BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chiu J, Ernst DM, Keating A. Acquired Natural Killer Cell Dysfunction in the Tumor Microenvironment of Classic Hodgkin Lymphoma. Front Immunol 2018;9:267. [PMID: 29491867 DOI: 10.3389/fimmu.2018.00267] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Csizmar CM, Ansell SM. Engaging the Innate and Adaptive Antitumor Immune Response in Lymphoma. Int J Mol Sci 2021;22:3302. [PMID: 33804869 DOI: 10.3390/ijms22073302] [Reference Citation Analysis]
2 Ferrarini I, Rigo A, Visco C, Krampera M, Vinante F. The Evolving Knowledge on T and NK Cells in Classic Hodgkin Lymphoma: Insights into Novel Subsets Populating the Immune Microenvironment. Cancers (Basel) 2020;12:E3757. [PMID: 33327433 DOI: 10.3390/cancers12123757] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Villani R, Vendemiale G, Serviddio G. Molecular Mechanisms Involved in HCC Recurrence after Direct-Acting Antiviral Therapy. Int J Mol Sci 2018;20:E49. [PMID: 30583555 DOI: 10.3390/ijms20010049] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
4 Ben-Shmuel A, Biber G, Barda-Saad M. Unleashing Natural Killer Cells in the Tumor Microenvironment-The Next Generation of Immunotherapy? Front Immunol 2020;11:275. [PMID: 32153582 DOI: 10.3389/fimmu.2020.00275] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 16.5] [Reference Citation Analysis]
5 Avella Patino DM, Radhakrishnan V, Suvilesh KN, Manjunath Y, Li G, Kimchi ET, Staveley-O'Carroll KF, Warren WC, Kaifi JT, Mitchem JB. Epigenetic Regulation of Cancer Immune Cells. Semin Cancer Biol 2021:S1044-579X(21)00192-9. [PMID: 34182142 DOI: 10.1016/j.semcancer.2021.06.022] [Reference Citation Analysis]
6 Vo DN, Constantinides M, Allende-Vega N, Alexia C, Cartron G, Villalba M. Dissecting the NK Cell Population in Hematological Cancers Confirms the Presence of Tumor Cells and Their Impact on NK Population Function. Vaccines (Basel) 2020;8:E727. [PMID: 33276644 DOI: 10.3390/vaccines8040727] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Hernández-Walias FJ, Vázquez E, Pacheco Y, Rodríguez-Fernández JM, Pérez-Elías MJ, Dronda F, Casado JL, Moreno A, Hermida JM, Quereda C, Hernando A, Tejerina-Picado F, Asensi V, Galindo MJ, Leal M, Moreno S, Vallejo A. Risk, Diagnostic and Predictor Factors for Classical Hodgkin Lymphoma in HIV-1-Infected Individuals: Role of Plasma Exosome-Derived miR-20a and miR-21. J Clin Med 2020;9:E760. [PMID: 32168859 DOI: 10.3390/jcm9030760] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
8 Desai S, Ansell SM. Future directions in Hodgkin lymphoma: checkpoint inhibitors and beyond. Leuk Lymphoma 2021;62:1795-804. [PMID: 33602008 DOI: 10.1080/10428194.2021.1885667] [Reference Citation Analysis]
9 Hurwitz SN, Bagg A. A 2020 Vision Into Hodgkin Lymphoma Biology. Adv Anat Pathol 2020;27:269-77. [PMID: 32482966 DOI: 10.1097/PAP.0000000000000270] [Reference Citation Analysis]
10 Ojo EO, Sharma AA, Liu R, Moreton S, Checkley-Luttge MA, Gupta K, Lee G, Lee DA, Otegbeye F, Sekaly RP, de Lima M, Wald DN. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci Rep 2019;9:14916. [PMID: 31624330 DOI: 10.1038/s41598-019-51287-6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
11 Zhang W, Zhao Z, Li F. Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Molecular Immunology 2022;144:58-70. [DOI: 10.1016/j.molimm.2022.02.015] [Reference Citation Analysis]
12 Valipour B, Velaei K, Abedelahi A, Karimipour M, Darabi M, Charoudeh HN. NK cells: An attractive candidate for cancer therapy. J Cell Physiol 2019;234:19352-65. [DOI: 10.1002/jcp.28657] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
13 Calabretta E, d'Amore F, Carlo-Stella C. Immune and Inflammatory Cells of the Tumor Microenvironment Represent Novel Therapeutic Targets in Classical Hodgkin Lymphoma. Int J Mol Sci 2019;20:E5503. [PMID: 31694167 DOI: 10.3390/ijms20215503] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
14 Juszkiewicz A, Glapa A, Basta P, Petriczko E, Żołnowski K, Machaliński B, Trzeciak J, Łuczkowska K, Skarpańska-Stejnborn A. The effect of L-theanine supplementation on the immune system of athletes exposed to strenuous physical exercise. J Int Soc Sports Nutr 2019;16:7. [PMID: 30770758 DOI: 10.1186/s12970-019-0274-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
15 Chu Y, Lamb M, Cairo MS, Lee DA. The Future of Natural Killer Cell Immunotherapy for B Cell Non-Hodgkin Lymphoma (B Cell NHL). Curr Treat Options Oncol 2022. [PMID: 35258793 DOI: 10.1007/s11864-021-00932-2] [Reference Citation Analysis]
16 Cader FZ, Schackmann RCJ, Hu X, Wienand K, Redd R, Chapuy B, Ouyang J, Paul N, Gjini E, Lipschitz M, Armand P, Wu D, Fromm JR, Neuberg D, Liu XS, Rodig SJ, Shipp MA. Mass cytometry of Hodgkin lymphoma reveals a CD4+ regulatory T-cell-rich and exhausted T-effector microenvironment. Blood 2018;132:825-36. [PMID: 29880615 DOI: 10.1182/blood-2018-04-843714] [Cited by in Crossref: 67] [Cited by in F6Publishing: 66] [Article Influence: 16.8] [Reference Citation Analysis]
17 Albakova Z, Mangasarova Y, Sapozhnikov A. Heat Shock Proteins in Lymphoma Immunotherapy. Front Immunol 2021;12:660085. [PMID: 33815422 DOI: 10.3389/fimmu.2021.660085] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Kerbauy LN, Marin ND, Kaplan M, Banerjee PP, Berrien-Elliott MM, Becker-Hapak M, Basar R, Foster M, Garcia Melo L, Neal CC, McClain E, Daher M, Nunez Cortes AK, Desai S, Inng Lim FW, Mendt MC, Schappe T, Li L, Shaim H, Shanley M, Ensley EL, Uprety N, Wong P, Liu E, Ang SO, Cai R, Nandivada V, Mohanty V, Miao Q, Shen Y, Baran N, Fowlkes NW, Chen K, Muniz-Feliciano L, Champlin RE, Nieto YL, Koch J, Treder M, Fischer W, Okamoto OK, Shpall EJ, Fehniger TA, Rezvani K. Combining AFM13, a Bispecific CD30/CD16 Antibody, with Cytokine-Activated Blood and Cord Blood-Derived NK Cells Facilitates CAR-like Responses Against CD30+ Malignancies. Clin Cancer Res 2021;27:3744-56. [PMID: 33986022 DOI: 10.1158/1078-0432.CCR-21-0164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Gerlach MM, Stelling-Germani A, Ting Wu C, Newrzela S, Döring C, Vela V, Müller A, Hartmann S, Tzankov A. SMAD1 promoter hypermethylation and lack of SMAD1 expression in Hodgkin lymphoma: a potential target for hypomethylating drug therapy. Haematologica 2021;106:619-21. [PMID: 32299904 DOI: 10.3324/haematol.2020.249276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Sanchez CE, Dowlati EP, Geiger AE, Chaudhry K, Tovar MA, Bollard CM, Cruz CRY. NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplant Cell Ther 2021;27:21-35. [PMID: 33007496 DOI: 10.1016/j.bbmt.2020.09.030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Khurana A, Ansell SM. Role of Microenvironment in Non-Hodgkin Lymphoma: Understanding the Composition and Biology. Cancer J 2020;26:206-16. [PMID: 32496454 DOI: 10.1097/PPO.0000000000000446] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Tan GW, Visser L, Tan LP, van den Berg A, Diepstra A. The Microenvironment in Epstein-Barr Virus-Associated Malignancies. Pathogens 2018;7:E40. [PMID: 29652813 DOI: 10.3390/pathogens7020040] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
23 Zeng Q, Gupta A, Xin L, Poon M, Schwarz H. Plasma Factors for the Differentiation of Hodgkin's Lymphoma and Diffused Large B Cell Lymphoma and for Monitoring Remission. J Hematol 2019;8:47-54. [PMID: 32300443 DOI: 10.14740/jh499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Carreau NA, Diefenbach CS. Immune targeting of the microenvironment in classical Hodgkin's lymphoma: insights for the hematologist. Ther Adv Hematol 2019;10:2040620719846451. [PMID: 31105921 DOI: 10.1177/2040620719846451] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
25 Hu Y, Tian Z, Zhang C. Natural Killer Cell-Based Immunotherapy for Cancer: Advances and Prospects. Engineering 2019;5:106-14. [DOI: 10.1016/j.eng.2018.11.015] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 5.3] [Reference Citation Analysis]
26 Vela-Ojeda J, Perez-Retiguin FDC, Olivas-Bejarano AC, Garcia-Ruiz Esparza MA, Garcia-Chavez J, Majluf-Cruz A, Reyes-Maldonado E, Montiel-Cervantes LA. Clinical relevance of NKT cells and soluble MIC-A in Hodgkin lymphoma. Leuk Lymphoma 2021;62:801-9. [PMID: 33284055 DOI: 10.1080/10428194.2020.1852473] [Reference Citation Analysis]
27 Lamb MG, Rangarajan HG, Tullius BP, Lee DA. Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Res Ther 2021;12:211. [PMID: 33766099 DOI: 10.1186/s13287-021-02277-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
28 Liu Y, Huang R, Liu L, Meng Y, Liu X. Epigenetic abnormalities of classical Hodgkin lymphoma and its effect on immune escape. Cell Biochem Funct 2020;38:242-8. [PMID: 31709594 DOI: 10.1002/cbf.3463] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 M A, Chatterjee S, A P, S M, Davuluri S, Ar AK, T A, M P, Cs P, Sinha M, Chugani A, R VP, Kk A, R S J. Natural Killer cell transcriptome during primary EBV infection and EBV associated Hodgkin Lymphoma in children-A preliminary observation. Immunobiology 2020;225:151907. [PMID: 32044149 DOI: 10.1016/j.imbio.2020.151907] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Henry M, Buck S, Al-Qanber B, Gadgeel M, Savaşan S. Lymphocyte HLA-DR/CD-38 co-expression correlates with Hodgkin lymphoma cell cytotoxicity in vitro independent of PD-1/PD1-L pathway. Leuk Lymphoma 2022;:1-8. [PMID: 35001800 DOI: 10.1080/10428194.2021.2023744] [Reference Citation Analysis]
31 Marofi F, Al-Awad AS, Sulaiman Rahman H, Markov A, Abdelbasset WK, Ivanovna Enina Y, Mahmoodi M, Hassanzadeh A, Yazdanifar M, Stanley Chartrand M, Jarahian M. CAR-NK Cell: A New Paradigm in Tumor Immunotherapy. Front Oncol 2021;11:673276. [PMID: 34178661 DOI: 10.3389/fonc.2021.673276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Ernst D, Williams BA, Wang XH, Yoon N, Kim KP, Chiu J, Luo ZJ, Hermans KG, Krueger J, Keating A. Humanized anti-CD123 antibody facilitates NK cell antibody-dependent cell-mediated cytotoxicity (ADCC) of Hodgkin lymphoma targets via ARF6/PLD-1. Blood Cancer J 2019;9:6. [PMID: 30647406 DOI: 10.1038/s41408-018-0168-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
33 Kumar D, Xu ML. Microenvironment Cell Contribution to Lymphoma Immunity. Front Oncol 2018;8:288. [PMID: 30101129 DOI: 10.3389/fonc.2018.00288] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
34 Bugide S, Janostiak R, Wajapeyee N. Epigenetic Mechanisms Dictating Eradication of Cancer by Natural Killer Cells. Trends Cancer 2018;4:553-66. [PMID: 30064663 DOI: 10.1016/j.trecan.2018.06.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
35 Suarez-Kelly LP, Sun SH, Ren C, Rampersaud IV, Albertson D, Duggan MC, Noel TC, Courtney N, Buteyn NJ, Moritz C, Yu L, Yildiz VO, Butchar JP, Tridandapani S, Rampersaud AA, Carson WE 3rd. Antibody Conjugation of Fluorescent Nanodiamonds for Targeted Innate Immune Cell Activation. ACS Appl Nano Mater 2021;4:3122-39. [PMID: 34027313 DOI: 10.1021/acsanm.1c00256] [Reference Citation Analysis]
36 Carbone A, Gloghini A, Pruneri G, Dolcetti R. Optimizing checkpoint inhibitors therapy for relapsed or progressive classic Hodgkin lymphoma by multiplex immunohistochemistry of the tumor microenvironment. Cancer Med 2019;8:3012-6. [PMID: 31070022 DOI: 10.1002/cam4.2168] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Jia T, Zhu HY, Wang L, Liang JH, Cao L, Xia Y, Wu JZ, Wu W, Fan L, Li JY, Xu W. [The prognostic significance of peripheral lymphocyte/monocyte ratio and PET-2 evaluation in adult Hodgkin's lymphoma]. Zhonghua Xue Ye Xue Za Zhi 2019;40:372-7. [PMID: 31207700 DOI: 10.3760/cma.j.issn.0253-2727.2019.05.005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Ehlers FAI, Mahaweni NM, Olieslagers TI, Bos GMJ, Wieten L. Activated Natural Killer Cells Withstand the Relatively Low Glucose Concentrations Found in the Bone Marrow of Multiple Myeloma Patients. Front Oncol 2021;11:622896. [PMID: 34094908 DOI: 10.3389/fonc.2021.622896] [Reference Citation Analysis]