letters 2022;103:153989. [DOI: 10.1016/j.tetlet.2022.153989] [Reference Citation Analysis]
27 Chan Y, Singh SK, Gulati M, Wadhwa S, Prasher P, Kumar D, Kumar AP, Gupta G, Kuppusamy G, Haghi M, George Oliver BG, Adams J, Chellappan DK, Dua K. Advances and applications of monoolein as a novel nanomaterial in mitigating chronic lung diseases. Journal of Drug Delivery Science and Technology 2022;74:103541. [DOI: 10.1016/j.jddst.2022.103541] [Reference Citation Analysis]
28 Shi L, Jin Y, Lai S, Bai L, Zhou R, Zhou Y, Shang X. Redox-responsive carrier based on fluorinated gemini amphiphilic polymer for combinational cancer therapy. Colloids Surf B Biointerfaces 2022;216:112551. [PMID: 35567807 DOI: 10.1016/j.colsurfb.2022.112551] [Reference Citation Analysis]
29 Wang Y, Wang B, Li K, Wang M, Xiao H. Engineered metal and their complexes for nanomedicine-elicited cancer immunotherapy. Materials Today Advances 2022;15:100276. [DOI: 10.1016/j.mtadv.2022.100276] [Reference Citation Analysis]
30 Sahu BP, Baishya R, Hatiboruah JL, Laloo D, Biswas N. A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. J Pharm Investig . [DOI: 10.1007/s40005-022-00583-x] [Reference Citation Analysis]
31 Li Y, Tang K, Zhang X, Pan W, Li N, Tang B. Tumor microenvironment responsive nanocarriers for gene therapy. Chem Commun (Camb) 2022. [PMID: 35880654 DOI: 10.1039/d2cc02759c] [Reference Citation Analysis]
32 Monti Hughes A, Goldfinger JA, Palmieri MA, Ramos P, Santa Cruz IS, De Leo L, Garabalino MA, Thorp SI, Curotto P, Pozzi ECC, Kawai K, Sato S, Itoiz ME, Trivillin VA, Guidobono JS, Nakamura H, Schwint AE. Boron Neutron Capture Therapy (BNCT) Mediated by Maleimide-Functionalized Closo-Dodecaborate Albumin Conjugates (MID:BSA) for Oral Cancer: Biodistribution Studies and In Vivo BNCT in the Hamster Cheek Pouch Oral Cancer Model. Life (Basel) 2022;12:1082. [PMID: 35888170 DOI: 10.3390/life12071082] [Reference Citation Analysis]
33 Flores de los Rios PA, Casañas Pimentel RG, San Martín Martínez E. Nanodrugs against cancer: biological considerations in its redesign. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2097680] [Reference Citation Analysis]
34 Chen T, Chen H, Jiang Y, Yan Q, Zheng S, Wu M. Co-Delivery of 5-Fluorouracil and Paclitaxel in Mitochondria-Targeted KLA-Modified Liposomes to Improve Triple-Negative Breast Cancer Treatment. Pharmaceuticals (Basel) 2022;15:881. [PMID: 35890181 DOI: 10.3390/ph15070881] [Reference Citation Analysis]
35 Mashreghi M, Faal Maleki M, Askarizadeh A, Farshchi H, Farhoudi L, Nasrollahzadeh MS, Rezazade Bazaz M, Hadizadeh F, Jaafari MR. A novel and easy to prepare azo-based bioreductive linker and its application in hypoxia-sensitive cationic liposomal doxorubicin: Synthesis, characterization, in vitro and in vivo studies in mice bearing C26 tumor. Chem Phys Lipids 2022;247:105226. [PMID: 35850240 DOI: 10.1016/j.chemphyslip.2022.105226] [Reference Citation Analysis]
36 Chaudhry M, Lyon P, Coussios C, Carlisle R. Thermosensitive liposomes: A promising step towards locsalised chemotherapy. Expert Opin Drug Deliv 2022. [PMID: 35830722 DOI: 10.1080/17425247.2022.2099834] [Reference Citation Analysis]
37 Li Z, He Y, Li C, He Y, Zhang X, Ni S, Wang D, Gao D. Downregulation of the Tumor Interstitial Fluid Pressure to Boost Intratumoral Penetration and Hydrodynamic Therapy via CaO 2 -Based Ru Nanozymes. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c02006] [Reference Citation Analysis]
38 Bloise N, Strada S, Dacarro G, Visai L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. IJMS 2022;23:7683. [DOI: 10.3390/ijms23147683] [Reference Citation Analysis]
39 Zi Y, Yang K, He J, Wu Z, Liu J, Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev 2022;188:114449. [PMID: 35835353 DOI: 10.1016/j.addr.2022.114449] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
40 Dorot S, Tankel J, Doviner V, Shmeeda H, Amitay Y, Ohana P, Dagan A, Ben-Haim M, Reissman P, Gabizon A. Ex-vivo activation of a liposomal prodrug of mitomycin C by human tumors. Cancer Chemother Pharmacol 2022. [PMID: 35802145 DOI: 10.1007/s00280-022-04451-1] [Reference Citation Analysis]
41 Mohammadzadeh V, Rahiman N, Hosseinikhah SM, Barani M, Rahdar A, Jaafari MR, Sargazi S, Zirak MR, Pandey S, Bhattacharjee R, Gupta AK, Thakur VK, Sibuh BZ, Gupta PK. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. Journal of Drug Delivery Science and Technology 2022;73:103459. [DOI: 10.1016/j.jddst.2022.103459] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Thuy LT, Kang N, Choi M, Lee M, Choi JS. Dendrimeric micelles composed of polyamidoamine dendrimer-peptide-cholesterol conjugates as drug carriers for the treatment of melanoma and bacterial infection. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.07.026] [Reference Citation Analysis]
43 Lu Z, Singh G, Lesani P, Zreiqat H. Promise and Perspective of Nanomaterials in Antisenescence Tissue Engineering Applications. ACS Biomater Sci Eng 2022. [PMID: 35771746 DOI: 10.1021/acsbiomaterials.1c01298] [Reference Citation Analysis]
44 Chen S, Zhu H, Luo Y. Chitosan-based oral colon-specific delivery systems for polyphenols: recent advances and emerging trends. J Mater Chem B 2022. [PMID: 35766297 DOI: 10.1039/d2tb00874b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
45 Ejigah V, Owoseni O, Bataille-backer P, Ogundipe OD, Fisusi FA, Adesina SK. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers 2022;14:2601. [DOI: 10.3390/polym14132601] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Meivita MP, Chan SSY, Go SX, Lee D, Bajalovic N, Loke DK. WS 2 /Polyethylene Glycol Nanostructures for Ultra-Efficient MCF-7 Cancer Cell Ablation and Electrothermal Therapy. ACS Omega. [DOI: 10.1021/acsomega.2c00284] [Reference Citation Analysis]
47 Ma X, Li SJ, Liu Y, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev 2022;51:5136-74. [PMID: 35666131 DOI: 10.1039/d2cs00247g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
48 Zhang X, Jiang J, Yu Q, Zhou P, Yang S, Xia J, Deng T, Yu C. ZIF-based carbon dots with lysosome-Golgi transport property as visualization platform for deep tumour therapy via hierarchical size/charge dual-transform and transcytosis. Nanoscale 2022;14:8510-24. [PMID: 35660835 DOI: 10.1039/d2nr02134j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Swetha KL, Maravajjala KS, Li SD, Singh MS, Roy A. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv Transl Res 2022. [PMID: 35697894 DOI: 10.1007/s13346-022-01194-7] [Reference Citation Analysis]
50 How CW, Teoh SL, Loh JS, Tan SLK, Foo JB, Ng HS, Wong SYW, Ong YS. Emerging Nanotheranostics for 5-Fluorouracil in Cancer Therapy: A Systematic Review on Efficacy, Safety, and Diagnostic Capability. Front Pharmacol 2022;13:882704. [PMID: 35662688 DOI: 10.3389/fphar.2022.882704] [Reference Citation Analysis]
51 Kim MA, Lee CM. NIR-Mediated drug release and tumor theranostics using melanin-loaded liposomes. Biomater Res 2022;26:22. [PMID: 35659113 DOI: 10.1186/s40824-022-00270-w] [Reference Citation Analysis]
52 Huang M, Wang S, Chen S, Wang J, Xu C, Liu J, Lian Z, Du X, Wang J. Pegylated liposomal mitoxantrone modulates tumor immune landscape to boost PD-L1 blockade therapy. Nano Today 2022;44:101500. [DOI: 10.1016/j.nantod.2022.101500] [Reference Citation Analysis]
53 Mehan S, Arora N, Bhalla S, Khan A, U Rehman M, Alghamdi BS, Zughaibi TA, Ashraf GM. Involvement of Phytochemical-Encapsulated Nanoparticles' Interaction with Cellular Signalling in the Amelioration of Benign and Malignant Brain Tumours. Molecules 2022;27:3561. [PMID: 35684498 DOI: 10.3390/molecules27113561] [Reference Citation Analysis]
54 Hu H, Quintana J, Weissleder R, Parangi S, Miller M. Deciphering albumin-directed drug delivery by imaging. Adv Drug Deliv Rev 2022;185:114237. [PMID: 35364124 DOI: 10.1016/j.addr.2022.114237] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
55 Xu X, Li T, Jin K. Bioinspired and Biomimetic Nanomedicines for Targeted Cancer Therapy. Pharmaceutics 2022;14:1109. [PMID: 35631695 DOI: 10.3390/pharmaceutics14051109] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Patel P, Raval M, Manvar A, Airao V, Bhatt V, Shah P. Lung cancer targeting efficiency of Silibinin loaded Poly Caprolactone /Pluronic F68 Inhalable nanoparticles: In vitro and In vivo study. PLoS One 2022;17:e0267257. [PMID: 35560136 DOI: 10.1371/journal.pone.0267257] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022;14:2473. [PMID: 35626078 DOI: 10.3390/cancers14102473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Wang K, Shen R, Meng T, Hu F, Yuan H. Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer. Molecules 2022;27:2981. [DOI: 10.3390/molecules27092981] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
59 Miedema IHC, Zwezerijnen GJC, Huisman MC, Doeleman E, Mathijssen RHJ, Lammers T, Hu Q, van Dongen GAMS, Rijcken CJF, Vugts DJ, Menke-van der Houven van Oordt CW. PET-CT Imaging of Polymeric Nanoparticle Tumor Accumulation in Patients. Adv Mater 2022;34:e2201043. [PMID: 35427430 DOI: 10.1002/adma.202201043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
60 Wilson RJ, Li Y, Yang G, Zhao C. Nanoemulsions for drug delivery. Particuology 2022;64:85-97. [DOI: 10.1016/j.partic.2021.05.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
61 Fu L, Kim HN, Sterling JD, Baker SM, Lord MS. The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Adv Drug Deliv Rev 2022;184:114195. [PMID: 35292326 DOI: 10.1016/j.addr.2022.114195] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Hashida M. Advocation and advancements of EPR effect theory in drug delivery science: A commentary. J Control Release 2022:S0168-3659(22)00227-9. [PMID: 35483640 DOI: 10.1016/j.jconrel.2022.04.031] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Li Q, Liu Y, Huang Z, Guo Y, Li Q. Triggering Immune System With Nanomaterials for Cancer Immunotherapy. Front Bioeng Biotechnol 2022;10:878524. [DOI: 10.3389/fbioe.2022.878524] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Qu Y, Wang Z, Sun M, Zhao T, Zhu X, Deng X, Zhang M, Xu Y, Liu H. A Theranostic Nanocomplex Combining with Magnetic Hyperthermia for Enhanced Accumulation and Efficacy of pH-Triggering Polymeric Cisplatin(IV) Prodrugs. Pharmaceuticals (Basel) 2022;15:480. [PMID: 35455477 DOI: 10.3390/ph15040480] [Reference Citation Analysis]
65 Lin P, Xue Y, Mu X, Shao Y, Lu Q, Jin X, Yinwang E, Zhang Z, Zhou H, Teng W, Sun H, Chen W, Shi W, Shi C, Zhou X, Jiang X, Yu X, Ye Z. Tumor Customized 2D Supramolecular Nanodiscs for Ultralong Tumor Retention and Precise Photothermal Therapy of Highly Heterogeneous Cancers. Small 2022;:e2200179. [PMID: 35396783 DOI: 10.1002/smll.202200179] [Reference Citation Analysis]
66 Parodi A, Kostyushev D, Brezgin S, Kostyusheva A, Borodina T, Akasov R, Frolova A, Chulanov V, Zamyatnin AA. Biomimetic approaches for targeting tumor inflammation. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.04.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Biancacci I, De Lorenzi F, Theek B, Bai X, May JN, Consolino L, Baues M, Moeckel D, Gremse F, von Stillfried S, El Shafei A, Benderski K, Azadkhah Shalmani A, Wang A, Momoh J, Peña Q, Buhl EM, Buyel J, Hennink W, Kiessling F, Metselaar J, Shi Y, Lammers T. Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles. Adv Sci (Weinh) 2022;9:e2103745. [PMID: 35072358 DOI: 10.1002/advs.202103745] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Guo R, Liu Y, Xu N, Ling G, Zhang P. Multifunctional nanomedicines for synergistic photodynamic immunotherapy based on tumor immune microenvironment. European Journal of Pharmaceutics and Biopharmaceutics 2022;173:103-20. [DOI: 10.1016/j.ejpb.2022.03.002] [Reference Citation Analysis]
69 Zhuang F, Ma Q, Dong C, Xiang H, Shen Y, Sun P, Li C, Chen Y, Lu B, Chen Y, Huang B. Sequential Ultrasound-Triggered and Hypoxia-Sensitive Nanoprodrug for Cascade Amplification of Sonochemotherapy. ACS Nano 2022. [PMID: 35357810 DOI: 10.1021/acsnano.1c09505] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
70 Shi Z, Zheng J, Tang W, Bai Y, Zhang L, Xuan Z, Sun H, Shao C. Multifunctional Nanomaterials for Ferroptotic Cancer Therapy. Front Chem 2022;10:868630. [DOI: 10.3389/fchem.2022.868630] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
71 Ikeda-Imafuku M, Wang LL, Rodrigues D, Shaha S, Zhao Z, Mitragotri S. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. J Control Release 2022:S0168-3659(22)00169-9. [PMID: 35337939 DOI: 10.1016/j.jconrel.2022.03.043] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
72 Birhan YS, Hanurry EY, Mekonnen TW, Darge HF, Lin Y, Yang M, Tsai H. Biotin‐decorated redox‐responsive micelles from diselenide‐linked star‐shaped copolymers for the targeted delivery and controlled release of doxorubicin in cancer cells. J of Applied Polymer Sci. [DOI: 10.1002/app.52327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
73 Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
74 Speciale A, Muscarà C, Molonia MS, Cristani M, Cimino F, Saija A. Recent Advances in Glycyrrhetinic Acid-Functionalized Biomaterials for Liver Cancer-Targeting Therapy. Molecules 2022;27:1775. [PMID: 35335138 DOI: 10.3390/molecules27061775] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Mahmoud K, Swidan S, El-nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01309-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
76 Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
77 Fouad R, Shebl M, Saif M, Gamal S. Novel copper nano-complex based on tetraazamacrocyclic backbone: Template synthesis, structural elucidation, cytotoxic, DNA binding and molecular docking studies. Journal of Molecular Structure 2022;1251:132021. [DOI: 10.1016/j.molstruc.2021.132021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.025] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
79 Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022;182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
80 Kang Y, Lim J, Saravanakumar G, Kim J, Park M, Im S, Kim WJ. Immunostimulation of tumor microenvironment by targeting tumor-associated macrophages with hypoxia-responsive nanocomplex for enhanced anti-tumor therapy. Journal of Controlled Release 2022;343:78-88. [DOI: 10.1016/j.jconrel.2022.01.021] [Reference Citation Analysis]
81 Cerqueira M, Belmonte-reche E, Gallo J, Baltazar F, Bañobre-lópez M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022;14:506. [DOI: 10.3390/pharmaceutics14030506] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
82 Chen Z, Zeng Y, Chen N, Zhang M, Wang Y, Pan Z, Yuan J, Ye Z, Li X, Bian W, Li H, Zhang K, He Y, Liu X. A Facile and Universal Method for Preparing Polyethylene Glycol-Metal Hybrid Nanoparticles and Their Application in Tumor Theranostics. Adv Healthc Mater 2022;:e2200044. [PMID: 35192244 DOI: 10.1002/adhm.202200044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Amin M, Mansourian M, Burgers PC, Amin B, Jaafari MR, Ten Hagen TLM. Increased Targeting Area in Tumors by Dual-Ligand Modification of Liposomes with RGD and TAT Peptides. Pharmaceutics 2022;14:458. [PMID: 35214190 DOI: 10.3390/pharmaceutics14020458] [Reference Citation Analysis]
84 Fahmy SA, Ramzy A, Mandour AA, Nasr S, Abdelnaser A, Bakowsky U, Azzazy HME. PEGylated Chitosan Nanoparticles Encapsulating Ascorbic Acid and Oxaliplatin Exhibit Dramatic Apoptotic Effects against Breast Cancer Cells. Pharmaceutics 2022;14:407. [DOI: 10.3390/pharmaceutics14020407] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
85 Martín-contreras M, Navarro-marchal SA, Peula-garcía JM, Jódar-reyes AB. Progress and Hurdles of Therapeutic Nanosystems against Cancer. Pharmaceutics 2022;14:388. [DOI: 10.3390/pharmaceutics14020388] [Reference Citation Analysis]
86 Leng J, Dai X, Cheng X, Zhou H, Wang D, Zhao J, Ma K, Cui C, Wang L, Guo Z. Biomimetic Cucurbitacin B-Polydopamine Nanoparticles for Synergistic Chemo-Photothermal Therapy of Breast Cancer. Front Bioeng Biotechnol 2022;10:841186. [DOI: 10.3389/fbioe.2022.841186] [Reference Citation Analysis]
87 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
88 Alshahrani SM. A judicious review on the applications of chemotherapeutic loaded nanoemulsions in cancer management. Journal of Drug Delivery Science and Technology 2022;68:103085. [DOI: 10.1016/j.jddst.2021.103085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
89 Dhumal DM, Patil MU, Kulkarni RV, Akamanchi KG. Development and evaluation of amphiphilic heterolipid based pH-sensitive nanomicelles of doxorubicin. Journal of Drug Delivery Science and Technology 2022;68:103079. [DOI: 10.1016/j.jddst.2021.103079] [Reference Citation Analysis]
90 Pilch J, Kowalik P, Kowalczyk A, Bujak P, Kasprzak A, Paluszkiewicz E, Augustin E, Nowicka AM. Foliate-Targeting Quantum Dots-β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells. Int J Mol Sci 2022;23:1261. [PMID: 35163186 DOI: 10.3390/ijms23031261] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
91 Williams RM, Shah J, Mercer E, Tian HS, Thompson V, Cheung JM, Dorso M, Kubala JM, Gudas LJ, de Stanchina E, Jaimes EA, Heller DA. Kidney-Targeted Redox Scavenger Therapy Prevents Cisplatin-Induced Acute Kidney Injury. Front Pharmacol 2021;12:790913. [PMID: 35046813 DOI: 10.3389/fphar.2021.790913] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
92 Ricciardi L, Chatterjee S, Palermo G, Szerb EI, Sanna A, Palermo F, Pieroni N, Fratini M, Bartolino R, Cedola A, La Deda M, Strangi G. Hybrid Nanoparticles as Theranostics Platforms for Glioblastoma Treatment: Phototherapeutic and X-ray Phase Contrast Tomography Investigations. JNT 2022;3:1-17. [DOI: 10.3390/jnt3010001] [Reference Citation Analysis]
93 Comparetti EJ, Ferreira NN, Ferreira LMB, Kaneno R, Zucolotto V. Immunomodulatory properties of nanostructured systems for cancer therapy. J Biomed Mater Res A 2022. [PMID: 35043549 DOI: 10.1002/jbm.a.37359] [Reference Citation Analysis]
94 Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Karthikkumar V, Wang MH. Smart drug delivery of p-Coumaric acid loaded aptamer conjugated starch nanoparticles for effective triple-negative breast cancer therapy. Int J Biol Macromol 2022;195:22-9. [PMID: 34861273 DOI: 10.1016/j.ijbiomac.2021.11.170] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
95 Bassiony H, El-Ghor AA, Salaheldin TA, Sabet S, Mohamed MM. Tissue Distribution, Histopathological and Genotoxic Effects of Magnetite Nanoparticles on Ehrlich Solid Carcinoma. Biol Trace Elem Res 2022. [PMID: 35032291 DOI: 10.1007/s12011-022-03102-z] [Reference Citation Analysis]
96 Yu H, Li Y, Zhang Z, Ren J, Zhang L, Xu Z, Kang Y, Xue P. Silk fibroin-capped metal-organic framework for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy. Acta Biomater 2022;138:545-60. [PMID: 34775125 DOI: 10.1016/j.actbio.2021.11.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
97 de Souza Gonçalves D, Yukuyama MN, Miyagi MYS, Silva TJV, Lameu C, Bou-chacra NA, de Araujo GLB. Revisiting Flubendazole Through Nanocrystal Technology: Statistical Design, Characterization and Its Potential Inhibitory Effect on Xenografted Lung Tumor Progression in Mice. J Clust Sci. [DOI: 10.1007/s10876-022-02220-x] [Reference Citation Analysis]
98 Tran TA, Kappelhoff J, Jüstel T, Anderson RR, Purschke M. UV emitting nanoparticles enhance the effect of ionizing radiation in 3D lung cancer spheroids. Int J Radiat Biol 2022;:1-34. [PMID: 35020574 DOI: 10.1080/09553002.2022.2027541] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Yue S, Zhang X, Xu Y, Zhu L, Cheng J, Qiao Y, Dai S, Zhu J, Jiang N, Wu H, Zhang P, Hou Y. The influence of surface charge on the tumor-targeting behavior of Fe3O4 nanoparticles for MRI. J Mater Chem B 2022. [PMID: 34994759 DOI: 10.1039/d1tb02349g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Zhang M, Lin J, Jin J, Yu W, Qi Y, Tao H. Delivery of siRNA Using Functionalized Gold Nanorods Enhances Anti-Osteosarcoma Efficacy. Front Pharmacol 2021;12:799588. [PMID: 34987409 DOI: 10.3389/fphar.2021.799588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Yu J, Mu Q, Fung M, Xu X, Zhu L, Ho RJY. Challenges and opportunities in metastatic breast cancer treatments: Nano-drug combinations delivered preferentially to metastatic cells may enhance therapeutic response. Pharmacol Ther 2022;236:108108. [PMID: 34999182 DOI: 10.1016/j.pharmthera.2022.108108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
102 Sharma M, Mittapelly N, Banala VT, Urandur S, Gautam S, Marwaha D, Rai N, Singh N, Gupta A, Mitra K, Mishra PR. Amalgamated Microneedle Array Bearing Ribociclib-Loaded Transfersomes Eradicates Breast Cancer via CD44 Targeting. Biomacromolecules 2022. [PMID: 34978424 DOI: 10.1021/acs.biomac.1c01076] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
103 Vasalou C, Ferguson D, Li W, Muse V, Gibbons FD, Sonzini S, Zhang G, Pop-Damkov P, Gangl E, Balachander SB, Wen S, Schuller AG, Puri S, Mazza M, Ashford M, Fretland AJ, McGinnity DF, Jones RDO. Quantitative Evaluation of Dendritic Nanoparticles in Mice: Biodistribution Dynamics and Downstream Tumor Efficacy Outcomes. Mol Pharm 2022;19:172-87. [PMID: 34890209 DOI: 10.1021/acs.molpharmaceut.1c00715] [Reference Citation Analysis]
104 Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. Nanoscale Adv 2022;4:634-53. [DOI: 10.1039/d1na00810b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Luo L, Qi Y, Zhong H, Jiang S, Zhang H, Cai H, Wu Y, Gu Z, Gong Q, Luo K. GSH-sensitive polymeric prodrug: Synthesis and loading with photosensitizers as nanoscale chemo-photodynamic anti-cancer nanomedicine. Acta Pharm Sin B 2022;12:424-36. [PMID: 35127396 DOI: 10.1016/j.apsb.2021.05.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 25.0] [Reference Citation Analysis]
106 Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022;137:1-19. [PMID: 34687954 DOI: 10.1016/j.actbio.2021.10.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
107 Zhang Y, Li L, Li Y, Fei Y, Xue C, Yao X, Zhao Y, Wang X, Li M, Luo Z. An ROS-Activatable Nanoassembly Remodulates Tumor Cell Metabolism for Enhanced Ferroptosis Therapy. Adv Healthc Mater 2022;11:e2101702. [PMID: 34710950 DOI: 10.1002/adhm.202101702] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
108 Han Z, Gong C, Li J, Guo H, Chen X, Jin Y, Gao S, Tai Z. Immunologically modified enzyme-responsive micelles regulate the tumor microenvironment for cancer immunotherapy. Mater Today Bio 2022;13:100170. [PMID: 34938989 DOI: 10.1016/j.mtbio.2021.100170] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
109 Allemailem KS. Innovative Approaches of Engineering Tumor-Targeting Bacteria with Different Therapeutic Payloads to Fight Cancer: A Smart Strategy of Disease Management. Int J Nanomedicine 2021;16:8159-84. [PMID: 34938075 DOI: 10.2147/IJN.S338272] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
110 Wang X, He J, Jiang S, Gao Y, Zhang LK, Yin L, You R, Guan YQ. Multi-ligand modified PC@DOX-PA/EGCG micelles effectively inhibit the growth of ER+, PR+ or HER2+ breast cancer. J Mater Chem B 2021. [PMID: 34940773 DOI: 10.1039/d1tb02056k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Brandt F, Ullrich M, Laube M, Kopka K, Bachmann M, Löser R, Pietzsch J, Pietzsch HJ, van den Hoff J, Wodtke R. "Clickable" Albumin Binders for Modulating the Tumor Uptake of Targeted Radiopharmaceuticals. J Med Chem 2021. [PMID: 34939412 DOI: 10.1021/acs.jmedchem.1c01791] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
112 Maraming P, Daduang J, Kah JCY. Conjugation with gold nanoparticles improves the stability of the KT2 peptide and maintains its anticancer properties. RSC Adv 2021;12:319-25. [PMID: 35424498 DOI: 10.1039/d1ra05980g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Li H, Zhang Y, Shu H, Lv W, Su C, Nie F. Highlights in ultrasound-targeted microbubble destruction-mediated gene/drug delivery strategy for treatment of malignancies. Int J Pharm 2021;:121412. [PMID: 34942327 DOI: 10.1016/j.ijpharm.2021.121412] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
114 Chen E, Wang T, Zhang J, Zhou X, Niu Y, Liu F, Zhong Y, Huang D, Chen W. Mitochondrial Targeting and pH-Responsive Nanogels for Co-Delivery of Lonidamine and Paclitaxel to Conquer Drug Resistance. Front Bioeng Biotechnol 2021;9:787320. [PMID: 34912792 DOI: 10.3389/fbioe.2021.787320] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
115 Li M, Ma S, Xie X, Liu N, Li Z, Yang Z, Gao G, Li S, Li Y, Li S, Mei X, Zhang H. Vincristine-doxorubicin co-loaded artificial low-density lipoproteins towards solid tumours. Eur J Med Chem 2021;226:113802. [PMID: 34543934 DOI: 10.1016/j.ejmech.2021.113802] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
116 Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021;193:457-73. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
117 Zhou J, Ma X, Li H, Chen D, Mao L, Yang L, Zhang T, Qiu W, Xu Z, Sun Z. Inspired heat shock protein alleviating prodrug enforces immunogenic photodynamic therapy by eliciting pyroptosis. Nano Res . [DOI: 10.1007/s12274-021-3946-2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
118 Helmy LA, Abdel-Halim M, Hassan R, Sebak A, Farghali HAM, Mansour S, Tammam SN. The other side to the use of active targeting ligands; the case of folic acid in the targeting of breast cancer. Colloids Surf B Biointerfaces 2021;211:112289. [PMID: 34954516 DOI: 10.1016/j.colsurfb.2021.112289] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
119 George TA, Chen MM, Czosseck A, Chen HP, Huang HS, Lundy DJ. Liposome-encapsulated anthraquinone improves efficacy and safety in triple negative breast cancer. J Control Release 2021;342:31-43. [PMID: 34896187 DOI: 10.1016/j.jconrel.2021.12.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
120 Srivastava S, Kumar A, Yadav PK, Kumar M, Mathew J, Pandey AC, Chourasia MK. Formulation and performance evaluation of polymeric mixed micelles encapsulated with baicalein for breast cancer treatment. Drug Dev Ind Pharm 2021;:1-11. [PMID: 34781796 DOI: 10.1080/03639045.2021.2007394] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
121 Katekar R, Singh P, Garg R, Verma S, Gayen JR. Emerging nanotechnology based combination therapies of taxanes for multiple drug-resistant cancers. Pharm Dev Technol 2021;:1-13. [PMID: 34806547 DOI: 10.1080/10837450.2021.2009861] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
122 Wang Y, Luo C, Zhou S, Wang X, Zhang X, Li S, Zhang S, Wang S, Sun B, He Z, Sun J. Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies. Asian J Pharm Sci 2021;16:643-52. [PMID: 34849169 DOI: 10.1016/j.ajps.2021.02.001] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
123 Baseeruddin Alvi S, P S R, Begum N, Jogdand AB, Veeresh B, Rengan AK. In Situ Nanotransformable Hydrogel for Chemo-Photothermal Therapy of Localized Tumors and Targeted Therapy of Highly Metastatic Tumors. ACS Appl Mater Interfaces 2021;13:55862-78. [PMID: 34788534 DOI: 10.1021/acsami.1c17054] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
124 Materón EM, Miyazaki CM, Carr O, Joshi N, Picciani PH, Dalmaschio CJ, Davis F, Shimizu FM. Magnetic nanoparticles in biomedical applications: A review. Applied Surface Science Advances 2021;6:100163. [DOI: 10.1016/j.apsadv.2021.100163] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
125 Xu X, Duan J, Lan Q, Kuang Y, Liao T, Liu Y, Xu Z, Chen J, Jiang B, Li C. A dual-sensitive poly(amino acid)/hollow mesoporous silica nanoparticle-based anticancer drug delivery system with a rapid charge-reversal property. Journal of Drug Delivery Science and Technology 2021;66:102817. [DOI: 10.1016/j.jddst.2021.102817] [Reference Citation Analysis]
126 Drozdov AS, Nikitin PI, Rozenberg JM. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int J Mol Sci 2021;22:13011. [PMID: 34884816 DOI: 10.3390/ijms222313011] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
127 Guo K, Xiao N, Liu Y, Wang Z, Tóth J, Gyenis J, Thakur VK, Oyane A, Shubhra QT. Engineering polymer nanoparticles using cell membrane coating technology and their application in cancer treatments: Opportunities and challenges. Nano Materials Science 2021. [DOI: 10.1016/j.nanoms.2021.12.001] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
128 Pariente A, Peled E, Zlotver I, Sosnik A. Hybrid amorphous TiO2/polymer nanomaterials trigger apoptosis of pediatric cancer cells upon ultrasound irradiation. Materials Today Chemistry 2021;22:100613. [DOI: 10.1016/j.mtchem.2021.100613] [Reference Citation Analysis]
129 Rabha B, Bharadwaj KK, Pati S, Choudhury BK, Sarkar T, Kari ZA, Edinur HA, Baishya D, Atanase LI. Development of Polymer-Based Nanoformulations for Glioblastoma Brain Cancer Therapy and Diagnosis: An Update. Polymers (Basel) 2021;13:4114. [PMID: 34883617 DOI: 10.3390/polym13234114] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
130 Filipczak N, Joshi U, Attia SA, Berger Fridman I, Cohen S, Konry T, Torchilin V. Hypoxia-sensitive drug delivery to tumors. J Control Release 2021;341:431-42. [PMID: 34838607 DOI: 10.1016/j.jconrel.2021.11.034] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Saminathan A, Zajac M, Anees P, Krishnan Y. Organelle-level precision with next-generation targeting technologies. Nat Rev Mater. [DOI: 10.1038/s41578-021-00396-8] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
132 Natesh NS, White BM, Bennett MMC, Uz M, Kalari Kandy RR, Batra SK, Mallapragada SK, Rachagani S. Emerging Role of miR-345 and Its Effective Delivery as a Potential Therapeutic Candidate in Pancreatic Cancer and Other Cancers. Pharmaceutics 2021;13:1987. [PMID: 34959269 DOI: 10.3390/pharmaceutics13121987] [Reference Citation Analysis]
133 Zhou Y, Du Q, Zhao Q, Zhang M, Qin X, Jiang Y, Luan Y. A heme-regulatable chemodynamic nanodrug harnessing transcription factor Bach1 against lung cancer metastasis. J Colloid Interface Sci 2021:S0021-9797(21)02027-0. [PMID: 34863556 DOI: 10.1016/j.jcis.2021.11.124] [Reference Citation Analysis]
134 Abu Dayyih A, Alawak M, Ayoub AM, Amin MU, Abu Dayyih W, Engelhardt K, Duse L, Preis E, Brüßler J, Bakowsky U. Thermosensitive liposomes encapsulating hypericin: Characterization and photodynamic efficiency. Int J Pharm 2021;609:121195. [PMID: 34673168 DOI: 10.1016/j.ijpharm.2021.121195] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
135 Winifred Nompumelelo Simelane N, Abrahamse H. Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer. Int J Mol Sci 2021;22:12405. [PMID: 34830287 DOI: 10.3390/ijms222212405] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
136 Le H, Karakasyan C, Jouenne T, Le Cerf D, Dé E. Application of Polymeric Nanocarriers for Enhancing the Bioavailability of Antibiotics at the Target Site and Overcoming Antimicrobial Resistance. Applied Sciences 2021;11:10695. [DOI: 10.3390/app112210695] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
137 Bony BA, Tarudji AW, Miller HA, Gowrikumar S, Roy S, Curtis ET, Gee CC, Vecchio A, Dhawan P, Kievit FM. Claudin-1-Targeted Nanoparticles for Delivery to Aging-Induced Alterations in the Blood-Brain Barrier. ACS Nano 2021. [PMID: 34748307 DOI: 10.1021/acsnano.1c08432] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
138 Llop J, Lammers T. Nanoparticles for Cancer Diagnosis, Radionuclide Therapy and Theranostics. ACS Nano 2021. [PMID: 34748314 DOI: 10.1021/acsnano.1c09139] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
139 Zhao C, Lv H, Tao S, Zhang T, Xu N, Zhu L. Exosomes: Promising nanocarrier for cancer therapy. Nano Select. [DOI: 10.1002/nano.202100142] [Reference Citation Analysis]
140 Askar MA, Thabet NM, El-Sayyad GS, El-Batal AI, Abd Elkodous M, El Shawi OE, Helal H, Abdel-Rafei MK. Dual Hyaluronic Acid and Folic Acid Targeting pH-Sensitive Multifunctional 2DG@DCA@MgO-Nano-Core-Shell-Radiosensitizer for Breast Cancer Therapy. Cancers (Basel) 2021;13:5571. [PMID: 34771733 DOI: 10.3390/cancers13215571] [Reference Citation Analysis]
141 He L, Zhang Y, Chen J, Liu G, Zhu J, Li X, Li D, Yang Y, Lee CS, Shi J, Yin C, Lai P, Wang L, Fang C. A multifunctional targeted nanoprobe with high NIR-II PAI/MRI performance for precise theranostics of orthotopic early-stage hepatocellular carcinoma. J Mater Chem B 2021;9:8779-92. [PMID: 34635903 DOI: 10.1039/d1tb01729b] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
142 Pu Y, Yin H, Dong C, Xiang H, Wu W, Zhou B, Du D, Chen Y, Xu H. Sono-Controllable and ROS-Sensitive CRISPR-Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy. Adv Mater 2021;33:e2104641. [PMID: 34536041 DOI: 10.1002/adma.202104641] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
143 Ali N, Srivastava N. Recent Advancements for the Management of Pancreatic Cancer: Current Insights. CCTR 2021;17:267-82. [DOI: 10.2174/1573394717666210625153256] [Reference Citation Analysis]
144 Tracey SR, Smyth P, Barelle CJ, Scott CJ. Development of next generation nanomedicine-based approaches for the treatment of cancer: we've barely scratched the surface. Biochem Soc Trans 2021;49:2253-69. [PMID: 34709394 DOI: 10.1042/BST20210343] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
145 Carney CP, Pandey N, Kapur A, Woodworth GF, Winkles JA, Kim AJ. Harnessing nanomedicine for enhanced immunotherapy for breast cancer brain metastases. Drug Deliv Transl Res 2021;11:2344-70. [PMID: 34716900 DOI: 10.1007/s13346-021-01039-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
146 Benli-Hoppe T, Göl Öztürk Ş, Öztürk Ö, Berger S, Wagner E, Yazdi M. Transferrin Receptor Targeted Polyplexes Completely Comprised of Sequence-Defined Components. Macromol Rapid Commun 2021;:e2100602. [PMID: 34713524 DOI: 10.1002/marc.202100602] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
147 Calabrese G, De Luca G, Nocito G, Rizzo MG, Lombardo SP, Chisari G, Forte S, Sciuto EL, Conoci S. Carbon Dots: An Innovative Tool for Drug Delivery in Brain Tumors. Int J Mol Sci 2021;22:11783. [PMID: 34769212 DOI: 10.3390/ijms222111783] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
148 Lima-Sousa R, Alves CG, Melo BL, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Poly(2-ethyl-2-oxazoline) functionalized reduced graphene oxide: Optimization of the reduction process using dopamine and application in cancer photothermal therapy. Mater Sci Eng C Mater Biol Appl 2021;130:112468. [PMID: 34702543 DOI: 10.1016/j.msec.2021.112468] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
149 Li X, Ai S, Lu X, Liu S, Guan W. Nanotechnology-based strategies for gastric cancer imaging and treatment. RSC Adv 2021;11:35392-407. [PMID: 35493171 DOI: 10.1039/d1ra01947c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
150 Pulagam KR, Henriksen-Lacey M, B Uribe K, Renero-Lecuna C, Kumar J, Charalampopoulou A, Facoetti A, Protti N, Gómez-Vallejo V, Baz Z, Kumar V, Sánchez-Iglesias A, Altieri S, Cossío U, Di Silvio D, Martínez-Villacorta AM, Ruiz de Angulo A, Rejc L, Liz-Marzán LM, Llop J. In Vivo Evaluation of Multifunctional Gold Nanorods for Boron Neutron Capture and Photothermal Therapies. ACS Appl Mater Interfaces 2021;13:49589-601. [PMID: 34643365 DOI: 10.1021/acsami.0c17575] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
151 Taiariol L, Chaix C, Farre C, Moreau E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem Rev 2021. [PMID: 34705429 DOI: 10.1021/acs.chemrev.1c00484] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
152 Wang X, Deng B, Yu M, Zeng T, Chen Y, Hu J, Wu Q, Li A. Constructing a passive targeting and long retention therapeutic nanoplatform based on water-soluble, non-toxic and highly-stable core-shell poly(amino acid) nanocomplexes. Biomater Sci 2021;9:7065-75. [PMID: 34590101 DOI: 10.1039/d1bm01246k] [Reference Citation Analysis]
153 Cline BL, Jiang W, Lee C, Cao Z, Yang X, Zhan S, Chong H, Zhang T, Han Z, Wu X, Yao L, Wang H, Zhang W, Li Z, Xie J. Potassium Iodide Nanoparticles Enhance Radiotherapy against Breast Cancer by Exploiting the Sodium-Iodide Symporter. ACS Nano 2021. [PMID: 34694109 DOI: 10.1021/acsnano.1c01435] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021;13:5346. [PMID: 34771511 DOI: 10.3390/cancers13215346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
155 Ossoli A, Wolska A, Remaley AT, Gomaraschi M. High-density lipoproteins: A promising tool against cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2022;1867:159068. [PMID: 34653581 DOI: 10.1016/j.bbalip.2021.159068] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
156 Heidari R, Khosravian P, Mirzaei SA, Elahian F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep 2021;11:20531. [PMID: 34654836 DOI: 10.1038/s41598-021-00085-0] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
157 He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021;13:1670. [PMID: 34683963 DOI: 10.3390/pharmaceutics13101670] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
158 Pan P, Svirskis D, Rees SWP, Barker D, Waterhouse GIN, Wu Z. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications. J Control Release 2021;338:446-61. [PMID: 34481021 DOI: 10.1016/j.jconrel.2021.08.053] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
159 Seyyednia E, Oroojalian F, Baradaran B, Mojarrad JS, Mokhtarzadeh A, Valizadeh H. Nanoparticles modified with vasculature-homing peptides for targeted cancer therapy and angiogenesis imaging. J Control Release 2021;338:367-93. [PMID: 34461174 DOI: 10.1016/j.jconrel.2021.08.044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
160 Kaduri M, Sela M, Kagan S, Poley M, Abumanhal-Masarweh H, Mora-Raimundo P, Ouro A, Dahan N, Hershkovitz D, Shklover J, Shainsky-Roitman J, Buganim Y, Schroeder A. Targeting neurons in the tumor microenvironment with bupivacaine nanoparticles reduces breast cancer progression and metastases. Sci Adv 2021;7:eabj5435. [PMID: 34613777 DOI: 10.1126/sciadv.abj5435] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
161 El-naggar ME, Ali OAA, Saleh DI, Abu-saied MA, Ahmed MK, Abdel-fattah E, Mansour SF. Nanoarchitectonics of Hydroxyapatite/Molybdenum Trioxide/Graphene Oxide Composite for Efficient Antibacterial Activity. J Inorg Organomet Polym 2022;32:399-411. [DOI: 10.1007/s10904-021-02109-8] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
162 Wu R, Yang X, Li X, Dong N, Liu Y, Zhang P. Nanobubbles for tumors: Imaging and drug carriers. Journal of Drug Delivery Science and Technology 2021;65:102749. [DOI: 10.1016/j.jddst.2021.102749] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
163 Freitas LF, Ferreira AH, Thipe VC, Varca GHC, Lima CSA, Batista JGS, Riello FN, Nogueira K, Cruz CPC, Mendes GOA, Rodrigues AS, Sousa TS, Alves VM, Lugão AB. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. Nanomaterials (Basel) 2021;11:2579. [PMID: 34685018 DOI: 10.3390/nano11102579] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
164 Brummelhuis ISG, Simons M, Lindner LH, Kort S, de Jong S, Hossann M, Witjes JA, Oosterwijk E. DPPG2-based thermosensitive liposomes as drug delivery system for effective muscle-invasive bladder cancer treatment in vivo. Int J Hyperthermia 2021;38:1415-24. [PMID: 34581259 DOI: 10.1080/02656736.2021.1983038] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
165 Robb R, Kuo JC, Liu Y, Corrales-Guerrero S, Cui T, Hegazi A, Nagy G, Lee RJ, Williams TM. A novel protein-drug conjugate, SSH20, demonstrates significant efficacy in caveolin-1-expressing tumors. Mol Ther Oncolytics 2021;22:555-64. [PMID: 34553040 DOI: 10.1016/j.omto.2021.07.013] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
166 Van de Steen A, Khalife R, Colant N, Mustafa Khan H, Deveikis M, Charalambous S, Robinson CM, Dabas R, Esteban Serna S, Catana DA, Pildish K, Kalinovskiy V, Gustafsson K, Frank S. Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system. Synth Syst Biotechnol 2021;6:231-41. [PMID: 34541345 DOI: 10.1016/j.synbio.2021.09.001] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
167 Kim HS, Lee SJ, Lee DY. Milk protein-shelled gold nanoparticles with gastrointestinally active absorption for aurotherapy to brain tumor. Bioact Mater 2022;8:35-48. [PMID: 34541385 DOI: 10.1016/j.bioactmat.2021.06.026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
168 Guinart A, Perry HL, Wilton-Ely JDET, Tetley TD. Gold nanomaterials in the management of lung cancer. Emerg Top Life Sci 2020;4:627-43. [PMID: 33270840 DOI: 10.1042/ETLS20200332] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
169 Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics 2021;11:8706-37. [PMID: 34522208 DOI: 10.7150/thno.57004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
170 Yang H, Zhao J, Li D, Cao Y, Li F, Ma J, Liu P. Application of silver nanotriangles as a novel contrast agent in tumor computed tomography imaging. Nanotechnology 2021;32. [PMID: 34450600 DOI: 10.1088/1361-6528/ac21ef] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
171 Addonizio CJ, Gates BD, Webber MJ. Supramolecular "Click Chemistry" for Targeting in the Body. Bioconjug Chem 2021;32:1935-46. [PMID: 34415139 DOI: 10.1021/acs.bioconjchem.1c00326] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
172 Helbert A, von Wronski M, Mestas JL, Tardy I, Bettinger T, Lafon C, Hyvelin JM, Padilla F. Ultrasound Molecular Imaging for the Guidance of Ultrasound-Triggered Release of Liposomal Doxorubicin and Its Treatment Monitoring in an Orthotopic Prostatic Tumor Model in Rat. Ultrasound Med Biol 2021;47:3420-34. [PMID: 34503895 DOI: 10.1016/j.ultrasmedbio.2021.07.022] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
173 Rissi NC, Comparetti EJ, Estevão BM, Mastelaro VR, Zucolotto V. Doped Plasmonic Zinc Oxide Nanoparticles with Near-Infrared Absorption for Antitumor Activity. ACS Appl Nano Mater 2021;4:9779-89. [DOI: 10.1021/acsanm.1c02197] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
174 Mieog JSD, Achterberg FB, Zlitni A, Hutteman M, Burggraaf J, Swijnenburg RJ, Gioux S, Vahrmeijer AL. Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol 2021. [PMID: 34493858 DOI: 10.1038/s41571-021-00548-3] [Cited by in F6Publishing: 18] [Reference Citation Analysis]
175 Zarazvand F, Karimi M, Moosavian SA, Arabi L, Badiee A, Jaafari MR, Mashreghi M. Efficacy Comparison of TAT Peptide-Functionalized PEGylated Liposomal Doxorubicin in C26 and B16F0 Tumor Mice Models. Int J Pept Res Ther 2021;27:2099-109. [DOI: 10.1007/s10989-021-10238-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021;176:113901. [PMID: 34331989 DOI: 10.1016/j.addr.2021.113901] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
177 Ma X, Zhang T, Qiu W, Liang M, Gao Y, Xue P, Kang Y, Xu Z. Bioresponsive prodrug nanogel-based polycondensate strategy deepens tumor penetration and potentiates oxidative stress. Chemical Engineering Journal 2021;420:127657. [DOI: 10.1016/j.cej.2020.127657] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
178 Lalan M, Shah P, Barve K, Parekh K, Mehta T, Patel P. Skin cancer therapeutics: nano-drug delivery vectors—present and beyond. Futur J Pharm Sci 2021;7. [DOI: 10.1186/s43094-021-00326-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
179 Hafeez MN, Celia C, Petrikaite V. Challenges towards Targeted Drug Delivery in Cancer Nanomedicines. Processes 2021;9:1527. [DOI: 10.3390/pr9091527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
180 Qu X, Hong Y, Cai H, Sun X, Shen Q, Yang D, Dong X, Jiao A, Chen P, Shao J. Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. Rare Met 2022;41:56-66. [DOI: 10.1007/s12598-021-01795-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
181 C de S L Oliveira AL, Schomann T, de Geus-Oei LF, Kapiteijn E, Cruz LJ, de Araújo Junior RF. Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021;13:1321. [PMID: 34452282 DOI: 10.3390/pharmaceutics13081321] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
182 Acier A, Godard M, Gassiot F, Finetti P, Rubis M, Nowak J, Bertucci F, Iovanna JL, Tomasini R, Lécorché P, Jacquot G, Khrestchatisky M, Temsamani J, Malicet C, Vasseur S, Guillaumond F. LDL receptor-peptide conjugate as in vivo tool for specific targeting of pancreatic ductal adenocarcinoma. Commun Biol 2021;4:987. [PMID: 34413441 DOI: 10.1038/s42003-021-02508-0] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
183 Fröhlich E, Wahl R. Nanoparticles: Promising Auxiliary Agents for Diagnosis and Therapy of Thyroid Cancers. Cancers (Basel) 2021;13:4063. [PMID: 34439219 DOI: 10.3390/cancers13164063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
184 Wang R, Sun Y, He W, Chen Y, Lu E, Sha X. Pulmonary surfactants affinity Pluronic-hybridized liposomes enhance the treatment of drug-resistant lung cancer. Int J Pharm 2021;607:120973. [PMID: 34391853 DOI: 10.1016/j.ijpharm.2021.120973] [Reference Citation Analysis]
185 Apilan AG, Mothersill C. Targeted and Non-Targeted Mechanisms for Killing Hypoxic Tumour Cells-Are There New Avenues for Treatment? Int J Mol Sci 2021;22:8651. [PMID: 34445354 DOI: 10.3390/ijms22168651] [Reference Citation Analysis]
186 Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021;9:6770-801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
187 Taemaitree F, Koseki Y, Dao ATN, Kasai H. Serum Albumin-treated SN-38 Prodrug Nanoparticles toward Cancer Treatment. Chem Lett 2021;50:1555-8. [DOI: 10.1246/cl.210253] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
188 Tran VL, Lux F, Tournier N, Jego B, Maître X, Anisorac M, Comtat C, Jan S, Selmeczi K, Evans MJ, Tillement O, Kuhnast B, Truillet C. Quantitative Tissue Pharmacokinetics and EPR Effect of AGuIX Nanoparticles: A Multimodal Imaging Study in an Orthotopic Glioblastoma Rat Model and Healthy Macaque. Adv Healthc Mater 2021;10:e2100656. [PMID: 34212539 DOI: 10.1002/adhm.202100656] [Reference Citation Analysis]
189 Wu J, Long Y, Li M, He Q. Emerging nanomedicine-based therapeutics for hematogenous metastatic cascade inhibition: Interfering with the crosstalk between "seed and soil". Acta Pharm Sin B 2021;11:2286-305. [PMID: 34522588 DOI: 10.1016/j.apsb.2020.11.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
190 Cortez-Jugo C, Czuba-Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021;10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
191 Singh G, Singh D, Choudhari M, Kaur SD, Dubey SK, Arora S, Bedi N. Exemestane encapsulated copolymers L121/F127/GL44 based mixed micelles: solubility enhancement and in vitro cytotoxicity evaluation using MCF-7 breast cancer cells. J Pharm Investig 2021;51:701-14. [DOI: 10.1007/s40005-021-00540-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
192 Mainini F, De Santis F, Fucà G, Di Nicola M, Rivoltini L, Eccles M. Nanobiotechnology and Immunotherapy: Two Powerful and Cooperative Allies against Cancer. Cancers (Basel) 2021;13:3765. [PMID: 34359665 DOI: 10.3390/cancers13153765] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
193 Usama SM, Zhao B, Burgess K. Fluorescent kinase inhibitors as probes in cancer. Chem Soc Rev 2021;50:9794-816. [PMID: 34291273 DOI: 10.1039/d1cs00017a] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
194 Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021;171:105780. [PMID: 34302977 DOI: 10.1016/j.phrs.2021.105780] [Cited by in Crossref: 1] [Cited by in F6Publishing: 30] [Article Influence: 1.0] [Reference Citation Analysis]
195 Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021;121:9243-358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Cited by in F6Publishing: 37] [Reference Citation Analysis]
196 Chen Y, Li ZH, Pan P, Zeng RY, Zhang XZ. Tumor-Specific ONOO- Nanogenerator for Improved Drug Delivery and Enhanced Chemotherapy of Tumor. ACS Nano 2021. [PMID: 34275285 DOI: 10.1021/acsnano.1c01312] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
197 Wang Y, Guo M, Lin D, Liang D, Zhao L, Zhao R, Wang Y. Docetaxel-loaded exosomes for targeting non-small cell lung cancer: preparation and evaluation in vitro and in vivo. Drug Deliv 2021;28:1510-23. [PMID: 34263685 DOI: 10.1080/10717544.2021.1951894] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
198 Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020;27:1248-62. [PMID: 32865029 DOI: 10.1080/10717544.2020.1809559] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
199 Donya H, Darwesh R, Ahmed MK. Morphological features and mechanical properties of nanofibers scaffolds of polylactic acid modified with hydroxyapatite/CdSe for wound healing applications. Int J Biol Macromol 2021;186:897-908. [PMID: 34273344 DOI: 10.1016/j.ijbiomac.2021.07.073] [Cited by in F6Publishing: 18] [Reference Citation Analysis]
200 Ghosh S, Javia A, Shetty S, Bardoliwala D, Maiti K, Banerjee S, Khopade A, Misra A, Sawant K, Bhowmick S. Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021;337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
201 Li W, Little N, Park J, Foster CA, Chen J, Lu J. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Mol Pharm 2021;18:2889-905. [PMID: 34260250 DOI: 10.1021/acs.molpharmaceut.1c00455] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
202 Zhang J, Zhang W, Yang M, Zhu W, Li M, Liang A, Zhang H, Fang T, Zhang XE, Li F. Passive cancer targeting with a viral nanoparticle depends on the stage of tumorigenesis. Nanoscale 2021;13:11334-42. [PMID: 34165123 DOI: 10.1039/d1nr01619a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
203 King JL, Benhabbour SR. Glioblastoma Multiforme-A Look at the Past and a Glance at the Future. Pharmaceutics 2021;13:1053. [PMID: 34371744 DOI: 10.3390/pharmaceutics13071053] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
204 Kang S, Park SE, Huh DD. Organ-on-a-chip technology for nanoparticle research. Nano Converg 2021;8:20. [PMID: 34236537 DOI: 10.1186/s40580-021-00270-x] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
205 Mirzaei S, Gholami MH, Zabolian A, Saleki H, Farahani MV, Hamzehlou S, Far FB, Sharifzadeh SO, Samarghandian S, Khan H, Aref AR, Ashrafizadeh M, Zarrabi A, Sethi G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021;171:105759. [PMID: 34245864 DOI: 10.1016/j.phrs.2021.105759] [Cited by in F6Publishing: 24] [Reference Citation Analysis]
206 Luis de Redín I, Expósito F, Agüeros M, Collantes M, Peñuelas I, Allemandi D, Llabot JM, Calvo A, Irache JM. In vivo efficacy of bevacizumab-loaded albumin nanoparticles in the treatment of colorectal cancer. Drug Deliv Transl Res 2020;10:635-45. [PMID: 32040774 DOI: 10.1007/s13346-020-00722-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
207 Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. Adv Sci (Weinh) 2021;8:2100540. [PMID: 34306980 DOI: 10.1002/advs.202100540] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
208 Sandland J, Rimmer SD, Savoie H, Boyle RW. Bio-Orthogonal Conjugation of a Cationic Metalloporphyrin to BSA and HSA via "Click" Chemistry. Chembiochem 2021;22:2624-31. [PMID: 34096676 DOI: 10.1002/cbic.202100176] [Reference Citation Analysis]
209 Pei M, Zhao X, Li G, Chen W, Liu P. Fluorescent turn-on carbon dot-cored pseudo unimolecular prodrug micelles for tumor-specific dual-triggered drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;620:126490. [DOI: 10.1016/j.colsurfa.2021.126490] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
210 Fu Y, Saraswat A, Wei Z, Agrawal MY, Dukhande VV, Reznik SE, Patel K. Development of Dual ARV-825 and Nintedanib-Loaded PEGylated Nano-Liposomes for Synergistic Efficacy in Vemurafnib-Resistant Melanoma. Pharmaceutics 2021;13:1005. [PMID: 34371697 DOI: 10.3390/pharmaceutics13071005] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
211 Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 2021;606:120848. [PMID: 34216762 DOI: 10.1016/j.ijpharm.2021.120848] [Cited by in Crossref: 1] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
212 Tang Y, Zhang J, He D, Miao W, Liu W, Li Y, Lu G, Wu F, Wang S. GANDA: A deep generative adversarial network conditionally generates intratumoral nanoparticles distribution pixels-to-pixels. J Control Release 2021;336:336-43. [PMID: 34197860 DOI: 10.1016/j.jconrel.2021.06.039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
213 Maiques O, Fanshawe B, Crosas-Molist E, Rodriguez-Hernandez I, Volpe A, Cantelli G, Boehme L, Orgaz JL, Mardakheh FK, Sanz-Moreno V, Fruhwirth GO. A preclinical pipeline to evaluate migrastatics as therapeutic agents in metastatic melanoma. Br J Cancer 2021;125:699-713. [PMID: 34172930 DOI: 10.1038/s41416-021-01442-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
214 Lima AC, Reis RL, Ferreira H, Neves NM. Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomater Sci Eng 2021;7:3229-41. [PMID: 34161062 DOI: 10.1021/acsbiomaterials.1c00412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
215 Zafar H, Raza F, Ma S, Wei Y, Zhang J, Shen Q. Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomater Sci 2021;9:5092-115. [PMID: 34160488 DOI: 10.1039/d1bm00721a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
216 Shome R, Ghosh SS. Transferrin Coated d-penicillamine-Au-Cu Nanocluster PLGA Nanocomposite Reverses Hypoxia-Induced EMT and MDR of Triple-Negative Breast Cancers. ACS Appl Bio Mater 2021;4:5033-48. [PMID: 35007052 DOI: 10.1021/acsabm.1c00296] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
217 Wu Q, Ou H, Shang Y, Zhang X, Wu J, Fan F. Nanoscale Formulations: Incorporating Curcumin into Combination Strategies for the Treatment of Lung Cancer. Drug Des Devel Ther 2021;15:2695-709. [PMID: 34188448 DOI: 10.2147/DDDT.S311107] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
218 Feng HY, Yuan Y, Zhang Y, Liu HJ, Dong X, Yang SC, Liu XL, Lai X, Zhu MH, Wang J, Lu Q, Lin Q, Chen HZ, Lovell JF, Sun P, Fang C. Targeted Micellar Phthalocyanine for Lymph Node Metastasis Homing and Photothermal Therapy in an Orthotopic Colorectal Tumor Model. Nanomicro Lett 2021;13:145. [PMID: 34146159 DOI: 10.1007/s40820-021-00666-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
219 Li Y, Zhong D, Zhou C, Tu Z, Mao H, Yang J, Zhang H, Luo K, Gong Q, Gu Z. Sub‐50 nm Supramolecular Nanohybrids with Active Targeting Corona for Image‐Guided Solid Tumor Treatment and Metastasis Inhibition. Adv Funct Materials 2021;31:2103272. [DOI: 10.1002/adfm.202103272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
220 Mares AG, Pacassoni G, Marti JS, Pujals S, Albertazzi L. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. PLoS One 2021;16:e0251821. [PMID: 34143792 DOI: 10.1371/journal.pone.0251821] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
221 Russo E, Spallarossa A, Tasso B, Villa C, Brullo C. Nanotechnology of Tyrosine Kinase Inhibitors in Cancer Therapy: A Perspective. Int J Mol Sci 2021;22:6538. [PMID: 34207175 DOI: 10.3390/ijms22126538] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
222 Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021;11:571. [PMID: 34207137 DOI: 10.3390/jpm11060571] [Cited by in F6Publishing: 36] [Reference Citation Analysis]
223 Hong W, Gao Y, Lou B, Ying S, Wu W, Ji X, Yu N, Jiao Y, Wang H, Zhou X, Li A, Guo F, Yang G. Curcumin-Loaded Hybrid Nanoparticles: Microchannel-Based Preparation and Antitumor Activity in a Mouse Model. Int J Nanomedicine 2021;16:4147-59. [PMID: 34168445 DOI: 10.2147/IJN.S303829] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
224 Serwer P, Wright ET, De La Chapa J, Gonzales CB. Basics for Improved Use of Phages for Therapy. Antibiotics (Basel) 2021;10:723. [PMID: 34208477 DOI: 10.3390/antibiotics10060723] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
225 Wilson AJ, Rahman M, Kosmas P, Thanou M. Nanomaterials responding to microwaves: an emerging field for imaging and therapy. Nanoscale Adv 2021;3:3417-29. [PMID: 34527861 DOI: 10.1039/d0na00840k] [Reference Citation Analysis]
226 Huang CW, Chuang CP, Chen YJ, Wang HY, Lin JJ, Huang CY, Wei KC, Huang FT. Integrin α2β1-targeting ferritin nanocarrier traverses the blood-brain barrier for effective glioma chemotherapy. J Nanobiotechnology 2021;19:180. [PMID: 34120610 DOI: 10.1186/s12951-021-00925-1] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
227 Huo M, Wang H, Li L, Tong Y, Hu C, Gu Y, Liu J, Yin T. Redox-sensitive hyaluronic acid-cholesterol nanovehicles potentiate efficient transmembrane internalization and controlled release for penetrated "full-line" inhibition of pre-metastatic initiation. J Control Release 2021;336:89-104. [PMID: 34119559 DOI: 10.1016/j.jconrel.2021.06.013] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
228 Qian Y, Zhang J, Xu R, Li Q, Shen Q, Zhu G. Nanoparticles based on polymers modified with pH-sensitive molecular switch and low molecular weight heparin carrying Celastrol and ferrocene for breast cancer treatment. Int J Biol Macromol 2021;183:2215-26. [PMID: 34097964 DOI: 10.1016/j.ijbiomac.2021.05.204] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
229 Swaminathan G, Shigna A, Kumar A, Byroju VV, Durgempudi VR, Dinesh Kumar L. RNA Interference and Nanotechnology: A Promising Alliance for Next Generation Cancer Therapeutics. Front Nanotechnol 2021;3:694838. [DOI: 10.3389/fnano.2021.694838] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
230 Lyra KM, Kaminari A, Panagiotaki KN, Spyrou K, Papageorgiou S, Sakellis E, Katsaros FK, Sideratou Z. Multi-Walled Carbon Nanotubes Decorated with Guanidinylated Dendritic Molecular Transporters: An Efficient Platform for the Selective Anticancer Activity of Doxorubicin. Pharmaceutics 2021;13:858. [PMID: 34207727 DOI: 10.3390/pharmaceutics13060858] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
231 Guan J, Guo H, Tang T, Wang Y, Wei Y, Seth P, Li Y, Dehm SM, Ruoslahti E, Pang HB. iRGD-liposomes enhance tumor delivery and therapeutic efficacy of antisense oligonucleotide drugs against primary prostate cancer and bone metastasis. Adv Funct Mater 2021;31:2100478. [PMID: 34211360 DOI: 10.1002/adfm.202100478] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
232 Shrestha B, Wang L, Brey EM, Uribe GR, Tang L. Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics 2021;13:853. [PMID: 34201333 DOI: 10.3390/pharmaceutics13060853] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
233 Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021;166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
234 Liao T, Liu C, Ren J, Chen H, Kuang Y, Jiang B, Chen J, Sun Z, Li C. A chitosan/mesoporous silica nanoparticle-based anticancer drug delivery system with a "tumor-triggered targeting" property. Int J Biol Macromol 2021;183:2017-29. [PMID: 34097958 DOI: 10.1016/j.ijbiomac.2021.06.004] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
235 Abbasi H, Rahbar N, Kouchak M, Khalil Dezfuli P, Handali S. Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: a systematic review. J Liposome Res 2021;:1-16. [PMID: 33729077 DOI: 10.1080/08982104.2021.1903035] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
236 Chen Z, Higashi K, Shidara R, Ueda K, Morita T, Limwikrant W, Yamamoto K, Moribe K. The nanostructure of rod-like ascorbyl dipalmitate nanoparticles stabilized by a small amount of DSPE-PEG. Int J Pharm 2021;602:120599. [PMID: 33862127 DOI: 10.1016/j.ijpharm.2021.120599] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
237 Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021;173:306-30. [PMID: 33798642 DOI: 10.1016/j.addr.2021.03.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 19.0] [Reference Citation Analysis]
238 Abatchev G, Bogard A, Hutchinson Z, Ward J, Fologea D. Rapid Production and Purification of Dye-Loaded Liposomes by Electrodialysis-Driven Depletion. Membranes (Basel) 2021;11:417. [PMID: 34072746 DOI: 10.3390/membranes11060417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
239 Höltke C, Grewer M, Stölting M, Geyer C, Wildgruber M, Helfen A. Exploring the Influence of Different Albumin Binders on Molecular Imaging Probe Distribution. Mol Pharm 2021;18:2574-85. [PMID: 34048242 DOI: 10.1021/acs.molpharmaceut.1c00064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
240 Lankoff A, Czerwińska M, Walczak R, Karczmarczyk U, Tomczyk K, Brzóska K, Fracasso G, Garnuszek P, Mikołajczak R, Kruszewski M. Design and Evaluation of 223Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy-Part II. Toxicity, Pharmacokinetics and Biodistribution. Int J Mol Sci 2021;22:5702. [PMID: 34071854 DOI: 10.3390/ijms22115702] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
241 Pal RR, Rajpal V, Singh P, Saraf SA. Recent Findings on Thymoquinone and Its Applications as a Nanocarrier for the Treatment of Cancer and Rheumatoid Arthritis. Pharmaceutics 2021;13:775. [PMID: 34067322 DOI: 10.3390/pharmaceutics13060775] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
242 Zhang Z, Xie L, Ju Y, Dai Y. Recent Advances in Metal-Phenolic Networks for Cancer Theranostics. Small 2021;:e2100314. [PMID: 34018690 DOI: 10.1002/smll.202100314] [Cited by in F6Publishing: 21] [Reference Citation Analysis]
243 Felici A, Di Mascolo D, Ferreira M, Lauciello S, Bono L, Armirotti A, Pitchaimani A, Palange AL, Decuzzi P. Vascular-confined multi-passage discoidal nanoconstructs for the low-dose docetaxel inhibition of triple-negative breast cancer growth. Nano Res 2022;15:482-91. [DOI: 10.1007/s12274-021-3507-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
244 Zhang Q, Li D, Zhong J, Wu Y, Shi Y, Yang H, Zhao L, Yang K, Lin J. SPECT imaging and highly efficient therapy of rheumatoid arthritis based on hyperbranched semiconducting polymer nanoparticles. Biomater Sci 2021;9:1845-54. [PMID: 33463632 DOI: 10.1039/d0bm02037k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
245 Chen Q, Ma X, Xie L, Chen W, Xu Z, Song E, Zhu X, Song Y. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment. Nanoscale 2021;13:4855-70. [PMID: 33624647 DOI: 10.1039/d0nr08757b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
246 Hanley T, Vankayala R, Lee CH, Tang JC, Burns JM, Anvari B. Phototheranostics Using Erythrocyte-Based Particles. Biomolecules 2021;11:729. [PMID: 34068081 DOI: 10.3390/biom11050729] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
247 Machackova T, Vychytilova-Faltejskova P, Souckova K, Laga R, Androvič L, Mixová G, Slaby O. Barriers in systemic delivery and preclinical testing of synthetic microRNAs in animal models: an experimental study on miR-215-5p mimic. Physiol Res 2021;70:481-7. [PMID: 33982582 DOI: 10.33549/physiolres.934571] [Reference Citation Analysis]
248 Giribaldi J, Smith JJ, Schroeder CI. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnol Adv 2021;50:107769. [PMID: 33989705 DOI: 10.1016/j.biotechadv.2021.107769] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
249 Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. Nanophotonics 2021;10:3135-51. [DOI: 10.1515/nanoph-2021-0119] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
250 Lima‐sousa R, Melo BL, Alves CG, Moreira AF, Mendonça AG, Correia IJ, de Melo‐diogo D. Combining Photothermal‐Photodynamic Therapy Mediated by Nanomaterials with Immune Checkpoint Blockade for Metastatic Cancer Treatment and Creation of Immune Memory. Adv Funct Mater 2021;31:2010777. [DOI: 10.1002/adfm.202010777] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
251 Abbasi M, Ghoran SH, Niakan MH, Jamali K, Moeini Z, Jangjou A, Izadpanah P, Amani AM. Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials 2021;319:110967. [DOI: 10.1016/j.micromeso.2021.110967] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
252 Xu X, Duan J, Liu Y, Kuang Y, Duan J, Liao T, Xu Z, Jiang B, Li C. Multi-stimuli responsive hollow MnO2-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy. Acta Biomater 2021;126:445-62. [PMID: 33785453 DOI: 10.1016/j.actbio.2021.03.048] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
253 Oh HJ, Kim J, Kim H, Choi N, Chung S. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications. Adv Healthc Mater 2021;10:e2002122. [PMID: 33576178 DOI: 10.1002/adhm.202002122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
254 Liu W, Xiang H, Tan M, Chen Q, Jiang Q, Yang L, Cao Y, Wang Z, Ran H, Chen Y. Nanomedicine Enables Drug-Potency Activation with Tumor Sensitivity and Hyperthermia Synergy in the Second Near-Infrared Biowindow. ACS Nano 2021;15:6457-70. [PMID: 33750100 DOI: 10.1021/acsnano.0c08848] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 22.0] [Reference Citation Analysis]
255 Dhuri K, Vyas RN, Blumenfeld L, Verma R, Bahal R. Nanoparticle Delivered Anti-miR-141-3p for Stroke Therapy. Cells 2021;10:1011. [PMID: 33922958 DOI: 10.3390/cells10051011] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
256 Hou Y, Fu Q, Kuang Y, Li D, Sun Y, Qian Z, He Z, Sun J. Unsaturated fatty acid-tuned assembly of photosensitizers for enhanced photodynamic therapy via lipid peroxidation. J Control Release 2021;334:213-23. [PMID: 33894305 DOI: 10.1016/j.jconrel.2021.04.022] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
257 Yin Q, Pan A, Chen B, Wang Z, Tang M, Yan Y, Wang Y, Xia H, Chen W, Du H, Chen M, Fu C, Wang Y, Yuan X, Lu Z, Zhang Q, Wang Y. Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Nat Commun 2021;12:2385. [PMID: 33888701 DOI: 10.1038/s41467-021-22678-z] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
258 Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021;13:570. [PMID: 33920503 DOI: 10.3390/pharmaceutics13040570] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
259 Wels M, Roels D, Raemdonck K, De Smedt SC, Sauvage F. Challenges and strategies for the delivery of biologics to the cornea. J Control Release 2021;333:560-78. [PMID: 33857565 DOI: 10.1016/j.jconrel.2021.04.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
260 Chen S, Zhong Y, Fan W, Xiang J, Wang G, Zhou Q, Wang J, Geng Y, Sun R, Zhang Z, Piao Y, Wang J, Zhuo J, Cong H, Jiang H, Ling J, Li Z, Yang D, Yao X, Xu X, Zhou Z, Tang J, Shen Y. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat Biomed Eng 2021. [PMID: 33859387 DOI: 10.1038/s41551-021-00701-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 37] [Article Influence: 2.0] [Reference Citation Analysis]
261 Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021;18:1261-90. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
262 Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol 2021;9:647905. [PMID: 33928072 DOI: 10.3389/fbioe.2021.647905] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
263 Zhong J, Zhang Q, Zhang Z, Shi K, Sun Y, Liu T, Lin J, Yang K. Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy. Nano Res 2022;15:153-61. [DOI: 10.1007/s12274-021-3449-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
264 Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R, Popat A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 2021;171:108-38. [PMID: 33486006 DOI: 10.1016/j.addr.2021.01.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 40] [Article Influence: 30.0] [Reference Citation Analysis]
265 Chan JWY, Lau RWH, Ngai JCL, Tsoi C, Chu CM, Mok TSK, Ng CSH. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance-a novel technique and initial experience with 30 cases. Transl Lung Cancer Res 2021;10:1608-22. [PMID: 34012778 DOI: 10.21037/tlcr-20-1231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
266 Kim B, Park JE, Im E, Cho Y, Lee J, Lee HJ, Sim DY, Park WY, Shim BS, Kim SH. Recent Advances in Nanotechnology with Nano-Phytochemicals: Molecular Mechanisms and Clinical Implications in Cancer Progression. Int J Mol Sci 2021;22:3571. [PMID: 33808235 DOI: 10.3390/ijms22073571] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
267 Jiao X, Sun L, Zhang W, Ren J, Zhang L, Cao Y, Xu Z, Kang Y, Xue P. Engineering oxygen-deficient ZrO2-x nanoplatform as therapy-activated "immunogenic cell death (ICD)" inducer to synergize photothermal-augmented sonodynamic tumor elimination in NIR-II biological window. Biomaterials 2021;272:120787. [PMID: 33819815 DOI: 10.1016/j.biomaterials.2021.120787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 22] [Article Influence: 1.0] [Reference Citation Analysis]
268 Du C, Li S, Li Y, Galons H, Guo N, Teng Y, Zhang Y, Li M, Yu P. F7 and topotecan co-loaded thermosensitive liposome as a nano-drug delivery system for tumor hyperthermia. Drug Deliv 2020;27:836-47. [PMID: 32508162 DOI: 10.1080/10717544.2020.1772409] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
269 De Leo V, Milano F, Agostiano A, Catucci L. Recent Advancements in Polymer/Liposome Assembly for Drug Delivery: From Surface Modifications to Hybrid Vesicles. Polymers (Basel) 2021;13:1027. [PMID: 33810273 DOI: 10.3390/polym13071027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 31] [Article Influence: 2.0] [Reference Citation Analysis]
270 Al-Wafi R, Mansour SF, AlHammad MS, Ahmed MK. Biological response, antibacterial properties of ZrO2/hydroxyapatite/graphene oxide encapsulated into nanofibrous scaffolds of polylactic acid for wound healing applications. Int J Pharm 2021;601:120517. [PMID: 33775723 DOI: 10.1016/j.ijpharm.2021.120517] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
271 Duo Y, Zhu D, Sun X, Suo M, Zheng Z, Jiang W, Tang BZ. Patient-derived microvesicles/AIE luminogen hybrid system for personalized sonodynamic cancer therapy in patient-derived xenograft models. Biomaterials 2021;272:120755. [PMID: 33819814 DOI: 10.1016/j.biomaterials.2021.120755] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
272 Estupiñán Ó, Rendueles C, Suárez P, Rey V, Murillo D, Morís F, Gutiérrez G, Blanco-López MDC, Matos M, Rodríguez R. Nano-Encapsulation of Mithramycin in Transfersomes and Polymeric Micelles for the Treatment of Sarcomas. J Clin Med 2021;10:1358. [PMID: 33806182 DOI: 10.3390/jcm10071358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
273 Cabrera M, Lecot N, Fernández M, Gambini JP, Porcal W, Cabral P. 99mTc Stearyl 6-(benzylidenehydrazinyl) nicotinamide Liposomes as Tumor Permeability Evaluation Tracer. AAPS PharmSciTech 2021;22:115. [PMID: 33763814 DOI: 10.1208/s12249-021-01984-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
274 Reisbeck F, Ozimkovski A, Cherri M, Dimde M, Quaas E, Mohammadifar E, Achazi K, Haag R. Gram Scale Synthesis of Dual-Responsive Dendritic Polyglycerol Sulfate as Drug Delivery System. Polymers (Basel) 2021;13:982. [PMID: 33806866 DOI: 10.3390/polym13060982] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
275 Kaps A, Gwiazdoń P, Chodurek E. Nanoformulations for Delivery of Pentacyclic Triterpenoids in Anticancer Therapies. Molecules 2021;26:1764. [PMID: 33801096 DOI: 10.3390/molecules26061764] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
276 Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. Russ J Bioorg Chem 2021;47:71-98. [DOI: 10.1134/s1068162021010222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
277 Rodenak-Kladniew B, Noacco N, Pérez de Berti I, Stewart SJ, Cabrera AF, Alvarez VA, García de Bravo M, Durán N, Castro GR, Islan GA. Design of magnetic hybrid nanostructured lipid carriers containing 1,8-cineole as delivery systems for anticancer drugs: Physicochemical and cytotoxic studies. Colloids Surf B Biointerfaces 2021;202:111710. [PMID: 33765626 DOI: 10.1016/j.colsurfb.2021.111710] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
278 Ulldemolins A, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, Schwartz S Jr. Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist 2021;4:44-68. [PMID: 35582007 DOI: 10.20517/cdr.2020.59] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
279 Badr-Eldin SM, Aldawsari HM, Ahmed OAA, Alhakamy NA, Neamatallah T, Okbazghi SZ, Fahmy UA. Optimized semisolid self-nanoemulsifying system based on glyceryl behenate: A potential nanoplatform for enhancing antitumor activity of raloxifene hydrochloride in MCF-7 human breast cancer cells. Int J Pharm 2021;600:120493. [PMID: 33744452 DOI: 10.1016/j.ijpharm.2021.120493] [Cited by in F6Publishing: 17] [Reference Citation Analysis]
280 Sokolova V, Epple M. Biological and Medical Applications of Calcium Phosphate Nanoparticles. Chemistry 2021;27:7471-88. [PMID: 33577710 DOI: 10.1002/chem.202005257] [Cited by in Crossref: 2] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
281 Li J, Zhao M, Xu Y, Hu X, Dai Y, Wang D. Hybrid micelles codelivering shikonin and IDO-1 siRNA enhance immunotherapy by remodeling immunosuppressive tumor microenvironment. Int J Pharm 2021;597:120310. [PMID: 33540035 DOI: 10.1016/j.ijpharm.2021.120310] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
282 Lin X, O'Reilly Beringhs A, Lu X. Applications of Nanoparticle-Antibody Conjugates in Immunoassays and Tumor Imaging. AAPS J 2021;23:43. [PMID: 33718979 DOI: 10.1208/s12248-021-00561-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
283 Chen S, Lai SWT, Brown CE, Feng M. Harnessing and Enhancing Macrophage Phagocytosis for Cancer Therapy. Front Immunol 2021;12:635173. [PMID: 33790906 DOI: 10.3389/fimmu.2021.635173] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
284 Yokoe I, Omata D, Unga J, Suzuki R, Maruyama K, Okamoto Y, Osaki T. Lipid bubbles combined with low-intensity ultrasound enhance the intratumoral accumulation and antitumor effect of pegylated liposomal doxorubicin in vivo. Drug Deliv 2021;28:530-41. [PMID: 33685314 DOI: 10.1080/10717544.2021.1895907] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
285 Silvestri A, Vicente F, Vicent MJ, Stechmann B, Fecke W. Academic collaborative models fostering the translation of physiological in vitro systems from basic research into drug discovery. Drug Discov Today 2021;26:1369-81. [PMID: 33677144 DOI: 10.1016/j.drudis.2021.02.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
286 Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021;13:326. [PMID: 33802531 DOI: 10.3390/pharmaceutics13030326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
287 Rosenkranz AA, Slastnikova TA. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. Biochemistry (Mosc) 2020;85:967-1092. [PMID: 33050847 DOI: 10.1134/S0006297920090011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
288 Wang Y, Li S, Wang X, Chen Q, He Z, Luo C, Sun J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021;271:120737. [PMID: 33690103 DOI: 10.1016/j.biomaterials.2021.120737] [Cited by in F6Publishing: 17] [Reference Citation Analysis]
289 Lorkowski ME, Atukorale PU, Ghaghada KB, Karathanasis E. Stimuli-Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy. Adv Healthc Mater 2021;10:e2001044. [PMID: 33225633 DOI: 10.1002/adhm.202001044] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
290 Swetha KL, Maravajjala KS, Sharma S, Chowdhury R, Roy A. Development of a tumor extracellular pH-responsive nanocarrier by terminal histidine conjugation in a star shaped poly(lactic-co-glycolic acid). European Polymer Journal 2021;147:110337. [DOI: 10.1016/j.eurpolymj.2021.110337] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
291 Sethuraman V, Janakiraman K, Krishnaswami V, Natesan S, Kandasamy R. In vivo synergistic anti-tumor effect of lumefantrine combined with pH responsive behavior of nano calcium phosphate based lipid nanoparticles on lung cancer. European Journal of Pharmaceutical Sciences 2021;158:105657. [DOI: 10.1016/j.ejps.2020.105657] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
292 Yafout M, Ousaid A, Khayati Y, El Otmani IS. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Scientific African 2021;11:e00685. [DOI: 10.1016/j.sciaf.2020.e00685] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
293 Scholz EMB, Kashuba ADM. The Lymph Node Reservoir: Physiology, HIV Infection, and Antiretroviral Therapy. Clin Pharmacol Ther 2021;109:918-27. [PMID: 33529355 DOI: 10.1002/cpt.2186] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
294 Cai D, Shi L, Long R, Ren G, Wang S, Liu Y. A carboxymethyl lentinan layer by layer self-assembly system as a promising drug chemotherapeutic platform. Carbohydr Polym 2021;261:117847. [PMID: 33766343 DOI: 10.1016/j.carbpol.2021.117847] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
295 Li S, Zhang L, Li M, Huang J, Cui B, Jia J, Guo Z, Ma K, Cui C. Anti-CD19 mAb modified mesoporous titanium dioxide as exclusively targeting vector for efficient B-lymphoblastic leukemia therapy. J Pharm Sci 2021;110:2733-42. [PMID: 33639139 DOI: 10.1016/j.xphs.2021.02.025] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
296 Kamal NAMA, Abdulmalek E, Fakurazi S, Cordova KE, Abdul Rahman MB. Surface peptide functionalization of zeolitic imidazolate framework-8 for autonomous homing and enhanced delivery of chemotherapeutic agent to lung tumor cells. Dalton Trans 2021;50:2375-86. [PMID: 33555001 DOI: 10.1039/d1dt00116g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
297 Cook AB, Decuzzi P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS Nano 2021;15:2068-98. [PMID: 33555171 DOI: 10.1021/acsnano.0c09115] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 33.0] [Reference Citation Analysis]
298 Dharmayanti C, Gillam TA, Klingler-Hoffmann M, Albrecht H, Blencowe A. Strategies for the Development of pH-Responsive Synthetic Polypeptides and Polymer-Peptide Hybrids: Recent Advancements. Polymers (Basel) 2021;13:624. [PMID: 33669548 DOI: 10.3390/polym13040624] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
299 Zhao W, Hu X, Li W, Li R, Chen J, Zhou L, Qiang S, Wu W, Shi S, Dong C. M2-Like TAMs Function Reversal Contributes to Breast Cancer Eradication by Combination Dual Immune Checkpoint Blockade and Photothermal Therapy. Small 2021;17:e2007051. [PMID: 33599061 DOI: 10.1002/smll.202007051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
300 Zhou Z, Sun T, Jiang C. Recent advances on drug delivery nanocarriers for cerebral disorders. Biomed Mater 2021;16:024104. [PMID: 33455956 DOI: 10.1088/1748-605X/abdc97] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
301 Dacoba TG, Anthiya S, Berrecoso G, Fernández‐mariño I, Fernández‐varela C, Crecente‐campo J, Teijeiro‐osorio D, Torres Andón F, Alonso MJ. Nano‐Oncologicals: A Tortoise Trail Reaching New Avenues. Adv Funct Mater 2021;31:2009860. [DOI: 10.1002/adfm.202009860] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
302 Wang J, Xu W, Zhang N, Yang C, Xu H, Wang Z, Li B, Ding J, Chen X. X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. J Control Release 2021;332:1-9. [PMID: 33561483 DOI: 10.1016/j.jconrel.2021.02.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 26] [Article Influence: 10.0] [Reference Citation Analysis]
303 Wu M, Zhong C, Zhang Q, Wang L, Wang L, Liu Y, Zhang X, Zhao X. pH-responsive delivery vehicle based on RGD-modified polydopamine-paclitaxel-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for targeted therapy in hepatocellular carcinoma. J Nanobiotechnology 2021;19:39. [PMID: 33549107 DOI: 10.1186/s12951-021-00783-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
304 Angeline P, Thomas A, Sankaranarayanan SA, Rengan AK. Effect of pH on Isoliquiritigenin (ISL) fluorescence in lipo- polymeric system and metallic nanosystem. Spectrochim Acta A Mol Biomol Spectrosc 2021;252:119545. [PMID: 33588365 DOI: 10.1016/j.saa.2021.119545] [Reference Citation Analysis]
305 Wang Y, Xie H, Ying K, Xie B, Chen X, Yang B, Jin J, Wan J, Li T, Han W, Fang S, Wang H. Tuning the efficacy of esterase-activatable prodrug nanoparticles for the treatment of colorectal malignancies. Biomaterials 2021;270:120705. [PMID: 33581609 DOI: 10.1016/j.biomaterials.2021.120705] [Cited by in Crossref: 2] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
306 Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat Rev Mater 2021;6:351-70. [DOI: 10.1038/s41578-020-00269-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 74] [Article Influence: 21.0] [Reference Citation Analysis]
307 Lim J, Lee J, Jung S, Kim WJ. Phenylboronic-acid-based nanocomplex as a feasible delivery platform of immune checkpoint inhibitor for potent cancer immunotherapy. Journal of Controlled Release 2021;330:1168-77. [DOI: 10.1016/j.jconrel.2020.11.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
308 Jia L, Li X, Liu H, Xia J, Shi X, Shen M. Ultrasound-enhanced precision tumor theranostics using cell membrane-coated and pH-responsive nanoclusters assembled from ultrasmall iron oxide nanoparticles. Nano Today 2021;36:101022. [DOI: 10.1016/j.nantod.2020.101022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
309 Askenase PW. Ancient Evolutionary Origin and Properties of Universally Produced Natural Exosomes Contribute to Their Therapeutic Superiority Compared to Artificial Nanoparticles. Int J Mol Sci 2021;22:1429. [PMID: 33572657 DOI: 10.3390/ijms22031429] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
310 Farzanfar J, Farjadian F, Roointan A, Mohammadi-samani S, Tayebi L. Assessment of pH Responsive Delivery of Methotrexate Based on PHEMA-st-PEG-DA Nanohydrogels. Macromol Res 2021;29:54-61. [DOI: 10.1007/s13233-021-9007-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
311 Wang D, Peng J, Huang Y, Sun L, Liu M, Li H, Chao M, Gong P, Liu Z, You J. Rational Construction of Fluorescence Turn-Off Fluorinated Carbon Fiber/Ag Composites and Their Anticancer and Antibacterial Activities. ACS Appl Bio Mater 2021;4:1749-59. [DOI: 10.1021/acsabm.0c01503] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
312 A Razak SA, Mohd Gazzali A, Fisol FA, M Abdulbaqi I, Parumasivam T, Mohtar N, A Wahab H. Advances in Nanocarriers for Effective Delivery of Docetaxel in the Treatment of Lung Cancer: An Overview. Cancers (Basel) 2021;13:400. [PMID: 33499040 DOI: 10.3390/cancers13030400] [Cited by in Crossref: 6] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
313 Liu Y, Wang J, Xiong Q, Hornburg D, Tao W, Farokhzad OC. Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection. Acc Chem Res 2021;54:291-301. [PMID: 33180454 DOI: 10.1021/acs.accounts.0c00413] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 45.0] [Reference Citation Analysis]
314 Sheng D, Deng L, Li P, Wang Z, Zhang Q. Perfluorocarbon Nanodroplets with Deep Tumor Penetration and Controlled Drug Delivery for Ultrasound/Fluorescence Imaging Guided Breast Cancer Therapy. ACS Biomater Sci Eng 2021;7:605-16. [DOI: 10.1021/acsbiomaterials.0c01333] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
315 Piscatelli JA, Ban J, Lucas AT, Zamboni WC. Complex Factors and Challenges that Affect the Pharmacology, Safety and Efficacy of Nanocarrier Drug Delivery Systems. Pharmaceutics 2021;13:114. [PMID: 33477395 DOI: 10.3390/pharmaceutics13010114] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
316 Huang T, Li S, Fang J, Li F, Tu S. Antibody-activated trans-endothelial delivery of mesoporous organosilica nanomedicine augments tumor extravasation and anti-cancer immunotherapy. Bioact Mater 2021;6:2158-72. [PMID: 33511314 DOI: 10.1016/j.bioactmat.2020.12.023] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
317 Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021;121:1746-803. [PMID: 33445874 DOI: 10.1021/acs.chemrev.0c00779] [Cited by in Crossref: 16] [Cited by in F6Publishing: 77] [Article Influence: 16.0] [Reference Citation Analysis]
318 Saw WS, Anasamy T, Foo YY, Kwa YC, Kue CS, Yeong CH, Kiew LV, Lee HB, Chung LY. Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. Adv Therap 2021;4:2000206. [DOI: 10.1002/adtp.202000206] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
319 Szczygieł A, Anger-Góra N, Węgierek-Ciura K, Mierzejewska J, Rossowska J, Goszczyński TM, Świtalska M, Pajtasz-Piasecka E. Immunomodulatory potential of anticancer therapy composed of methotrexate nanoconjugate and dendritic cell‑based vaccines in murine colon carcinoma. Oncol Rep 2021;45:945-62. [PMID: 33432365 DOI: 10.3892/or.2021.7930] [Reference Citation Analysis]
320 Ho KW, Chen IU, Cheng YA, Liao TY, Liu ES, Chen HJ, Lu YC, Su YC, Roffler SR, Huang BC, Liu HJ, Huang MY, Chen CY, Cheng TL. Double attack strategy for leukemia using a pre-targeting bispecific antibody (CD20 Ab-mPEG scFv) and actively attracting PEGylated liposomal doxorubicin to enhance anti-tumor activity. J Nanobiotechnology 2021;19:16. [PMID: 33422061 DOI: 10.1186/s12951-020-00752-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
321 Yang H, Liu R, Xu Y, Qian L, Dai Z. Photosensitizer Nanoparticles Boost Photodynamic Therapy for Pancreatic Cancer Treatment. Nanomicro Lett 2021;13:35. [PMID: 34138222 DOI: 10.1007/s40820-020-00561-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
322 Cao Y, Zhang H. Recent advances in nano material-based application of liver neoplasms. Smart Materials in Medicine 2021;2:114-23. [DOI: 10.1016/j.smaim.2021.03.001] [Reference Citation Analysis]
323 Liu X, Meng C, Ji G, Liu J, Zhu P, Qian J, Zhu S, Zhang Y, Ling Y. Tumor microenvironment-activatable boolean logic supramolecular nanotheranostics based on a pillar[6]arene for tumor hypoxia imaging and multimodal synergistic therapy. Mater Chem Front 2021;5:5846-56. [DOI: 10.1039/d1qm00411e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
324 Gu W, Meng F, Haag R, Zhong Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. Journal of Controlled Release 2021;329:676-95. [DOI: 10.1016/j.jconrel.2020.10.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 43] [Article Influence: 12.0] [Reference Citation Analysis]
325 Solanki R, Patel K, Patel S. Bovine Serum Albumin Nanoparticles for the Efficient Delivery of Berberine: Preparation, Characterization and In vitro biological studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;608:125501. [DOI: 10.1016/j.colsurfa.2020.125501] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
326 Balouch M, Šrejber M, Šoltys M, Janská P, Štěpánek F, Berka K. In silico screening of drug candidates for thermoresponsive liposome formulations. Mol Syst Des Eng 2021;6:368-80. [DOI: 10.1039/d0me00160k] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
327 Zhou S, Li J, Yu J, Yang L, Kuang X, Wang Z, Wang Y, Liu H, Lin G, He Z, Liu D, Wang Y. A facile and universal method to achieve liposomal remote loading of non-ionizable drugs with outstanding safety profiles and therapeutic effect. Acta Pharm Sin B 2021;11:258-70. [PMID: 33532191 DOI: 10.1016/j.apsb.2020.08.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
328 Liu J, Shi J, Nie W, Wang S, Liu G, Cai K. Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy. Adv Healthc Mater 2021;10:e2001207. [PMID: 33000920 DOI: 10.1002/adhm.202001207] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
329 Zhan Q, Shi X, Fan D, Zhou L, Wei S. Solvent mixing generating air bubbles as a template for polydopamine nanobowl fabrication: Underlying mechanism, nanomotor assembly and application in cancer treatment. Chemical Engineering Journal 2021;404:126443. [DOI: 10.1016/j.cej.2020.126443] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
330 Mashreghi M, Zamani P, Karimi M, Mehrabian A, Arabsalmani M, Zarqi J, Moosavian SA, Jaafari MR. Anti-epithelial cell adhesion molecule RNA aptamer-conjugated liposomal doxorubicin as an efficient targeted therapy in mice bearing colon carcinoma tumor model. Biotechnol Prog 2021;37:e3116. [PMID: 33369269 DOI: 10.1002/btpr.3116] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
331 Knödler M, Buyel JF. Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnol Adv 2021;47:107683. [PMID: 33373687 DOI: 10.1016/j.biotechadv.2020.107683] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
332 Mamnoon B, Loganathan J, Confeld MI, De Fonseka N, Feng L, Froberg J, Choi Y, Tuvin DM, Sathish V, Mallik S. Targeted polymeric nanoparticles for drug delivery to hypoxic, triple-negative breast tumors. ACS Appl Bio Mater 2021;4:1450-60. [PMID: 33954285 DOI: 10.1021/acsabm.0c01336] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
333 Feiner-Gracia N, Glinkowska Mares A, Buzhor M, Rodriguez-Trujillo R, Samitier Marti J, Amir RJ, Pujals S, Albertazzi L. Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip. ACS Appl Bio Mater 2021;4:669-81. [PMID: 33490884 DOI: 10.1021/acsabm.0c01209] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
334 Zaremba-Czogalla M, Jaromin A, Sidoryk K, Zagórska A, Cybulski M, Gubernator J. Evaluation of the In Vitro Cytotoxic Activity of Caffeic Acid Derivatives and Liposomal Formulation against Pancreatic Cancer Cell Lines. Materials (Basel) 2020;13:E5813. [PMID: 33352809 DOI: 10.3390/ma13245813] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
335 Montecinos-Franjola F, Lin JY, Rodriguez EA. Fluorescent proteins for in vivo imaging, where's the biliverdin? Biochem Soc Trans 2020;48:2657-67. [PMID: 33196077 DOI: 10.1042/BST20200444] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
336 Darguzyte M, Holm R, Baier J, Drude N, Schultze J, Koynov K, Schwiertz D, Dadfar SM, Lammers T, Barz M, Kiessling F. Influence of Riboflavin Targeting on Tumor Accumulation and Internalization of Peptostar Based Drug Delivery Systems. Bioconjug Chem 2020;31:2691-6. [PMID: 33237762 DOI: 10.1021/acs.bioconjchem.0c00593] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
337 Grigoletto A, Tedeschini T, Canato E, Pasut G. The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1689. [PMID: 33314717 DOI: 10.1002/wnan.1689] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
338 Zhang Y, Han X, Nie G. Responsive and activable nanomedicines for remodeling the tumor microenvironment. Nat Protoc 2021;16:405-30. [PMID: 33311713 DOI: 10.1038/s41596-020-00421-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
339 Sebak AA, Gomaa IEO, ElMeshad AN, Farag MH, Breitinger U, Breitinger HG, AbdelKader MH. Distinct Proteins in Protein Corona of Nanoparticles Represent a Promising Venue for Endogenous Targeting - Part II: In vitro and in vivo Kinetics Study. Int J Nanomedicine 2020;15:9539-56. [PMID: 33299308 DOI: 10.2147/IJN.S273721] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
340 Jiang X, Lin M, Huang J, Mo M, Liu H, Jiang Y, Cai X, Leung W, Xu C. Smart Responsive Nanoformulation for Targeted Delivery of Active Compounds From Traditional Chinese Medicine. Front Chem 2020;8:559159. [PMID: 33363102 DOI: 10.3389/fchem.2020.559159] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
341 Lv Y, Jun Y, Tang Z, Li X, Tao M, Zhang Z, Liu L, Sun S, Wang Q, Luo C, Zhang L. Enhanced Antitumor Efficacy of Macrophage-Mediated Egg Yolk Lipid-Derived Delivery System Against Breast Cancer. Int J Nanomedicine 2020;15:10075-84. [PMID: 33335395 DOI: 10.2147/IJN.S271310] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
342 Cheng Y, Bao D, Chen X, Wu Y, Wei Y, Wu Z, Li F, Piao JG. Microwave-triggered/HSP-targeted gold nano-system for triple-negative breast cancer photothermal therapy. Int J Pharm 2021;593:120162. [PMID: 33307159 DOI: 10.1016/j.ijpharm.2020.120162] [Cited by in Crossref: 1] [Cited by in F6Publishing: 14] [Article Influence: 0.5] [Reference Citation Analysis]
343 Ruiz-Garcia H, Alvarado-Estrada K, Krishnan S, Quinones-Hinojosa A, Trifiletti DM. Nanoparticles for Stem Cell Therapy Bioengineering in Glioma. Front Bioeng Biotechnol 2020;8:558375. [PMID: 33365304 DOI: 10.3389/fbioe.2020.558375] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
344 Pritchard N, Kaitu'u-Lino T, Harris L, Tong S, Hannan N. Nanoparticles in pregnancy: the next frontier in reproductive therapeutics. Hum Reprod Update 2021;27:280-304. [PMID: 33279994 DOI: 10.1093/humupd/dmaa049] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
345 Della Rosa G, Di Corato R, Carpi S, Polini B, Taurino A, Tedeschi L, Nieri P, Rinaldi R, Aloisi A. Tailoring of silica-based nanoporous pod by spermidine multi-activity. Sci Rep 2020;10:21142. [PMID: 33273530 DOI: 10.1038/s41598-020-77957-4] [Reference Citation Analysis]
346 Inoue Y, Matsumoto Y, Toh K, Miyano K, Cabral H, Igarashi K, Iwasaki S, Kataoka K, Yamasoba T. Manipulating dynamic tumor vessel permeability to enhance polymeric micelle accumulation. J Control Release 2021;329:63-75. [PMID: 33278478 DOI: 10.1016/j.jconrel.2020.11.063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
347 Zhang Q, Ding F, Liu X, Shen J, Su Y, Qian J, Zhu X, Zhang C. Nanobody-guided targeted delivery of microRNA via nucleic acid nanogel to inhibit the tumor growth. Journal of Controlled Release 2020;328:425-34. [DOI: 10.1016/j.jconrel.2020.08.058] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
348 Prasad R, Jain N, Conde J, Srivastava R. Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances 2020;8:100087. [DOI: 10.1016/j.mtadv.2020.100087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
349 Thalhauser S, Breunig M. Considerations for efficient surface functionalization of nanoparticles with a high molecular weight protein as targeting ligand. Eur J Pharm Sci 2020;155:105520. [PMID: 32822809 DOI: 10.1016/j.ejps.2020.105520] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
350 Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B, Tiwari S, Kesharwani P, Dubey SK. Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Discovery Today 2020;25:2227-44. [DOI: 10.1016/j.drudis.2020.09.031] [Cited by in Crossref: 12] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
351 Krasnopolsky YМ; National Technical University ", Kharkiv Polytechnic Institute", , Ukraine. "QUALITY BY DESIGN" IN LIPOSOMAL DRUGS CREATION. Biotechnol acta 2020;13:5-12. [DOI: 10.15407/biotech13.06.005] [Reference Citation Analysis]
352 Ryu JH, Yoon HY, Sun IC, Kwon IC, Kim K. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Adv Mater 2020;32:e2002197. [PMID: 33051905 DOI: 10.1002/adma.202002197] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 14.5] [Reference Citation Analysis]
353 Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. Journal of Drug Delivery Science and Technology 2020;60:102070. [DOI: 10.1016/j.jddst.2020.102070] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
354 Ji Y, Jones C, Baek Y, Park GK, Kashiwagi S, Choi HS. Near-infrared fluorescence imaging in immunotherapy. Adv Drug Deliv Rev 2020;167:121-34. [PMID: 32579891 DOI: 10.1016/j.addr.2020.06.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
355 Sandland J, Savoie H, Boyle RW, Murray BS. RAPTA-Decorated Polyacrylamide Nanoparticles: Exploring their Synthesis, Physical Properties and Effect on Cell Viability. Chembiochem 2021;22:931-6. [PMID: 33095468 DOI: 10.1002/cbic.202000704] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
356 Li Y, Xie J, Um W, You DG, Kwon S, Zhang L, Zhu J, Park JH. Sono/Photodynamic Nanomedicine‐Elicited Cancer Immunotherapy. Adv Funct Mater 2021;31:2008061. [DOI: 10.1002/adfm.202008061] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
357 Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021;50:945-85. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
358 Sachdev JC, Munster P, Northfelt DW, Han HS, Ma C, Maxwell F, Wang T, Belanger B, Zhang B, Moore Y, Thiagalingam A, Anders C. Phase I study of liposomal irinotecan in patients with metastatic breast cancer: findings from the expansion phase. Breast Cancer Res Treat 2021;185:759-71. [PMID: 33201358 DOI: 10.1007/s10549-020-05995-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
359 Jin X, Yang Q, Cai N, Zhang Z. A cocktail of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment. Nanomedicine (Lond) 2020;15:41-54. [PMID: 31868113 DOI: 10.2217/nnm-2018-0479] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
360 Santos EDS, Nogueira KAB, Fernandes LCC, Martins JRP, Reis AVF, Neto JBV, Júnior IJDS, Pessoa C, Petrilli R, Eloy JO. EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. Int J Pharm 2021;592:120082. [PMID: 33188892 DOI: 10.1016/j.ijpharm.2020.120082] [Cited by in Crossref: 4] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
361 Kumar SU, Telichko AV, Wang H, Hyun D, Johnson EG, Kent MS, Rebhun RB, Dahl JJ, Culp WTN, Paulmurugan R. Acoustically Driven Microbubbles Enable Targeted Delivery of microRNA-Loaded Nanoparticles to Spontaneous Hepatocellular Neoplasia in Canines. Adv Ther (Weinh) 2020;3:2000120. [PMID: 33415184 DOI: 10.1002/adtp.202000120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
362 Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Adv Funct Mater 2021;31:2007363. [DOI: 10.1002/adfm.202007363] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
363 Wi TI, Won JE, Lee CM, Lee JW, Kang TH, Shin BC, Han HD, Park YM. Efficacy of Combination Therapy with Linalool and Doxorubicin Encapsulated by Liposomes as a Two-in-One Hybrid Carrier System for Epithelial Ovarian Carcinoma. Int J Nanomedicine 2020;15:8427-36. [PMID: 33149585 DOI: 10.2147/IJN.S272319] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
364 Wang Z, Yang J, Yang Y, Pu X, Zhao J, Zhang N. Targeted and Combined TPCA-1-Gold Nanocage Therapy for In Vivo Treatment of Inflammatory Arthritis. AAPS PharmSciTech 2020;21:298. [PMID: 33140225 DOI: 10.1208/s12249-020-01856-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
365 Mirhadi E, Mashreghi M, Faal Maleki M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Redox-sensitive nanoscale drug delivery systems for cancer treatment. International Journal of Pharmaceutics 2020;589:119882. [DOI: 10.1016/j.ijpharm.2020.119882] [Cited by in Crossref: 14] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
366 Wang W, Liu X, Zheng X, Jin HJ, Li X. Biomineralization: An Opportunity and Challenge of Nanoparticle Drug Delivery Systems for Cancer Therapy. Adv Healthc Mater 2020;9:e2001117. [PMID: 33043640 DOI: 10.1002/adhm.202001117] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
367 Joshi U, Filipczak N, Khan MM, Attia SA, Torchilin V. Hypoxia-sensitive micellar nanoparticles for co-delivery of siRNA and chemotherapeutics to overcome multi-drug resistance in tumor cells. International Journal of Pharmaceutics 2020;590:119915. [DOI: 10.1016/j.ijpharm.2020.119915] [Cited by in Crossref: 10] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
368 Li J, Zhao M, Sun M, Wu S, Zhang H, Dai Y, Wang D. Multifunctional Nanoparticles Boost Cancer Immunotherapy Based on Modulating the Immunosuppressive Tumor Microenvironment. ACS Appl Mater Interfaces 2020;12:50734-47. [PMID: 33124808 DOI: 10.1021/acsami.0c14909] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
369 Gaspar R, Coelho F, Silva BFB. Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment. Molecules 2020;25:E5006. [PMID: 33126767 DOI: 10.3390/molecules25215006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
370 Zhang Q, Wu J, Bai X, Liang T. Evaluation of Intra-Tumoral Vascularization in Hepatocellular Carcinomas. Front Med (Lausanne). 2020;7:584250. [PMID: 33195338 DOI: 10.3389/fmed.2020.584250] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
371 Amin M, Huang W, Seynhaeve ALB, Ten Hagen TLM. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics 2020;12:E1007. [PMID: 33105816 DOI: 10.3390/pharmaceutics12111007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
372 Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020;160:136-69. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
373 Zhou Y, Xu Q, Li C, Chen Y, Zhang Y, Lu B. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review. Front Mater Sci 2020;14:373-86. [DOI: 10.1007/s11706-020-0526-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
374 Doufène K, Malki Y, Vincent LA, Cuq P, Devoisselle JM, Masurier N, Aubert-Pouëssel A. Vegetable Oil-based Hybrid Submicron Particles Loaded with JMV5038: A Promising Formulation against Melanoma. J Pharm Sci 2021;110:1197-205. [PMID: 33069708 DOI: 10.1016/j.xphs.2020.10.019] [Reference Citation Analysis]
375 Liang C, Bai X, Qi C, Sun Q, Han X, Lan T, Zhang H, Zheng X, Liang R, Jiao J, Zheng Z, Fang J, Lei P, Wang Y, Möckel D, Metselaar JM, Storm G, Hennink WE, Kiessling F, Wei H, Lammers T, Shi Y, Wei B. Π electron-stabilized polymeric micelles potentiate docetaxel therapy in advanced-stage gastrointestinal cancer. Biomaterials 2021;266:120432. [PMID: 33069116 DOI: 10.1016/j.biomaterials.2020.120432] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
376 Nguyen A, Ramesh A, Kumar S, Nandi D, Brouillard A, Wells A, Pobezinsky L, Osborne B, Kulkarni AA. Granzyme B nanoreporter for early monitoring of tumor response to immunotherapy. Sci Adv 2020;6:eabc2777. [PMID: 33008894 DOI: 10.1126/sciadv.abc2777] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
377 Ahmadi A, Hosseini-Nami S, Abed Z, Beik J, Aranda-Lara L, Samadian H, Morales-Avila E, Jaymand M, Shakeri-Zadeh A. Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discov Today 2020;25:2182-200. [PMID: 33010479 DOI: 10.1016/j.drudis.2020.09.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
378 Pavlova AS, Dovydenko IS, Kupryushkin MS, Grigor'eva AE, Pyshnaya IA, Pyshnyi DV. Amphiphilic "Like-a-Brush" Oligonucleotide Conjugates with Three Dodecyl Chains: Self-Assembly Features of Novel Scaffold Compounds for Nucleic Acids Delivery. Nanomaterials (Basel) 2020;10:E1948. [PMID: 33003636 DOI: 10.3390/nano10101948] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
379 Ou HL, Hoffmann R, González-López C, Doherty GJ, Korkola JE, Muñoz-Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 2020. [PMID: 32981205 DOI: 10.1002/1878-0261.12807] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
380 R S, Joseph MM, Pillai KR, G U P, T T S. A biocompatible glycol-capped nano-delivery system with stimuli-responsive drug release kinetics abrogates cancer cell survival. Int J Biol Macromol 2020;165:568-81. [PMID: 32961196 DOI: 10.1016/j.ijbiomac.2020.09.121] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
381 Guido C, Maiorano G, Cortese B, D'Amone S, Palamà IE. Biomimetic Nanocarriers for Cancer Target Therapy. Bioengineering (Basel) 2020;7:E111. [PMID: 32937963 DOI: 10.3390/bioengineering7030111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
382 Li Y, Hu D, Sheng Z, Min T, Zha M, Ni JS, Zheng H, Li K. Self-assembled AIEgen nanoparticles for multiscale NIR-II vascular imaging. Biomaterials 2021;264:120365. [PMID: 32971372 DOI: 10.1016/j.biomaterials.2020.120365] [Cited by in Crossref: 16] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
383 Shim G, Ko S, Park JY, Suh JH, Le QV, Kim D, Kim YB, Im GH, Kim HN, Choe YS, Cho J, Kim S, Oh YK. Tannic acid-functionalized boron nitride nanosheets for theranostics. J Control Release 2020;327:616-26. [PMID: 32916228 DOI: 10.1016/j.jconrel.2020.09.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
384 Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2021;329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
385 Szafraniec-Szczęsny J, Janik-Hazuka M, Odrobińska J, Zapotoczny S. Polymer Capsules with Hydrophobic Liquid Cores as Functional Nanocarriers. Polymers (Basel) 2020;12:E1999. [PMID: 32887444 DOI: 10.3390/polym12091999] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
386 Vicente‐ruiz S, Serrano‐martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. Adv Therap 2021;4:2000136. [DOI: 10.1002/adtp.202000136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
387 Jahangir MA, Taleuzzaman M, Kala C, Gilani SJ. Advancements in Polymer and Lipid-based Nanotherapeutics for Cancer Drug Targeting. Curr Pharm Des 2020;26:5119-27. [PMID: 32867646 DOI: 10.2174/1381612826999200820173253] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
388 Randárová E, Kudláčová J, Etrych T. HPMA copolymer-antibody constructs in neoplastic treatment: an overview of therapeutics, targeted diagnostics, and drug-free systems. Journal of Controlled Release 2020;325:304-22. [DOI: 10.1016/j.jconrel.2020.06.040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
389 Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. Adv Mater 2020;32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
390 Zhang S, Zhu P, He J, Dong S, Li P, Zhang CY, Ma T. TME-Responsive Polyprodrug Micelles for Multistage Delivery of Doxorubicin with Improved Cancer Therapeutic Efficacy in Rodents. Adv Healthc Mater 2020;9:e2000387. [PMID: 32815646 DOI: 10.1002/adhm.202000387] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
391 Hou X, Shou C, He M, Xu J, Cheng Y, Yuan Z, Lan M, Zhao Y, Yang Y, Chen X, Gao F. A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy. Acta Pharm Sin B 2020;10:1741-53. [PMID: 33088693 DOI: 10.1016/j.apsb.2020.04.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
392 Lin Q, Fathi P, Chen X. Nanoparticle delivery in vivo: A fresh look from intravital imaging. EBioMedicine 2020;59:102958. [PMID: 32853986 DOI: 10.1016/j.ebiom.2020.102958] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
393 Novy Z, Lobaz V, Vlk M, Kozempel J, Stepanek P, Popper M, Vrbkova J, Hajduch M, Hruby M, Petrik M. Head-To-Head Comparison of Biological Behavior of Biocompatible Polymers Poly(Ethylene Oxide), Poly(2-Ethyl-2-Oxazoline) and Poly[N-(2-Hydroxypropyl)Methacrylamide] as Coating Materials for Hydroxyapatite Nanoparticles in Animal Solid Tumor Model. Nanomaterials (Basel) 2020;10:E1690. [PMID: 32867391 DOI: 10.3390/nano10091690] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
394 Noack AK, Lucas H, Chytil P, Etrych T, Mäder K, Mueller T. Intratumoral Distribution and pH-Dependent Drug Release of High Molecular Weight HPMA Copolymer Drug Conjugates Strongly Depend on Specific Tumor Substructure and Microenvironment. Int J Mol Sci 2020;21:E6029. [PMID: 32825790 DOI: 10.3390/ijms21176029] [Reference Citation Analysis]
395 Zhou W. Cholic Acid-Functionalized Mesoporous Silica Nanoparticles Loaded With Ruthenium Pro-drug Delivery to Cervical Cancer Therapy. J Inorg Organomet Polym 2021;31:311-8. [DOI: 10.1007/s10904-020-01710-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
396 Yeini E, Ofek P, Albeck N, Rodriguez Ajamil D, Neufeld L, Eldar‐boock A, Kleiner R, Vaskovich D, Koshrovski‐michael S, Dangoor SI, Krivitsky A, Burgos Luna C, Shenbach‐koltin G, Goldenfeld M, Hadad O, Tiram G, Satchi‐fainaro R. Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. Adv Therap 2021;4:2000124. [DOI: 10.1002/adtp.202000124] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
397 Kowalczyk A, Kasprzak A, Poplawska M, Ruzycka M, Grudzinski IP, Nowicka AM. Controlled Drug Release and Cytotoxicity Studies of Beta-Lapachone and Doxorubicin Loaded into Cyclodextrins Attached to a Polyethyleneimine Matrix. Int J Mol Sci 2020;21:E5832. [PMID: 32823816 DOI: 10.3390/ijms21165832] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
398 Li Y, Chen W, Qi Y, Wang S, Li L, Li W, Xie T, Zhu H, Tang Z, Zhou M. H2 S-Scavenged and Activated Iron Oxide-Hydroxide Nanospindles for MRI-Guided Photothermal Therapy and Ferroptosis in Colon Cancer. Small 2020;16:e2001356. [PMID: 32789963 DOI: 10.1002/smll.202001356] [Cited by in Crossref: 6] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
399 Baecker D, Kapp T, Schumacher P, Gust R, Kircher B. Cell death-inducing properties of selected dendrimers against different breast cancer and leukemia cell lines. Arch Pharm (Weinheim) 2020;353:e2000209. [PMID: 32780524 DOI: 10.1002/ardp.202000209] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
400 Wang X, Li M, Hou Y, Li Y, Yao X, Xue C, Fei Y, Xiang Y, Cai K, Zhao Y, Luo Z. Tumor‐Microenvironment‐Activated In Situ Self‐Assembly of Sequentially Responsive Biopolymer for Targeted Photodynamic Therapy. Adv Funct Mater 2020;30:2000229. [DOI: 10.1002/adfm.202000229] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
401 Fletcher NL, Kempe K, Thurecht KJ. Next-Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions. Macromol Rapid Commun 2020;41:e2000319. [PMID: 32767396 DOI: 10.1002/marc.202000319] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
402 Wang JQ, Wang LY, Li SJ, Tong T, Wang L, Huang CS, Xu QC, Huang XT, Li JH, Wu J, Zhao W, Yin XY. Histone methyltransferase G9a inhibitor-loaded redox-responsive nanoparticles for pancreatic ductal adenocarcinoma therapy. Nanoscale 2020;12:15767-74. [PMID: 32729861 DOI: 10.1039/d0nr03138k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
403 Taresco V, Abelha TF, Cavanagh RJ, Vasey CE, Anane‐adjei AB, Pearce AK, Monteiro PF, Spriggs KA, Clarke P, Ritchie A, Martin S, Rahman R, Grabowska AM, Ashford MB, Alexander C. Functionalized Block Co‐Polymer Pro‐Drug Nanoparticles with Anti‐Cancer Efficacy in 3D Spheroids and in an Orthotopic Triple Negative Breast Cancer Model. Adv Therap 2021;4:2000103. [DOI: 10.1002/adtp.202000103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
404 Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. Adv Therap 2020;3:2000118. [DOI: 10.1002/adtp.202000118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
405 Low LE, Wu J, Lee J, Tey BT, Goh B, Gao J, Li F, Ling D. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. Journal of Controlled Release 2020;324:69-103. [DOI: 10.1016/j.jconrel.2020.05.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
406 Novio F. Design of Targeted Nanostructured Coordination Polymers (NCPs) for Cancer Therapy. Molecules 2020;25:E3449. [PMID: 32751178 DOI: 10.3390/molecules25153449] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
407 Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020;156:40-64. [PMID: 32735811 DOI: 10.1016/j.addr.2020.07.020] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 12.5] [Reference Citation Analysis]
408 Chowdhury N, Chaudhry S, Hall N, Olverson G, Zhang QJ, Mandal T, Dash S, Kundu A. Targeted Delivery of Doxorubicin Liposomes for Her-2+ Breast Cancer Treatment. AAPS PharmSciTech 2020;21:202. [PMID: 32696338 DOI: 10.1208/s12249-020-01743-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
409 Osada K. Structural Polymorphism of Single pDNA Condensates Elicited by Cationic Block Polyelectrolytes. Polymers (Basel) 2020;12:E1603. [PMID: 32707655 DOI: 10.3390/polym12071603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
410 Haddad Y, Charousova M, Zivotska H, Splichal Z, Merlos Rodrigo MA, Michalkova H, Krizkova S, Tesarova B, Richtera L, Vitek P, Stokowa-Soltys K, Hynek D, Milosavljevic V, Rex S, Heger Z. Norepinephrine transporter-derived homing peptides enable rapid endocytosis of drug delivery nanovehicles into neuroblastoma cells. J Nanobiotechnology 2020;18:95. [PMID: 32660596 DOI: 10.1186/s12951-020-00654-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
411 On KC, Rho J, Yoon HY, Chang H, Yhee JY, Yoon JS, Jeong SY, Kim HK, Kim K. Tumor-Targeting Glycol Chitosan Nanoparticles for Image-Guided Surgery of Rabbit Orthotopic VX2 Lung Cancer. Pharmaceutics 2020;12:E621. [PMID: 32635231 DOI: 10.3390/pharmaceutics12070621] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
412 Chillà A, Margheri F, Biagioni A, Del Rosso T, Fibbi G, Del Rosso M, Laurenzana A. Cell-Mediated Release of Nanoparticles as a Preferential Option for Future Treatment of Melanoma. Cancers (Basel) 2020;12:E1771. [PMID: 32630815 DOI: 10.3390/cancers12071771] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
413 Van Herck S, De Geest BG. Nanomedicine-mediated alteration of the pharmacokinetic profile of small molecule cancer immunotherapeutics. Acta Pharmacol Sin 2020;41:881-94. [PMID: 32451411 DOI: 10.1038/s41401-020-0425-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
414 Yin WM, Li YW, Gu YQ, Luo M. Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacol Sin 2020;41:902-10. [PMID: 32398683 DOI: 10.1038/s41401-020-0417-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
415 Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: Their role in hepatocellular carcinoma. Critical Reviews in Oncology/Hematology 2020;151:102968. [DOI: 10.1016/j.critrevonc.2020.102968] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
416 Ihsanullah KM, Kumar BN, Zhao Y, Muhammad H, Liu Y, Wang L, Liu H, Jiang W. Stepwise-activatable hypoxia triggered nanocarrier-based photodynamic therapy for effective synergistic bioreductive chemotherapy. Biomaterials 2020;245:119982. [DOI: 10.1016/j.biomaterials.2020.119982] [Cited by in Crossref: 19] [Cited by in F6Publishing: 26] [Article Influence: 9.5] [Reference Citation Analysis]
417 Reda M, Bagley AF, Zaidan HY, Yantasee W. Augmenting the therapeutic window of radiotherapy: A perspective on molecularly targeted therapies and nanomaterials. Radiother Oncol 2020;150:225-35. [PMID: 32598976 DOI: 10.1016/j.radonc.2020.06.041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
418 Khodadadi Yazdi M, Zarrintaj P, Hosseiniamoli H, Mashhadzadeh AH, Saeb MR, Ramsey JD, Ganjali MR, Mozafari M. Zeolites for theranostic applications. J Mater Chem B 2020;8:5992-6012. [PMID: 32602516 DOI: 10.1039/d0tb00719f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
419 Peng X, Chen K, Liu W, Cao X, Wang M, Tao J, Tian Y, Bao L, Lu G, Teng Z. Soft Mesoporous Organosilica Nanoplatforms Improve Blood Circulation, Tumor Accumulation/Penetration, and Photodynamic Efficacy. Nanomicro Lett 2020;12:137. [PMID: 34138135 DOI: 10.1007/s40820-020-00465-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
420 Fernandes S, Cassani M, Pagliari S, Filipensky P, Cavalieri F, Forte G. Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Curr Med Chem 2020;27:7234-55. [PMID: 32586245 DOI: 10.2174/0929867327666200625151134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
421 Bej R, Achazi K, Haag R, Ghosh S. Polymersome Formation by Amphiphilic Polyglycerol- b -polydisulfide- b -polyglycerol and Glutathione-Triggered Intracellular Drug Delivery. Biomacromolecules 2020;21:3353-63. [DOI: 10.1021/acs.biomac.0c00775] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
422 Li Q, Yang J, Chen C, Lin X, Zhou M, Zhou Z, Huang Y. A novel mitochondrial targeted hybrid peptide modified HPMA copolymers for breast cancer metastasis suppression. J Control Release 2020;325:38-51. [PMID: 32598957 DOI: 10.1016/j.jconrel.2020.06.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
423 Kandell RM, Waggoner LE, Kwon EJ. Nanomedicine for Acute Brain Injuries: Insight from Decades of Cancer Nanomedicine. Mol Pharm 2021;18:522-38. [PMID: 32584042 DOI: 10.1021/acs.molpharmaceut.0c00287] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
424 Nagpal S, Braner S, Modh H, Tan AXX, Mast MP, Chichakly K, Albrecht V, Wacker MG. A physiologically-based nanocarrier biopharmaceutics model to reverse-engineer the in vivo drug release. Eur J Pharm Biopharm 2020;153:257-72. [PMID: 32589926 DOI: 10.1016/j.ejpb.2020.06.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
425 Yu N, Liu T, Zhang X, Gong N, Ji T, Chen J, Liang XJ, Kohane DS, Guo S. Dually Enzyme- and Acid-Triggered Self-Immolative Ketal Glycoside Nanoparticles for Effective Cancer Prodrug Monotherapy. Nano Lett 2020;20:5465-72. [PMID: 32573235 DOI: 10.1021/acs.nanolett.0c01973] [Cited by in Crossref: 8] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
426 Fang J, Islam W, Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Deliv Rev 2020;157:142-60. [PMID: 32553783 DOI: 10.1016/j.addr.2020.06.005] [Cited by in Crossref: 151] [Cited by in F6Publishing: 164] [Article Influence: 75.5] [Reference Citation Analysis]
427 Sanna V, Sechi M. Therapeutic Potential of Targeted Nanoparticles and Perspective on Nanotherapies. ACS Med Chem Lett 2020;11:1069-73. [PMID: 32550978 DOI: 10.1021/acsmedchemlett.0c00075] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
428 Das RP, Chakravarti S, Patel SS, Lakhamje P, Gurjar M, Gota V, Singh BG, Kunwar A. Tuning the pharmacokinetics and efficacy of irinotecan (IRI) loaded gelatin nanoparticles through folate conjugation. Int J Pharm 2020;586:119522. [PMID: 32534159 DOI: 10.1016/j.ijpharm.2020.119522] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
429 Chen Y, Du M, Yu J, Rao L, Chen X, Chen Z. Nanobiohybrids: A Synergistic Integration of Bacteria and Nanomaterials in Cancer Therapy. BIO Integration 2020;1:25-36. [DOI: 10.15212/bioi-2020-0008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
430 Kim DH, Lee HS, Mun Y, Koh S, Park J, Lee SM, Kang N, Lee MY, Cho C, Kim D, Lee J. An overview of chondrosarcoma with a focus on nanoscale therapeutics. J Pharm Investig 2020;50:537-52. [DOI: 10.1007/s40005-020-00492-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
431 Chua CYX, Ho J, Demaria S, Ferrari M, Grattoni A. Emerging Technologies for Local Cancer Treatment. Adv Therap 2020;3:2000027. [DOI: 10.1002/adtp.202000027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
432 Varani M, Galli F, Capriotti G, Mattei M, Cicconi R, Campagna G, Panzuto F, Signore A. Theranostic Designed Near-Infrared Fluorescent Poly (Lactic-co-Glycolic Acid) Nanoparticles and Preliminary Studies with Functionalized VEGF-Nanoparticles. J Clin Med 2020;9:E1750. [PMID: 32516917 DOI: 10.3390/jcm9061750] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
433 Li Q, Ren J, Chen Q, Liu W, Xu Z, Cao Y, Kang Y, Xue P. A HMCuS@MnO2 nanocomplex responsive to multiple tumor environmental clues for photoacoustic/fluorescence/magnetic resonance trimodal imaging-guided and enhanced photothermal/photodynamic therapy. Nanoscale 2020;12:12508-21. [PMID: 32497157 DOI: 10.1039/d0nr01547d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
434 Ramesh A, Kumar S, Brouillard A, Nandi D, Kulkarni A. A Nitric Oxide (NO) Nanoreporter for Noninvasive Real-Time Imaging of Macrophage Immunotherapy. Adv Mater 2020;32:e2000648. [PMID: 32390270 DOI: 10.1002/adma.202000648] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
435 Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. Journal of Drug Delivery Science and Technology 2020;57:101682. [DOI: 10.1016/j.jddst.2020.101682] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
436 Shi L, Jin Y, Du W, Lai S, Shen Y, Zhou R. Diselenide-containing nonionic gemini polymeric micelles as a smart redox-responsive carrier for potential programmable drug release. Polymer 2020;198:122551. [DOI: 10.1016/j.polymer.2020.122551] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
437 Daryanavard M, Jannesari Z, Javeri M, Abyar F. A new mononuclear zinc(II) complex: Crystal structure, DNA- and BSA-binding, and molecular modeling; in vitro cytotoxicity of the Zn(II) complex and its nanocomplex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020;233:118175. [DOI: 10.1016/j.saa.2020.118175] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
438 Nasr S, Rady M, Sebak A, Gomaa I, Fayad W, Gaafary ME, Abdel-Kader M, Syrovets T, Simmet T. A Naturally Derived Carrier for Photodynamic Treatment of Squamous Cell Carcinoma: In Vitro and In Vivo Models. Pharmaceutics 2020;12:E494. [PMID: 32485800 DOI: 10.3390/pharmaceutics12060494] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
439 Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle-hydrogel superstructures for biomedical applications. J Control Release 2020;324:505-21. [PMID: 32464152 DOI: 10.1016/j.jconrel.2020.05.041] [Cited by in Crossref: 18] [Cited by in F6Publishing: 46] [Article Influence: 9.0] [Reference Citation Analysis]
440 Yang Z, Du Y, Sun Q, Peng Y, Wang R, Zhou Y, Wang Y, Zhang C, Qi X. Albumin-Based Nanotheranostic Probe with Hypoxia Alleviating Potentiates Synchronous Multimodal Imaging and Phototherapy for Glioma. ACS Nano 2020;14:6191-212. [PMID: 32320600 DOI: 10.1021/acsnano.0c02249] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 23.0] [Reference Citation Analysis]
441 Levada K, Pshenichnikov S, Omelyanchik A, Rodionova V, Nikitin A, Savchenko A, Schetinin I, Zhukov D, Abakumov M, Majouga A, Lunova M, Jirsa M, Smolková B, Uzhytchak M, Dejneka A, Lunov O. Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Converg 2020;7:17. [PMID: 32424769 DOI: 10.1186/s40580-020-00228-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
442 Kim DH, Seo J, Na K. pH-Sensitive Carbon Dots for Enhancing Photomediated Antitumor Immunity. Mol Pharmaceutics 2020;17:2532-45. [DOI: 10.1021/acs.molpharmaceut.0c00227] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
443 Tao B, Yin Z. Redox-Responsive Coordination Polymers of Dopamine-Modified Hyaluronic Acid with Copper and 6-Mercaptopurine for Targeted Drug Delivery and Improvement of Anticancer Activity against Cancer Cells. Polymers (Basel) 2020;12:E1132. [PMID: 32423174 DOI: 10.3390/polym12051132] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
444 Sandland J, Savoie H, Boyle RW, Murray BS. Synthesis and In Vitro Biological Evaluation of a Second-Generation Multimodal Water-Soluble Porphyrin-RAPTA Conjugate for the Dual-Therapy of Cancers. Inorg Chem 2020;59:7884-93. [DOI: 10.1021/acs.inorgchem.0c01044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
445 Chen Z, Wan L, Yuan Y, Kuang Y, Xu X, Liao T, Liu J, Xu ZQ, Jiang B, Li C. pH/GSH-Dual-Sensitive Hollow Mesoporous Silica Nanoparticle-Based Drug Delivery System for Targeted Cancer Therapy. ACS Biomater Sci Eng 2020;6:3375-87. [PMID: 33463161 DOI: 10.1021/acsbiomaterials.0c00073] [Cited by in Crossref: 18] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
446 Bhattacharya DS, Svechkarev D, Bapat A, Patil P, Hollingsworth MA, Mohs AM. Sulfation modulates the targeting properties of hyaluronic acid to P-selectin and CD44. ACS Biomater Sci Eng 2020;6:3585-98. [PMID: 32617404 DOI: 10.1021/acsbiomaterials.0c00115] [Cited by in Crossref: 9] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
447 Garbayo E, Pascual‐gil S, Rodríguez‐nogales C, Saludas L, Estella‐hermoso de Mendoza A, Blanco‐prieto MJ. Nanomedicine and drug delivery systems in cancer and regenerative medicine. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1637] [Cited by in Crossref: 11] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]
448 Haque ST, Karim ME, Abidin SAZ, Othman I, Holl MMB, Chowdhury EH. Fe/Mg-Modified Carbonate Apatite with Uniform Particle Size and Unique Transport Protein-Related Protein Corona Efficiently Delivers Doxorubicin into Breast Cancer Cells. Nanomaterials (Basel) 2020;10:E834. [PMID: 32349272 DOI: 10.3390/nano10050834] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
449 Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020;25:1174-88. [PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 35] [Article Influence: 10.5] [Reference Citation Analysis]
450 Attia M, Essa EA, Zaki RM, Elkordy AA. An Overview of the Antioxidant Effects of Ascorbic Acid and Alpha Lipoic Acid (in Liposomal Forms) as Adjuvant in Cancer Treatment. Antioxidants (Basel) 2020;9:E359. [PMID: 32344912 DOI: 10.3390/antiox9050359] [Cited by in Crossref: 8] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
451 Cassani M, Fernandes S, Vrbsky J, Ergir E, Cavalieri F, Forte G. Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Front Bioeng Biotechnol 2020;8:323. [PMID: 32391340 DOI: 10.3389/fbioe.2020.00323] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
452 Steinborn B, Lächelt U. Metal-organic Nanopharmaceuticals. Pharm Nanotechnol 2020;8:163-90. [PMID: 32316907 DOI: 10.2174/2211738508666200421113215] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
453 Bhatt H, Ghosh B, Biswas S. Cell-Penetrating Peptide and α-Tocopherol-Conjugated Poly(amidoamine) Dendrimers for Improved Delivery and Anticancer Activity of Loaded Paclitaxel. ACS Appl Bio Mater 2020;3:3157-69. [DOI: 10.1021/acsabm.0c00179] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
454 Chernikov IV, Gladkikh DV, Karelina UA, Meschaninova MI, Ven'yaminova AG, Vlassov VV, Chernolovskaya EL. Trimeric Small Interfering RNAs and Their Cholesterol-Containing Conjugates Exhibit Improved Accumulation in Tumors, but Dramatically Reduced Silencing Activity. Molecules 2020;25:E1877. [PMID: 32325757 DOI: 10.3390/molecules25081877] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
455 Halling Folkmar Andersen A, Tolstrup M. The Potential of Long-Acting, Tissue-Targeted Synthetic Nanotherapy for Delivery of Antiviral Therapy Against HIV Infection. Viruses 2020;12:E412. [PMID: 32272815 DOI: 10.3390/v12040412] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
456 Brusini R, Dormont F, Cailleau C, Nicolas V, Peramo A, Varna M, Couvreur P. Squalene-based nanoparticles for the targeting of atherosclerotic lesions. Int J Pharm 2020;581:119282. [PMID: 32259640 DOI: 10.1016/j.ijpharm.2020.119282] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
457 Kucharczyk K, Florczak A, Deptuch T, Penderecka K, Jastrzebska K, Mackiewicz A, Dams-Kozlowska H. Drug affinity and targeted delivery: double functionalization of silk spheres for controlled doxorubicin delivery into Her2-positive cancer cells. J Nanobiotechnology 2020;18:56. [PMID: 32228620 DOI: 10.1186/s12951-020-00609-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
458 Dillon KM, Carrazzone RJ, Matson JB, Kashfi K. The evolving landscape for cellular nitric oxide and hydrogen sulfide delivery systems: A new era of customized medications. Biochem Pharmacol 2020;176:113931. [PMID: 32224139 DOI: 10.1016/j.bcp.2020.113931] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
459 Xu T, Ma Y, Yuan Q, Hu H, Hu X, Qian Z, Rolle JK, Gu Y, Li S. Enhanced Ferroptosis by Oxygen-Boosted Phototherapy Based on a 2-in-1 Nanoplatform of Ferrous Hemoglobin for Tumor Synergistic Therapy. ACS Nano 2020;14:3414-25. [PMID: 32155051 DOI: 10.1021/acsnano.9b09426] [Cited by in Crossref: 73] [Cited by in F6Publishing: 82] [Article Influence: 36.5] [Reference Citation Analysis]
460 Liu D, Zhou Z, Wang X, Deng H, Sun L, Lin H, Kang F, Zhang Y, Wang Z, Yang W, Rao L, Yang K, Yu G, Du J, Shen Z, Chen X. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials 2020;244:119979. [PMID: 32200104 DOI: 10.1016/j.biomaterials.2020.119979] [Cited by in Crossref: 10] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
461 Xu F, Zhu J, Lin L, Zhang C, Sun W, Fan Y, Yin F, van Hest JCM, Wang H, Du L, Shi X. Multifunctional PVCL nanogels with redox-responsiveness enable enhanced MR imaging and ultrasound-promoted tumor chemotherapy. Theranostics 2020;10:4349-58. [PMID: 32292499 DOI: 10.7150/thno.43402] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 12.5] [Reference Citation Analysis]
462 Xie D, Wang F, Xiang Y, Huang Y. Enhanced nuclear delivery of H1-S6A, F8A peptide by NrTP6-modified polymeric platform. Int J Pharm 2020;580:119224. [PMID: 32173501 DOI: 10.1016/j.ijpharm.2020.119224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
463 Jarlstad Olesen MT, Walther R, Poier PP, Dagnæs‐hansen F, Zelikin AN. Molecular, Macromolecular, and Supramolecular Glucuronide Prodrugs: Lead Identified for Anticancer Prodrug Monotherapy. Angew Chem 2020;132:7460-6. [DOI: 10.1002/ange.201916124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
464 Jarlstad Olesen MT, Walther R, Poier PP, Dagnæs‐hansen F, Zelikin AN. Molecular, Macromolecular, and Supramolecular Glucuronide Prodrugs: Lead Identified for Anticancer Prodrug Monotherapy. Angew Chem Int Ed 2020;59:7390-6. [DOI: 10.1002/anie.201916124] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
465 Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1624. [PMID: 32162485 DOI: 10.1002/wnan.1624] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
466 Sorrin AJ, Kemal Ruhi M, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020;96:232-59. [PMID: 31895481 DOI: 10.1111/php.13209] [Cited by in Crossref: 13] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
467 Meyer CE, Liu J, Craciun I, Wu D, Wang H, Xie M, Fussenegger M, Palivan CG. Segregated Nanocompartments Containing Therapeutic Enzymes and Imaging Compounds within DNA‐Zipped Polymersome Clusters for Advanced Nanotheranostic Platform. Small 2020;16:1906492. [DOI: 10.1002/smll.201906492] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
468 Shan X, Li S, Sun B, Chen Q, Sun J, He Z, Luo C. Ferroptosis-driven nanotherapeutics for cancer treatment. Journal of Controlled Release 2020;319:322-32. [DOI: 10.1016/j.jconrel.2020.01.008] [Cited by in Crossref: 41] [Cited by in F6Publishing: 64] [Article Influence: 20.5] [Reference Citation Analysis]
469 Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resistance Updates 2020;49:100670. [DOI: 10.1016/j.drup.2019.100670] [Cited by in Crossref: 28] [Cited by in F6Publishing: 63] [Article Influence: 14.0] [Reference Citation Analysis]
470 Bisso S, Leroux J. Nanopharmaceuticals: A focus on their clinical translatability. International Journal of Pharmaceutics 2020;578:119098. [DOI: 10.1016/j.ijpharm.2020.119098] [Cited by in Crossref: 22] [Cited by in F6Publishing: 29] [Article Influence: 11.0] [Reference Citation Analysis]
471 Tesarova B, Dostalova S, Smidova V, Goliasova Z, Skubalova Z, Michalkova H, Hynek D, Michalek P, Polanska H, Vaculovicova M, Hacek J, Eckschlager T, Stiborova M, Pires AS, Neves AR, Abrantes AM, Rodrigues T, Matafome P, Botelho MF, Teixeira P, Mendes F, Heger Z. Surface-PASylation of ferritin to form stealth nanovehicles enhances in vivo therapeutic performance of encapsulated ellipticine. Applied Materials Today 2020;18:100501. [DOI: 10.1016/j.apmt.2019.100501] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
472 Shoueir K, Ahmed M, Abdel Gaber SA, El-kemary M. Thallium and selenite doped carbonated hydroxyapatite: Microstructural features and anticancer activity assessment against human lung carcinoma. Ceramics International 2020;46:5201-12. [DOI: 10.1016/j.ceramint.2019.10.268] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 27.0] [Reference Citation Analysis]
473 Takemoto H, Inaba T, Nomoto T, Matsui M, Liu X, Toyoda M, Honda Y, Taniwaki K, Yamada N, Kim J, Tomoda K, Nishiyama N. Polymeric modification of gemcitabine via cyclic acetal linkage for enhanced anticancer potency with negligible side effects. Biomaterials 2020;235:119804. [DOI: 10.1016/j.biomaterials.2020.119804] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
474 Zhang M, Chen X, Li C, Shen X. Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine. Journal of Controlled Release 2020;319:46-62. [DOI: 10.1016/j.jconrel.2019.12.024] [Cited by in Crossref: 31] [Cited by in F6Publishing: 51] [Article Influence: 15.5] [Reference Citation Analysis]
475 Seynhaeve ALB, Amin M, Haemmerich D, van Rhoon GC, Ten Hagen TLM. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020;163-164:125-44. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Cited by in Crossref: 61] [Cited by in F6Publishing: 61] [Article Influence: 30.5] [Reference Citation Analysis]
476 Sakurai Y, Kato A, Harashima H. Involvement of Caveolin-1-mediated transcytosis in the intratumoral accumulation of liposomes. Biochem Biophys Res Commun 2020;525:313-8. [PMID: 32087973 DOI: 10.1016/j.bbrc.2020.02.086] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
477 Fernando D, Sulthana S, Vasquez Y. Cellular Uptake and Cytotoxicity of Varying Aspect Ratios of Gold Nanorods in HeLa Cells. ACS Appl Bio Mater 2020;3:1374-84. [DOI: 10.1021/acsabm.9b00986] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
478 Zhou Q, Dong C, Fan W, Jiang H, Xiang J, Qiu N, Piao Y, Xie T, Luo Y, Li Z, Liu F, Shen Y. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020;240:119902. [PMID: 32105817 DOI: 10.1016/j.biomaterials.2020.119902] [Cited by in Crossref: 43] [Cited by in F6Publishing: 74] [Article Influence: 21.5] [Reference Citation Analysis]
479 Scodeller P, Asciutto EK. Targeting Tumors Using Peptides. Molecules 2020;25:E808. [PMID: 32069856 DOI: 10.3390/molecules25040808] [Cited by in Crossref: 18] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
480 Iyer R, Nguyen T, Padanilam D, Xu C, Saha D, Nguyen KT, Hong Y. Glutathione-responsive biodegradable polyurethane nanoparticles for lung cancer treatment. J Control Release 2020;321:363-71. [PMID: 32061622 DOI: 10.1016/j.jconrel.2020.02.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
481 Briquez PS, Hauert S, de Titta A, Gray LT, Alpar AT, Swartz MA, Hubbell JA. Engineering Targeting Materials for Therapeutic Cancer Vaccines. Front Bioeng Biotechnol. 2020;8:19. [PMID: 32117911 DOI: 10.3389/fbioe.2020.00019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
482 Macdonald J, Denoyer D, Henri J, Jamieson A, Burvenich IJG, Pouliot N, Shigdar S. Bifunctional Aptamer-Doxorubicin Conjugate Crosses the Blood-Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells. Nucleic Acid Ther 2020;30:117-28. [PMID: 32027209 DOI: 10.1089/nat.2019.0807] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 7.5] [Reference Citation Analysis]
483 Liang Y, Zhang J, Tian B, Wu Z, Svirskis D, Han J. A NAG-Guided Nano-Delivery System for Redox- and pH-Triggered Intracellularly Sequential Drug Release in Cancer Cells. Int J Nanomedicine 2020;15:841-55. [PMID: 32103941 DOI: 10.2147/IJN.S226249] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
484 Han X, Jiang X, Guo L, Wang Y, Veeraraghavan VP, Krishna Mohan S, Wang Z, Cao D. Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artif Cells Nanomed Biotechnol 2019;47:3577-84. [PMID: 31456423 DOI: 10.1080/21691401.2019.1626412] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
485 Stickdorn J, Nuhn L. Reactive-ester derived polymer nanogels for cancer immunotherapy. European Polymer Journal 2020;124:109481. [DOI: 10.1016/j.eurpolymj.2020.109481] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
486 Thenmozhi T. Functionalization of iron oxide nanoparticles with clove extract to induce apoptosis in MCF-7 breast cancer cells. 3 Biotech 2020;10:82. [PMID: 32099733 DOI: 10.1007/s13205-020-2088-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
487 Han X, Xu Y, Geranpayehvaghei M, Anderson GJ, Li Y, Nie G. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials 2020;232:119745. [DOI: 10.1016/j.biomaterials.2019.119745] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 10.5] [Reference Citation Analysis]
488 Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol 2020;20:321-34. [PMID: 32005979 DOI: 10.1038/s41577-019-0269-6] [Cited by in Crossref: 155] [Cited by in F6Publishing: 248] [Article Influence: 77.5] [Reference Citation Analysis]
489 Darguzyte M, Drude N, Lammers T, Kiessling F. Riboflavin-Targeted Drug Delivery. Cancers (Basel) 2020;12:E295. [PMID: 32012715 DOI: 10.3390/cancers12020295] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
490 Gholipour N, Akhlaghi M, Mokhtari Kheirabadi A, Geramifar P, Beiki D. Development of Ga-68 labeled, biotinylated thiosemicarbazone dextran-coated iron oxide nanoparticles as multimodal PET/MRI probe. Int J Biol Macromol 2020;148:932-41. [PMID: 31981670 DOI: 10.1016/j.ijbiomac.2020.01.208] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
491 Xia Y, Xu C, Zhang X, Gao J, Wu Y, Li C, Wang Z. An activatable liposomal fluorescence probe based on fluorescence resonance energy transfer and aggregation induced emission effect for sensitive tumor imaging. Colloids Surf B Biointerfaces 2020;188:110789. [PMID: 31955018 DOI: 10.1016/j.colsurfb.2020.110789] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
492 Voci S, Gagliardi A, Fresta M, Cosco D. Antitumor Features of Vegetal Protein-Based Nanotherapeutics. Pharmaceutics 2020;12:E65. [PMID: 31952147 DOI: 10.3390/pharmaceutics12010065] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
493 Panagi M, Voutouri C, Mpekris F, Papageorgis P, Martin MR, Martin JD, Demetriou P, Pierides C, Polydorou C, Stylianou A, Louca M, Koumas L, Costeas P, Kataoka K, Cabral H, Stylianopoulos T. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics 2020;10:1910-22. [PMID: 32042344 DOI: 10.7150/thno.36936] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 24.5] [Reference Citation Analysis]
494 Lu J, Luo B, Chen Z, Yuan Y, Kuang Y, Wan L, Yao L, Chen X, Jiang B, Liu J, Li C. Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy. Int J Biol Macromol 2020;146:363-73. [PMID: 31911174 DOI: 10.1016/j.ijbiomac.2019.12.265] [Cited by in Crossref: 13] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
495 Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020;8:3747-71. [DOI: 10.1039/c9tb02871d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
496 de Maar JS, Sofias AM, Porta Siegel T, Vreeken RJ, Moonen C, Bos C, Deckers R. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Theranostics 2020;10:1884-909. [PMID: 32042343 DOI: 10.7150/thno.38625] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
497 Bort G, Lux F, Dufort S, Crémillieux Y, Verry C, Tillement O. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: From animal to human with theranostic AGuIX nanoparticles. Theranostics 2020;10:1319-31. [PMID: 31938067 DOI: 10.7150/thno.37543] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 23.5] [Reference Citation Analysis]
498 Dasgupta A, Biancacci I, Kiessling F, Lammers T. Imaging-assisted anticancer nanotherapy. Theranostics 2020;10:956-67. [PMID: 31938045 DOI: 10.7150/thno.38288] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
499 Moss JI, Barjat H, Emmas SA, Strittmatter N, Maynard J, Goodwin RJA, Storm G, Lammers T, Puri S, Ashford MB, Barry ST. High-resolution 3D visualization of nanomedicine distribution in tumors. Theranostics 2020;10:880-97. [PMID: 31903157 DOI: 10.7150/thno.37178] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
500 Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci 2020;8:4653-64. [DOI: 10.1039/d0bm00558d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 50] [Article Influence: 9.5] [Reference Citation Analysis]
501 Kuang G, Zhang Q, He S, Wu Y, Huang Y. Reduction-responsive disulfide linkage core-cross-linked polymeric micelles for site-specific drug delivery. Polym Chem 2020;11:7078-86. [DOI: 10.1039/d0py00987c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
502 Mullapudi SS, Mitra D, Li M, Kang E, Chiong E, Neoh KG. Potentiating anti-cancer chemotherapeutics and antimicrobials via sugar-mediated strategies. Mol Syst Des Eng 2020;5:772-91. [DOI: 10.1039/c9me00175a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
503 Jangid AK, Pooja D, Jain P, Rompicharla SVK, Ramesan S, Kulhari H. A nanoscale, biocompatible and amphiphilic prodrug of cabazitaxel with improved anticancer efficacy against 3D spheroids of prostate cancer cells. Mater Adv 2020;1:738-48. [DOI: 10.1039/d0ma00189a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
504 Li Y, Gao F, Guo J, Ren P, Tian Z, Bai J, Hua J. Polymeric micelles with aggregation-induced emission based on microbial ε-polylysine for doxorubicin delivery. European Polymer Journal 2020;122:109355. [DOI: 10.1016/j.eurpolymj.2019.109355] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
505 Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics 2020;10:938-55. [PMID: 31903161 DOI: 10.7150/thno.37443] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 24.5] [Reference Citation Analysis]
506 Gabizon AA, de Rosales RTM, La-Beck NM. Translational considerations in nanomedicine: The oncology perspective. Adv Drug Deliv Rev 2020;158:140-57. [PMID: 32526450 DOI: 10.1016/j.addr.2020.05.012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
507 Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Adv 2020;10:19089-105. [DOI: 10.1039/d0ra02801k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
508 Maksoudian C, Saffarzadeh N, Hesemans E, Dekoning N, Buttiens K, Soenen SJ. Role of inorganic nanoparticle degradation in cancer therapy. Nanoscale Adv 2020;2:3734-63. [DOI: 10.1039/d0na00286k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
509 Zhao M, van Straten D, Broekman MLD, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020;10:1355-72. [PMID: 31938069 DOI: 10.7150/thno.38147] [Cited by in Crossref: 84] [Cited by in F6Publishing: 90] [Article Influence: 42.0] [Reference Citation Analysis]
510 Chen Z, Yu H, Lu W, Shen J, Wang Y, Wang Y. Bone-Seeking Albumin-Nanomedicine for In Vivo Imaging and Therapeutic Monitoring. ACS Biomater Sci Eng 2020;6:647-53. [PMID: 33463196 DOI: 10.1021/acsbiomaterials.9b01195] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
511 Pant K, Neuber C, Zarschler K, Wodtke J, Meister S, Haag R, Pietzsch J, Stephan H. Active Targeting of Dendritic Polyglycerols for Diagnostic Cancer Imaging. Small 2020;16:1905013. [DOI: 10.1002/smll.201905013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
512 La-Beck NM, Liu X, Shmeeda H, Shudde C, Gabizon AA. Repurposing amino-bisphosphonates by liposome formulation for a new role in cancer treatment. Semin Cancer Biol 2021;68:175-85. [PMID: 31874280 DOI: 10.1016/j.semcancer.2019.12.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
513 Orienti I, Nguyen F, Guan P, Kolla V, Calonghi N, Farruggia G, Chorny M, Brodeur GM. A Novel Nanomicellar Combination of Fenretinide and Lenalidomide Shows Marked Antitumor Activity in a Neuroblastoma Xenograft Model. Drug Des Devel Ther 2019;13:4305-19. [PMID: 31908416 DOI: 10.2147/DDDT.S221909] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
514 Xiang Y, Chen L, Li L, Huang Y. Restoration and Enhancement of Immunogenic Cell Death of Cisplatin by Coadministration with Digoxin and Conjugation to HPMA Copolymer. ACS Appl Mater Interfaces 2020;12:1606-16. [PMID: 31804065 DOI: 10.1021/acsami.9b19323] [Cited by in Crossref: 8] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
515 Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 2019;12:137. [PMID: 31847897 DOI: 10.1186/s13045-019-0833-3] [Cited by in Crossref: 42] [Cited by in F6Publishing: 88] [Article Influence: 14.0] [Reference Citation Analysis]
516 Williford JM, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell TM, Potin L, Swartz MA, Hubbell JA. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv 2019;5:eaay1357. [PMID: 31844672 DOI: 10.1126/sciadv.aay1357] [Cited by in Crossref: 28] [Cited by in F6Publishing: 51] [Article Influence: 9.3] [Reference Citation Analysis]
517 Xu J, He M, Hou X, Wang Y, Shou C, Cai X, Yuan Z, Yin Y, Lan M, Lou K, Zhao Y, Yang Y, Chen X, Gao F. Safe and Efficacious Diphtheria Toxin-Based Treatment for Melanoma: Combination of a Light-On Gene-Expression System and Nanotechnology. Mol Pharm 2020;17:301-15. [PMID: 31765570 DOI: 10.1021/acs.molpharmaceut.9b01038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
518 Pasut G. Grand Challenges in Nano-Based Drug Delivery. front med technol 2019;1:1. [DOI: 10.3389/fmedt.2019.00001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
519 Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. Adv Mater 2019;31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Cited by in Crossref: 69] [Cited by in F6Publishing: 68] [Article Influence: 23.0] [Reference Citation Analysis]
520 Neumann PR, Crossley DL, Turner M, Ingleson M, Green M, Rao J, Dailey LA. In Vivo Optical Performance of a New Class of Near-Infrared-Emitting Conjugated Polymers: Borylated PF8-BT. ACS Appl Mater Interfaces 2019;11:46525-35. [DOI: 10.1021/acsami.9b17022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
521 d'Angelo M, Castelli V, Benedetti E, Antonosante A, Catanesi M, Dominguez-Benot R, Pitari G, Ippoliti R, Cimini A. Theranostic Nanomedicine for Malignant Gliomas. Front Bioeng Biotechnol 2019;7:325. [PMID: 31799246 DOI: 10.3389/fbioe.2019.00325] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
522 Zhang HT, Sun J, Yan Y, Cui SH, Wang H, Wang CH, Qiu C, Chen X, Ding JS, Qian HG, Wang JC, Zhang Q. Encapsulated microRNA by gemcitabine prodrug for cancer treatment. J Control Release 2019;316:317-30. [PMID: 31733293 DOI: 10.1016/j.jconrel.2019.11.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
523 Zhang X, Zhang T, Ma X, Wang Y, Lu Y, Jia D, Huang X, Chen J, Xu Z, Wen F. The design and synthesis of dextran-doxorubicin prodrug-based pH-sensitive drug delivery system for improving chemotherapy efficacy. Asian J Pharm Sci 2020;15:605-16. [PMID: 33193863 DOI: 10.1016/j.ajps.2019.10.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
524 Dhaliwal A, Zheng G. Improving accessibility of EPR-insensitive tumor phenotypes using EPR-adaptive strategies: Designing a new perspective in nanomedicine delivery. Theranostics 2019;9:8091-108. [PMID: 31754383 DOI: 10.7150/thno.37204] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
525 Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics 2019;9:8073-90. [PMID: 31754382 DOI: 10.7150/thno.37198] [Cited by in Crossref: 121] [Cited by in F6Publishing: 129] [Article Influence: 40.3] [Reference Citation Analysis]
526 Liu X, Jiang J, Meng H. Transcytosis - An effective targeting strategy that is complementary to "EPR effect" for pancreatic cancer nano drug delivery. Theranostics 2019;9:8018-25. [PMID: 31754378 DOI: 10.7150/thno.38587] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 17.3] [Reference Citation Analysis]
527 Mascheroni L, Dozzi MV, Ranucci E, Ferruti P, Francia V, Salvati A, Maggioni D. Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy. Inorg Chem 2019;58:14586-99. [DOI: 10.1021/acs.inorgchem.9b02245] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
528 Lim S, Park J, Shim MK, Um W, Yoon HY, Ryu JH, Lim DK, Kim K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics 2019;9:7906-23. [PMID: 31695807 DOI: 10.7150/thno.38425] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 17.7] [Reference Citation Analysis]
529 Huang X, Deng G, Han Y, Yang G, Zou R, Zhang Z, Sun S, Hu J. Right Cu2- x S@MnS Core-Shell Nanoparticles as a Photo/H2O2-Responsive Platform for Effective Cancer Theranostics. Adv Sci (Weinh) 2019;6:1901461. [PMID: 31637173 DOI: 10.1002/advs.201901461] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
530 Wang Y, Liu H, Yao D, Li J, Yang S, Zhang C, Chen W, Wang D. 18F-labeled magnetic nanoparticles for monitoring anti-angiogenic therapeutic effects in breast cancer xenografts. J Nanobiotechnology 2019;17:105. [PMID: 31604441 DOI: 10.1186/s12951-019-0534-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
531 Chen J, Yang Q, Liu M, Lin M, Wang T, Zhang Z, Zhong X, Guo N, Lu Y, Xu J, Wang C, Han M, Wei Q. Remarkable Boron Delivery Of iRGD-Modified Polymeric Nanoparticles For Boron Neutron Capture Therapy. Int J Nanomedicine 2019;14:8161-77. [PMID: 31632025 DOI: 10.2147/IJN.S214224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
532 Geng Y, Zhong Y, Zhou Q, Chen S, Piao Y, Yin W, Lu H, Shen Y. A neutral water-soluble mitochondria-targeting polymer. Chem Commun (Camb) 2019;55:10015-8. [PMID: 31378791 DOI: 10.1039/c9cc04291a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
533 Zhang Z, Wang F, Chen X. Recent advances in the development of polydiacetylene-based biosensors. Chinese Chemical Letters 2019;30:1745-57. [DOI: 10.1016/j.cclet.2019.08.035] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
534 Moosavian SA, Bianconi V, Pirro M, Sahebkar A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin Cancer Biol 2021;69:337-48. [PMID: 31585213 DOI: 10.1016/j.semcancer.2019.09.025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
535 Wu P, Yin D, Liu J, Zhou H, Guo M, Liu J, Liu Y, Wang X, Liu Y, Chen C. Cell membrane based biomimetic nanocomposites for targeted therapy of drug resistant EGFR-mutated lung cancer. Nanoscale 2019;11:19520-8. [PMID: 31573595 DOI: 10.1039/c9nr05791a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
536 Bjornsti MA, Kaufmann SH. Topoisomerases and cancer chemotherapy: recent advances and unanswered questions. F1000Res. 2019;8. [PMID: 31602296 DOI: 10.12688/f1000research.20201.1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
537 Arshad U, Sutton PA, Ashford MB, Treacher KE, Liptrott NJ, Rannard SP, Goldring CE, Owen A. Critical considerations for targeting colorectal liver metastases with nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1588. [PMID: 31566913 DOI: 10.1002/wnan.1588] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
538 Goel S, Ferreira CA, Dogra P, Yu B, Kutyreff CJ, Siamof CM, Engle JW, Barnhart TE, Cristini V, Wang Z, Cai W. Size-Optimized Ultrasmall Porous Silica Nanoparticles Depict Vasculature-Based Differential Targeting in Triple Negative Breast Cancer. Small 2019;15:e1903747. [PMID: 31565854 DOI: 10.1002/smll.201903747] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
539 Sevastre A, Horescu C, Carina Baloi S, Cioc CE, Vatu BI, Tuta C, Artene SA, Danciulescu MM, Tudorache S, Dricu A. Benefits of Nanomedicine for Therapeutic Intervention in Malignant Diseases. Coatings 2019;9:628. [DOI: 10.3390/coatings9100628] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
540 Zaritski A, Castillo-ecija H, Kumarasamy M, Peled E, Sverdlov Arzi R, Carcaboso ÁM, Sosnik A. Selective Accumulation of Galactomannan Amphiphilic Nanomaterials in Pediatric Solid Tumor Xenografts Correlates with GLUT1 Gene Expression. ACS Appl Mater Interfaces 2019;11:38483-96. [DOI: 10.1021/acsami.9b12682] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
541 Simpson JD, Smith SA, Thurecht KJ, Such G. Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio-Nano Interface. Polymers (Basel) 2019;11:E1441. [PMID: 31480780 DOI: 10.3390/polym11091441] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
542 Lutz H, Hu S, Dinh P, Cheng K. Cells and cell derivatives as drug carriers for targeted delivery. Medicine in Drug Discovery 2019;3:100014. [DOI: 10.1016/j.medidd.2020.100014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
543 Zhang D, Zhang J, Li Q, Song A, Li Z, Luan Y. Cold to Hot: Rational Design of a Minimalist Multifunctional Photo-immunotherapy Nanoplatform toward Boosting Immunotherapy Capability. ACS Appl Mater Interfaces 2019;11:32633-46. [PMID: 31429272 DOI: 10.1021/acsami.9b09568] [Cited by in Crossref: 32] [Cited by in F6Publishing: 48] [Article Influence: 10.7] [Reference Citation Analysis]
544 Muzzio M, Li J, Yin Z, Delahunty IM, Xie J, Sun S. Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale 2019;11:18946-67. [PMID: 31454005 DOI: 10.1039/c9nr06080d] [Cited by in Crossref: 20] [Cited by in F6Publishing: 29] [Article Influence: 6.7] [Reference Citation Analysis]
545 Fernandes E, Ferreira D, Peixoto A, Freitas R, Relvas-Santos M, Palmeira C, Martins G, Barros A, Santos LL, Sarmento B, Ferreira JA. Glycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic potential. Int J Pharm 2019;570:118646. [PMID: 31465836 DOI: 10.1016/j.ijpharm.2019.118646] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
546 Eroğlu İ, İbrahim M. Liposome-ligand conjugates: a review on the current state of art. J Drug Target 2020;28:225-44. [PMID: 31339374 DOI: 10.1080/1061186X.2019.1648479] [Cited by in Crossref: 15] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
547 Liu C, Ewert KK, Wang N, Li Y, Safinya CR, Qiao W. A multifunctional lipid that forms contrast-agent liposomes with dual-control release capabilities for precise MRI-guided drug delivery. Biomaterials 2019;221:119412. [PMID: 31419656 DOI: 10.1016/j.biomaterials.2019.119412] [Cited by in Crossref: 23] [Cited by in F6Publishing: 37] [Article Influence: 7.7] [Reference Citation Analysis]
548 Yang Y, Liu S, Geng J. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring. Curr Pharm Des 2019;25:2953-68. [PMID: 31362686 DOI: 10.2174/1381612825666190730100051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
549 Wang T, Jiang Y, Chu H, Liu X, Dai Y, Wang D. Doxorubicin and Lovastatin co-delivery liposomes for synergistic therapy of liver cancer. Journal of Drug Delivery Science and Technology 2019;52:452-9. [DOI: 10.1016/j.jddst.2019.04.045] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
550 Deng X, Zhang M, Tan L, Zeng T, Lai X, Geng X, Huang C, Li A, Pan Y, Hu J. Hydrophilic Porous Poly( l ‐Lactic Acid) Nanomembranes: Self‐Assembly, and Anti‐Biofouling and Anti‐Thrombosis Effects. ChemPlusChem 2019;84:989-98. [DOI: 10.1002/cplu.201900256] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
551 Grodzinski P, Kircher M, Goldberg M, Gabizon A. Integrating Nanotechnology into Cancer Care. ACS Nano 2019;13:7370-6. [PMID: 31240914 DOI: 10.1021/acsnano.9b04266] [Cited by in Crossref: 68] [Cited by in F6Publishing: 68] [Article Influence: 22.7] [Reference Citation Analysis]
552 Lee W, Im HJ. Theranostics Based on Liposome: Looking Back and Forward. Nucl Med Mol Imaging 2019;53:242-6. [PMID: 31456856 DOI: 10.1007/s13139-019-00603-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
553 Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Enzyme responsive drug delivery systems in cancer treatment. J Control Release 2019;308:172-89. [PMID: 31295542 DOI: 10.1016/j.jconrel.2019.07.004] [Cited by in Crossref: 61] [Cited by in F6Publishing: 106] [Article Influence: 20.3] [Reference Citation Analysis]
554 Moradi M, Abdolhosseini M, Zarrabi A, johari B. A review on application of Nano-structures and Nano-objects with high potential for managing different aspects of bone malignancies. Nano-Structures & Nano-Objects 2019;19:100348. [DOI: 10.1016/j.nanoso.2019.100348] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
555 Martin JD, Panagi M, Wang C, Khan TT, Martin MR, Voutouri C, Toh K, Papageorgis P, Mpekris F, Polydorou C, Ishii G, Takahashi S, Gotohda N, Suzuki T, Wilhelm ME, Melo VA, Quader S, Norimatsu J, Lanning RM, Kojima M, Stuber MD, Stylianopoulos T, Kataoka K, Cabral H. Dexamethasone Increases Cisplatin-Loaded Nanocarrier Delivery and Efficacy in Metastatic Breast Cancer by Normalizing the Tumor Microenvironment. ACS Nano 2019;13:6396-408. [PMID: 31187975 DOI: 10.1021/acsnano.8b07865] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 18.7] [Reference Citation Analysis]
556 Albarqi HA, Wong LH, Schumann C, Sabei FY, Korzun T, Li X, Hansen MN, Dhagat P, Moses AS, Taratula O, Taratula O. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. ACS Nano 2019;13:6383-95. [PMID: 31082199 DOI: 10.1021/acsnano.8b06542] [Cited by in Crossref: 105] [Cited by in F6Publishing: 96] [Article Influence: 35.0] [Reference Citation Analysis]
557 Torelli MD, Nunn NA, Shenderova OA. A Perspective on Fluorescent Nanodiamond Bioimaging. Small 2019;15:e1902151. [PMID: 31215753 DOI: 10.1002/smll.201902151] [Cited by in Crossref: 24] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
558 Zhao H, Xu J, Huang W, Zhao Y, Yang X. Thermosensitive Nanogels with Cross-Linked Pd(II) Ions for Improving Therapeutic Effects on Platinum-Resistant Cancers via Intratumoral Formation of Hydrogels. Chem Mater 2019;31:5089-103. [DOI: 10.1021/acs.chemmater.9b00986] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
559 Kim KT, Lee JY, Kim DD, Yoon IS, Cho HJ. Recent Progress in the Development of Poly(lactic-co-glycolic acid)-Based Nanostructures for Cancer Imaging and Therapy. Pharmaceutics 2019;11:E280. [PMID: 31197096 DOI: 10.3390/pharmaceutics11060280] [Cited by in Crossref: 40] [Cited by in F6Publishing: 50] [Article Influence: 13.3] [Reference Citation Analysis]
560 Chi J, Jiang Z, Qiao J, Peng Y, Liu W, Han B. Synthesis and anti-metastasis activities of norcantharidin-conjugated carboxymethyl chitosan as a novel drug delivery system. Carbohydrate Polymers 2019;214:80-9. [DOI: 10.1016/j.carbpol.2019.03.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
561 Chi J, Jiang Z, Qiao J, Zhang W, Peng Y, Liu W, Han B. Antitumor evaluation of carboxymethyl chitosan based norcantharidin conjugates against gastric cancer as novel polymer therapeutics. Int J Biol Macromol. 2019;136:1-12. [PMID: 31158420 DOI: 10.1016/j.ijbiomac.2019.05.216] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
562 Kuang Y, Chen H, Chen Z, Wan L, Liu J, Xu Z, Chen X, Jiang B, Li C. Poly(amino acid)/ZnO/mesoporous silica nanoparticle based complex drug delivery system with a charge-reversal property for cancer therapy. Colloids Surf B Biointerfaces 2019;181:461-9. [PMID: 31176118 DOI: 10.1016/j.colsurfb.2019.05.078] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
563 Yin C, Wang S, Ren Q, Shen X, Chen X, Liu Y, Liu S. Radial extracorporeal shock wave promotes the enhanced permeability and retention effect to reinforce cancer nanothermotherapeutics. Science Bulletin 2019;64:679-89. [DOI: 10.1016/j.scib.2019.04.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
564 Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater 2019;4:398-414. [DOI: 10.1038/s41578-019-0108-1] [Cited by in Crossref: 261] [Cited by in F6Publishing: 301] [Article Influence: 87.0] [Reference Citation Analysis]
565 Abello J, Nguyen TDT, Marasini R, Aryal S, Weiss ML. Biodistribution of gadolinium- and near infrared-labeled human umbilical cord mesenchymal stromal cell-derived exosomes in tumor bearing mice. Theranostics 2019;9:2325-45. [PMID: 31149047 DOI: 10.7150/thno.30030] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 15.7] [Reference Citation Analysis]
566 Cai J, Qian K, Zuo X, Yue W, Bian Y, Yang J, Wei J, Zhao W, Qian H, Liu B. PLGA nanoparticle-based docetaxel/LY294002 drug delivery system enhances antitumor activities against gastric cancer. J Biomater Appl 2019;33:1394-406. [DOI: 10.1177/0885328219837683] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
567 Fujii H, Horie S, Sukhbaatar A, Mishra R, Sakamoto M, Mori S, Kodama T. Treatment of false-negative metastatic lymph nodes by a lymphatic drug delivery system with 5-fluorouracil. Cancer Med 2019;8:2241-51. [PMID: 30945479 DOI: 10.1002/cam4.2125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
568 Lu G, Lv C, Bao W, Li F, Zhang F, Zhang L, Wang S, Gao X, Zhao D, Wei W, Xie HY. Antimonene with two-orders-of-magnitude improved stability for high-performance cancer theranostics. Chem Sci 2019;10:4847-53. [PMID: 31183034 DOI: 10.1039/c9sc00324j] [Cited by in Crossref: 20] [Cited by in F6Publishing: 27] [Article Influence: 6.7] [Reference Citation Analysis]
569 Alphandéry E. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology 2019;13:573-96. [PMID: 30938215 DOI: 10.1080/17435390.2019.1572809] [Cited by in Crossref: 29] [Cited by in F6Publishing: 40] [Article Influence: 9.7] [Reference Citation Analysis]
570 Tian J, Guo F, Chen Y, Li Y, Yu B, Li Y. Nanoliposomal formulation encapsulating celecoxib and genistein inhibiting COX-2 pathway and Glut-1 receptors to prevent prostate cancer cell proliferation. Cancer Letters 2019;448:1-10. [DOI: 10.1016/j.canlet.2019.01.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
571 Liu X, Liu C, Zheng Z, Chen S, Pang X, Xiang X, Tang J, Ren E, Chen Y, You M, Wang X, Chen X, Luo W, Liu G, Xia N. Vesicular Antibodies: A Bioactive Multifunctional Combination Platform for Targeted Therapeutic Delivery and Cancer Immunotherapy. Adv Mater 2019;31:e1808294. [PMID: 30848011 DOI: 10.1002/adma.201808294] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
572 Zhao Z, Yao W, Wang N, Liu C, Zhou H, Chen H, Qiao W. Synthesis and evaluation of mono- and multi-hydroxyl low toxicity pH-sensitive cationic lipids for drug delivery. Eur J Pharm Sci 2019;133:69-78. [PMID: 30914360 DOI: 10.1016/j.ejps.2019.03.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
573 Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019;143:134-60. [PMID: 31170428 DOI: 10.1016/j.addr.2019.05.012] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 15.7] [Reference Citation Analysis]
574 Alkilany AM, Zhu L, Weller H, Mews A, Parak WJ, Barz M, Feliu N. Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Adv Drug Deliv Rev 2019;143:22-36. [PMID: 31158406 DOI: 10.1016/j.addr.2019.05.010] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 21.7] [Reference Citation Analysis]
575 Sun X, Zhang J, Yang C, Huang Z, Shi M, Pan S, Hu H, Qiao M, Chen D, Zhao X. Dual-Responsive Size-Shrinking Nanocluster with Hierarchical Disassembly Capability for Improved Tumor Penetration and Therapeutic Efficacy. ACS Appl Mater Interfaces 2019;11:11865-75. [DOI: 10.1021/acsami.8b21580] [Cited by in Crossref: 9] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
576 Su L, Wu Q, Tan L, Huang Z, Fu C, Ren X, Xia N, Chen Z, Ma X, Lan X, Zhang Q, Meng X. High Biocompatible ZIF-8 Coated by ZrO 2 for Chemo-microwave Thermal Tumor Synergistic Therapy. ACS Appl Mater Interfaces 2019;11:10520-31. [DOI: 10.1021/acsami.8b22177] [Cited by in Crossref: 36] [Cited by in F6Publishing: 47] [Article Influence: 12.0] [Reference Citation Analysis]
577 De Silva L, Fu JY, Htar TT, Muniyandy S, Kasbollah A, Wan Kamal WHB, Chuah LH. Characterization, optimization, and in vitro evaluation of Technetium-99m-labeled niosomes. Int J Nanomedicine 2019;14:1101-17. [PMID: 30863048 DOI: 10.2147/IJN.S184912] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
578 Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency. Cancers (Basel) 2019;11:E68. [PMID: 30634580 DOI: 10.3390/cancers11010068] [Cited by in Crossref: 42] [Cited by in F6Publishing: 50] [Article Influence: 14.0] [Reference Citation Analysis]
579 Wang Y, Sun Z, Chen Z, Wu Y, Gu Y, Lin S, Wang Y. In Vivo Photoacoustic/Single-Photon Emission Computed Tomography Imaging for Dynamic Monitoring of Aggregation-Enhanced Photothermal Nanoagents. Anal Chem 2019;91:2128-34. [DOI: 10.1021/acs.analchem.8b04585] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
580 Li M, Du C, Guo N, Teng Y, Meng X, Sun H, Li S, Yu P, Galons H. Composition design and medical application of liposomes. Eur J Med Chem 2019;164:640-53. [PMID: 30640028 DOI: 10.1016/j.ejmech.2019.01.007] [Cited by in Crossref: 114] [Cited by in F6Publishing: 167] [Article Influence: 38.0] [Reference Citation Analysis]
581 Abumanhal-Masarweh H, Koren L, Zinger A, Yaari Z, Krinsky N, Kaneti G, Dahan N, Lupu-Haber Y, Suss-Toby E, Weiss-Messer E, Schlesinger-Laufer M, Shainsky-Roitman J, Schroeder A. Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin. J Control Release 2019;296:1-13. [PMID: 30615983 DOI: 10.1016/j.jconrel.2019.01.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
582 Lammers T. Macro-nanomedicine: Targeting the big picture. Journal of Controlled Release 2019;294:372-5. [DOI: 10.1016/j.jconrel.2018.11.031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
583 Wang S, You Q, Wang J, Song Y, Cheng Y, Wang Y, Yang S, Yang L, Li P, Lu Q, Yu M, Li N. MSOT/CT/MR imaging-guided and hypoxia-maneuvered oxygen self-supply radiotherapy based on one-pot MnO 2 -mSiO 2 @Au nanoparticles. Nanoscale 2019;11:6270-84. [DOI: 10.1039/c9nr00918c] [Cited by in Crossref: 23] [Cited by in F6Publishing: 35] [Article Influence: 7.7] [Reference Citation Analysis]
584 Han X, Gong F, Chi L, Feng C, Sun J, Chen Y, Liu J, Shen Y. Cancer-targeted and glutathione-responsive micellar carriers for controlled delivery of cabazitaxel. Nanotechnology 2019;30:055601. [PMID: 30511654 DOI: 10.1088/1361-6528/aaf020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
585 Kim MW, Kwon SH, Choi JH, Lee A. A Promising Biocompatible Platform: Lipid-Based and Bio-Inspired Smart Drug Delivery Systems for Cancer Therapy. Int J Mol Sci 2018;19:E3859. [PMID: 30518027 DOI: 10.3390/ijms19123859] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
586 Xu W, Qian J, Hou G, Wang Y, Wang J, Sun T, Ji L, Suo A, Yao Y. PEGylated hydrazided gold nanorods for pH-triggered chemo/photodynamic/photothermal triple therapy of breast cancer. Acta Biomater 2018;82:171-83. [PMID: 30336271 DOI: 10.1016/j.actbio.2018.10.019] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
587 El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS Nano 2018;12:10636-64. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Cited by in Crossref: 212] [Cited by in F6Publishing: 206] [Article Influence: 53.0] [Reference Citation Analysis]
588 Moon JJ, Schwendeman SP, Schwendeman A. Guest Editorial Title: Nanomedicine: past, present, and future. Adv Drug Deliv Rev 2018;130:1-2. [PMID: 30146082 DOI: 10.1016/j.addr.2018.07.018] [Reference Citation Analysis]
589 Shi G, Zhong M, Ye F, Zhang X. Low-frequency HIFU induced cancer immunotherapy: tempting challenges and potential opportunities. Cancer Biol Med 2019;16:714-28. [PMID: 31908890 DOI: 10.20892/j.issn.2095-3941.2019.0232] [Cited by in F6Publishing: 6] [Reference Citation Analysis]