BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rosenfeld CS. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures.Front Cell Infect Microbiol. 2017;7:396. [PMID: 28936425 DOI: 10.3389/fcimb.2017.00396] [Cited by in Crossref: 78] [Cited by in F6Publishing: 72] [Article Influence: 19.5] [Reference Citation Analysis]
Number Citing Articles
1 Laue HE, Moroishi Y, Jackson BP, Palys TJ, Madan JC, Karagas MR. Nutrient-toxic element mixtures and the early postnatal gut microbiome in a United States longitudinal birth cohort. Environ Int 2020;138:105613. [PMID: 32142916 DOI: 10.1016/j.envint.2020.105613] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
2 Kaur H, Moreau R. Role of mTORC1 in intestinal epithelial repair and tumorigenesis. Cell Mol Life Sci 2019;76:2525-46. [DOI: 10.1007/s00018-019-03085-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
3 Alagiakrishnan K, Halverson T. Holistic perspective of the role of gut microbes in diabetes mellitus and its management. World J Diabetes 2021; 12(9): 1463-1478 [PMID: 34630900 DOI: 10.4239/wjd.v12.i9.1463] [Reference Citation Analysis]
4 Hoffman DJ, Powell TL, Barrett ES, Hardy DB. Developmental origins of metabolic diseases. Physiol Rev 2021;101:739-95. [PMID: 33270534 DOI: 10.1152/physrev.00002.2020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
5 Zhu SQ, Liu J, Han B, Zhao WP, Zhou BH, Zhao J, Wang HW. Fluoride exposure cause colon microbiota dysbiosis by destroyed microenvironment and disturbed antimicrobial peptides expression in colon. Environ Pollut 2022;292:118381. [PMID: 34673156 DOI: 10.1016/j.envpol.2021.118381] [Reference Citation Analysis]
6 Laue HE, Brennan KJM, Gillet V, Abdelouahab N, Coull BA, Weisskopf MG, Burris HH, Zhang W, Takser L, Baccarelli AA. Associations of prenatal exposure to polybrominated diphenyl ethers and polychlorinated biphenyls with long-term gut microbiome structure: a pilot study. Environ Epidemiol 2019;3:e039. [PMID: 30778401 DOI: 10.1097/EE9.0000000000000039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
7 Sargis RM, Heindel JJ, Padmanabhan V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Front Endocrinol (Lausanne) 2019;10:33. [PMID: 30778334 DOI: 10.3389/fendo.2019.00033] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
8 Cerqueda-García D, Améndola-Pimenta M, Zamora-Briseño JA, González-Penagos CE, Árcega-Cabrera F, Ceja-Moreno V, Rodríguez-Canul R. Effects of chronic exposure to water accommodated fraction (WAF) of light crude oil on gut microbiota composition of the lined sole (Achirus lineatus). Mar Environ Res 2020;161:105116. [PMID: 32861142 DOI: 10.1016/j.marenvres.2020.105116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Flannery JE, Stagaman K, Burns AR, Hickey RJ, Roos LE, Giuliano RJ, Fisher PA, Sharpton TJ. Gut Feelings Begin in Childhood: the Gut Metagenome Correlates with Early Environment, Caregiving, and Behavior. mBio 2020;11:e02780-19. [PMID: 31964729 DOI: 10.1128/mBio.02780-19] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
10 Street ME, Audouze K, Legler J, Sone H, Palanza P. Endocrine Disrupting Chemicals: Current Understanding, New Testing Strategies and Future Research Needs. Int J Mol Sci 2021;22:933. [PMID: 33477789 DOI: 10.3390/ijms22020933] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Kyrila G, Katsoulas A, Schoretsaniti V, Rigopoulos A, Rizou E, Doulgeridou S, Sarli V, Samanidou V, Touraki M. Bisphenol A removal and degradation pathways in microorganisms with probiotic properties. J Hazard Mater 2021;413:125363. [PMID: 33592490 DOI: 10.1016/j.jhazmat.2021.125363] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
12 Hampl R, Stárka L. Endocrine disruptors and gut microbiome interactions.Physiol Res. 2020;69:S211-S223. [PMID: 33094620 DOI: 10.33549/physiolres.934513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Nair N, Austin C, Curtin P, Gouveia C, Arora M, Torres J, Dubinsky M, Colombel J, Peter I. Association Between Early-life Exposures and Inflammatory Bowel Diseases, Based on Analyses of Deciduous Teeth. Gastroenterology 2020;159:383-5. [DOI: 10.1053/j.gastro.2020.03.040] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
14 Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020;210:107523. [PMID: 32165138 DOI: 10.1016/j.pharmthera.2020.107523] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 37.0] [Reference Citation Analysis]
15 García-Peñarrubia P, Ruiz-Alcaraz AJ, Martínez-Esparza M, Marín P, Machado-Linde F. Hypothetical roadmap towards endometriosis: prenatal endocrine-disrupting chemical pollutant exposure, anogenital distance, gut-genital microbiota and subclinical infections. Hum Reprod Update 2020;26:214-46. [PMID: 32108227 DOI: 10.1093/humupd/dmz044] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 19.0] [Reference Citation Analysis]
16 Howard SG. Developmental Exposure to Endocrine Disrupting Chemicals and Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2018;9:513. [PMID: 30233498 DOI: 10.3389/fendo.2018.00513] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
17 Calatayud Arroyo M, García Barrera T, Callejón Leblic B, Arias Borrego A, Collado MC. A review of the impact of xenobiotics from dietary sources on infant health: Early life exposures and the role of the microbiota. Environ Pollut 2021;269:115994. [PMID: 33310490 DOI: 10.1016/j.envpol.2020.115994] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Boraschi D, Alijagic A, Auguste M, Barbero F, Ferrari E, Hernadi S, Mayall C, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Swartzwelter BJ, Bastús NG, Canesi L, Drobne D, Duschl A, Ewart MA, Horejs-Hoeck J, Italiani P, Kemmerling B, Kille P, Prochazkova P, Puntes VF, Spurgeon DJ, Svendsen C, Wilde CJ, Pinsino A. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small 2020;16:e2000598. [PMID: 32363795 DOI: 10.1002/smll.202000598] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
19 Zhai Q, Cen S, Jiang J, Zhao J, Zhang H, Chen W. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children. Environmental Research 2019;171:501-9. [DOI: 10.1016/j.envres.2019.01.060] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 18.0] [Reference Citation Analysis]
20 Gillingham MAF, Borghesi F, Montero BK, Migani F, Béchet A, Rendón-Martos M, Amat JA, Dinelli E, Sommer S. Bioaccumulation of trace elements affects chick body condition and gut microbiome in greater flamingos. Sci Total Environ 2021;761:143250. [PMID: 33248770 DOI: 10.1016/j.scitotenv.2020.143250] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 2020;34:101475. [PMID: 32336668 DOI: 10.1016/j.redox.2020.101475] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 28.0] [Reference Citation Analysis]
22 Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020;98:29-60. [PMID: 32682780 DOI: 10.1016/j.reprotox.2020.05.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
23 Améndola-Pimenta M, Cerqueda-García D, Zamora-Briseño JA, Couoh-Puga D, Montero-Muñoz J, Árcega-Cabrera F, Ceja-Moreno V, Pérez-Vega JA, García-Maldonado JQ, Del Río-García M, Zapata-Pérez O, Rodríguez-Canul R. Toxicity evaluation and microbiota response of the lined sole Achirus lineatus (Chordata: Achiridae) exposed to the light petroleum water-accommodated fraction (WAF). J Toxicol Environ Health A 2020;83:313-29. [PMID: 32378477 DOI: 10.1080/15287394.2020.1758861] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
24 Motiei A, Brindefalk B, Ogonowski M, El-Shehawy R, Pastuszek P, Ek K, Liewenborg B, Udekwu K, Gorokhova E. Disparate effects of antibiotic-induced microbiome change and enhanced fitness in Daphnia magna. PLoS One 2020;15:e0214833. [PMID: 31899775 DOI: 10.1371/journal.pone.0214833] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
25 Zheng P, Zhang B, Zhang K, Lv X, Wang Q, Bai X. The Impact of Air Pollution on Intestinal Microbiome of Asthmatic Children: A Panel Study. Biomed Res Int 2020;2020:5753427. [PMID: 33204702 DOI: 10.1155/2020/5753427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Zheng R, Chen X, Ren C, Teng Y, Shen Y, Wu M, Wang H, Huang M. Comparison of the characteristics of intestinal microbiota response in Bufo gargarizans tadpoles: Exposure to the different environmental chemicals (Cu, Cr, Cd and NO3–N). Chemosphere 2020;247:125925. [DOI: 10.1016/j.chemosphere.2020.125925] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
27 Poh TY, Ali NABM, Mac Aogáin M, Kathawala MH, Setyawati MI, Ng KW, Chotirmall SH. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part Fibre Toxicol 2018;15:46. [PMID: 30458822 DOI: 10.1186/s12989-018-0282-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 9.3] [Reference Citation Analysis]
28 Swart E, Goodall T, Kille P, Spurgeon DJ, Svendsen C. The earthworm microbiome is resilient to exposure to biocidal metal nanoparticles. Environ Pollut 2020;267:115633. [PMID: 33254656 DOI: 10.1016/j.envpol.2020.115633] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
29 Gillois K, Lévêque M, Théodorou V, Robert H, Mercier-Bonin M. Mucus: An Underestimated Gut Target for Environmental Pollutants and Food Additives. Microorganisms 2018;6:E53. [PMID: 29914144 DOI: 10.3390/microorganisms6020053] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
30 Khan MF, Wang H. Environmental Exposures and Autoimmune Diseases: Contribution of Gut Microbiome. Front Immunol 2019;10:3094. [PMID: 31998327 DOI: 10.3389/fimmu.2019.03094] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
31 Raval U, Harary JM, Zeng E, Pasinetti GM. The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders. Expert Rev Neurother 2020;20:673-86. [PMID: 32459513 DOI: 10.1080/14737175.2020.1775585] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
32 Lei M, Menon R, Manteiga S, Alden N, Hunt C, Alaniz RC, Lee K, Jayaraman A. Environmental Chemical Diethylhexyl Phthalate Alters Intestinal Microbiota Community Structure and Metabolite Profile in Mice. mSystems 2019;4:e00724-19. [PMID: 31822602 DOI: 10.1128/mSystems.00724-19] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
33 Liberti A, Natarajan O, Atkinson CGF, Sordino P, Dishaw LJ. Reflections on the Use of an Invertebrate Chordate Model System for Studies of Gut Microbial Immune Interactions. Front Immunol 2021;12:642687. [PMID: 33717199 DOI: 10.3389/fimmu.2021.642687] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Bolan S, Seshadri B, Keely S, Kunhikrishnan A, Bruce J, Grainge I, Talley NJ, Naidu R. Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability. Sci Rep 2021;11:14675. [PMID: 34282255 DOI: 10.1038/s41598-021-94174-9] [Reference Citation Analysis]
35 Wang W, Zhou J, Chen M, Huang X, Xie X, Li W, Cao Q, Kan H, Xu Y, Ying Z. Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model. Part Fibre Toxicol 2018;15:17. [PMID: 29665823 DOI: 10.1186/s12989-018-0252-6] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 15.3] [Reference Citation Analysis]
36 Padmanabhan V, Moeller J, Puttabyatappa M. Impact of gestational exposure to endocrine disrupting chemicals on pregnancy and birth outcomes. Adv Pharmacol 2021;92:279-346. [PMID: 34452689 DOI: 10.1016/bs.apha.2021.04.004] [Reference Citation Analysis]
37 Paciência I, Cavaleiro Rufo J. Urban-level environmental factors related to pediatric asthma. Porto Biomed J 2020;5:e57. [PMID: 33299939 DOI: 10.1097/j.pbj.0000000000000057] [Reference Citation Analysis]
38 das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2020;49:5058-100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
39 Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021;42:295-353. [PMID: 33388776 DOI: 10.1210/endrev/bnaa035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Hsu CN, Tain YL. Adverse Impact of Environmental Chemicals on Developmental Origins of Kidney Disease and Hypertension. Front Endocrinol (Lausanne) 2021;12:745716. [PMID: 34721300 DOI: 10.3389/fendo.2021.745716] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Liu P, Li R, Tian X, Zhao Y, Li M, Wang M, Ying X, Yuan J, Xie J, Yan X, Lyu Y, Wei C, Qiu Y, Tian F, Zhao Q, Yan X. Co-exposure to fluoride and arsenic disrupts intestinal flora balance and induces testicular autophagy in offspring rats. Ecotoxicol Environ Saf 2021;222:112506. [PMID: 34265531 DOI: 10.1016/j.ecoenv.2021.112506] [Reference Citation Analysis]
42 Brila I, Lavrinienko A, Tukalenko E, Ecke F, Rodushkin I, Kallio ER, Mappes T, Watts PC. Low-level environmental metal pollution is associated with altered gut microbiota of a wild rodent, the bank vole (Myodes glareolus). Sci Total Environ 2021;790:148224. [PMID: 34380250 DOI: 10.1016/j.scitotenv.2021.148224] [Reference Citation Analysis]
43 Dahiya DK, Renuka, Puniya AK. Impact of nanosilver on gut microbiota: a vulnerable link. Future Microbiology 2018;13:483-92. [DOI: 10.2217/fmb-2017-0103] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
44 Liu Y, Wang T, Si B, Du H, Liu Y, Waqas A, Huang S, Zhao G, Chen S, Xu A. Intratracheally instillated diesel PM2.5 significantly altered the structure and composition of indigenous murine gut microbiota. Ecotoxicol Environ Saf 2021;210:111903. [PMID: 33429322 DOI: 10.1016/j.ecoenv.2021.111903] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Yu Z, Shi Z, Zheng Z, Han J, Yang W, Lu R, Lin W, Zheng Y, Nie D, Chen G. DEHP induce cholesterol imbalance via disturbing bile acid metabolism by altering the composition of gut microbiota in rats. Chemosphere 2021;263:127959. [PMID: 32814133 DOI: 10.1016/j.chemosphere.2020.127959] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
46 Prabhu VR, Wasimuddin, Kamalakkannan R, Arjun MS, Nagarajan M. Consequences of Domestication on Gut Microbiome: A Comparative Study Between Wild Gaur and Domestic Mithun. Front Microbiol 2020;11:133. [PMID: 32158434 DOI: 10.3389/fmicb.2020.00133] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
47 Fang S, Chen X, Zhou L, Wang C, Chen Q, Lin R, Xiao T, Gan Q. Faecal microbiota and functional capacity associated with weaning weight in meat rabbits. Microb Biotechnol 2019;12:1441-52. [PMID: 31571427 DOI: 10.1111/1751-7915.13485] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
48 Swartzwelter BJ, Fux AC, Johnson L, Swart E, Hofer S, Hofstätter N, Geppert M, Italiani P, Boraschi D, Duschl A, Himly M. The Impact of Nanoparticles on Innate Immune Activation by Live Bacteria. Int J Mol Sci 2020;21:E9695. [PMID: 33353206 DOI: 10.3390/ijms21249695] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
49 Diamante G, Cely I, Zamora Z, Ding J, Blencowe M, Lang J, Bline A, Singh M, Lusis AJ, Yang X. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. Environ Int 2021;146:106260. [PMID: 33221593 DOI: 10.1016/j.envint.2020.106260] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
50 Li XD, Xin L, Rong WT, Liu XY, Deng WA, Qin YC, Li XL. Effect of heavy metals pollution on the composition and diversity of the intestinal microbial community of a pygmy grasshopper (Eucriotettix oculatus). Ecotoxicol Environ Saf 2021;223:112582. [PMID: 34365209 DOI: 10.1016/j.ecoenv.2021.112582] [Reference Citation Analysis]
51 Aguilera M, Gálvez-Ontiveros Y, Rivas A. Endobolome, a New Concept for Determining the Influence of Microbiota Disrupting Chemicals (MDC) in Relation to Specific Endocrine Pathogenesis. Front Microbiol 2020;11:578007. [PMID: 33329442 DOI: 10.3389/fmicb.2020.578007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
52 Lyon-Caen S, Siroux V, Lepeule J, Lorimier P, Hainaut P, Mossuz P, Quentin J, Supernant K, Meary D, Chaperot L, Bayat S, Cassee F, Valentino S, Couturier-Tarrade A, Rousseau-Ralliard D, Chavatte-Palmer P, Philippat C, Pin I, Slama R, Study Group TS. Deciphering the Impact of Early-Life Exposures to Highly Variable Environmental Factors on Foetal and Child Health: Design of SEPAGES Couple-Child Cohort. Int J Environ Res Public Health 2019;16:E3888. [PMID: 31615055 DOI: 10.3390/ijerph16203888] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
53 Duperron S, Halary S, Gallet A, Marie B. Microbiome-Aware Ecotoxicology of Organisms: Relevance, Pitfalls, and Challenges. Front Public Health 2020;8:407. [PMID: 32974256 DOI: 10.3389/fpubh.2020.00407] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
54 Li X, Sun Y, An Y, Wang R, Lin H, Liu M, Li S, Ma M, Xiao C. Air pollution during the winter period and respiratory tract microbial imbalance in a healthy young population in Northeastern China. Environ Pollut 2019;246:972-9. [PMID: 31126003 DOI: 10.1016/j.envpol.2018.12.083] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
55 Yu L, Duan H, Kellingray L, Cen S, Tian F, Zhao J, Zhang H, Gall GL, Mayer MJ, Zhai Q, Chen W, Narbad A. Lactobacillus plantarum-Mediated Regulation of Dietary Aluminum Induces Changes in the Human Gut Microbiota: an In Vitro Colonic Fermentation Study. Probiotics Antimicrob Proteins 2021;13:398-412. [PMID: 32712897 DOI: 10.1007/s12602-020-09677-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Ndeh D, Gilbert HJ. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 2018;42:146-64. [PMID: 29325042 DOI: 10.1093/femsre/fuy002] [Cited by in Crossref: 86] [Cited by in F6Publishing: 76] [Article Influence: 28.7] [Reference Citation Analysis]
57 Dohlman AB, Shen X. Mapping the microbial interactome: Statistical and experimental approaches for microbiome network inference. Exp Biol Med (Maywood) 2019;244:445-58. [PMID: 30880449 DOI: 10.1177/1535370219836771] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
58 Behr C, Sperber S, Jiang X, Strauss V, Kamp H, Walk T, Herold M, Beekmann K, Rietjens I, van Ravenzwaay B. Microbiome-related metabolite changes in gut tissue, cecum content and feces of rats treated with antibiotics. Toxicology and Applied Pharmacology 2018;355:198-210. [DOI: 10.1016/j.taap.2018.06.028] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
59 Adler CJ, Cao KL, Hughes T, Kumar P, Austin C. How does the early life environment influence the oral microbiome and determine oral health outcomes in childhood? Bioessays 2021;:e2000314. [PMID: 34151446 DOI: 10.1002/bies.202000314] [Reference Citation Analysis]
60 Bi Y, Marcus AK, Robert H, Krajmalnik-Brown R, Rittmann BE, Westerhoff P, Ropers MH, Mercier-Bonin M. The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut. J Toxicol Environ Health B Crit Rev 2020;23:69-89. [PMID: 31920169 DOI: 10.1080/10937404.2019.1710914] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
61 Gálvez-Ontiveros Y, Páez S, Monteagudo C, Rivas A. Endocrine Disruptors in Food: Impact on Gut Microbiota and Metabolic Diseases. Nutrients 2020;12:E1158. [PMID: 32326280 DOI: 10.3390/nu12041158] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 19.0] [Reference Citation Analysis]
62 Street ME, Bernasconi S. Endocrine-Disrupting Chemicals in Human Fetal Growth. Int J Mol Sci 2020;21:E1430. [PMID: 32093249 DOI: 10.3390/ijms21041430] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 22.0] [Reference Citation Analysis]
63 Newman TM, Krishnan LP, Lee J, Adami GR. Microbiomic differences at cancer-prone oral mucosa sites with marijuana usage. Sci Rep 2019;9:12697. [PMID: 31481657 DOI: 10.1038/s41598-019-48768-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
64 Ma J, Chen QL, O'Connor P, Sheng GD. Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus? Environ Pollut 2020;256:113463. [PMID: 31677875 DOI: 10.1016/j.envpol.2019.113463] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
65 Sugden S, St Clair CC, Stein LY. Individual and Site-Specific Variation in a Biogeographical Profile of the Coyote Gastrointestinal Microbiota. Microb Ecol 2021;81:240-52. [PMID: 32594248 DOI: 10.1007/s00248-020-01547-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
66 Eymard-Vernain E, Luche S, Rabilloud T, Lelong C. ZnO and TiO2 nanoparticles alter the ability of Bacillus subtilis to fight against a stress. PLoS One 2020;15:e0240510. [PMID: 33045025 DOI: 10.1371/journal.pone.0240510] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Kim SA, Smith S, Beauchamp C, Song Y, Chiang M, Giuseppetti A, Frukhtbeyn S, Shaffer I, Wilhide J, Routkevitch D, Ondov JM, Kim JJ. Cariogenic potential of sweet flavors in electronic-cigarette liquids. PLoS One 2018;13:e0203717. [PMID: 30192874 DOI: 10.1371/journal.pone.0203717] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
68 Williams CL, Garcia-Reyero N, Martyniuk CJ, Tubbs CW, Bisesi JH Jr. Regulation of endocrine systems by the microbiome: Perspectives from comparative animal models. Gen Comp Endocrinol 2020;292:113437. [PMID: 32061639 DOI: 10.1016/j.ygcen.2020.113437] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
69 Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020:S1044-579X(20)30035-3. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
70 Zheng R, Wang P, Cao B, Wu M, Li X, Wang H, Chai L. Intestinal response characteristic and potential microbial dysbiosis in digestive tract of Bufo gargarizans after exposure to cadmium and lead, alone or combined. Chemosphere 2021;271:129511. [PMID: 33445016 DOI: 10.1016/j.chemosphere.2020.129511] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Kieran TJ, Goodman SJ, Finger JW Jr, Thomas JC 4th, Hamilton MT, Tuberville TD, Glenn TC. Microbiota of Four Tissue Types in American Alligators (Alligator mississippiensis) Following Extended Dietary Selenomethionine Exposure. Bull Environ Contam Toxicol 2020;105:381-6. [PMID: 32794125 DOI: 10.1007/s00128-020-02961-3] [Reference Citation Analysis]
72 Esser C, Haarmann-stemmann T, Hochrath K, Schikowski T, Krutmann J. AHR and the issue of immunotoxicity. Current Opinion in Toxicology 2018;10:91-7. [DOI: 10.1016/j.cotox.2018.03.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]