BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Herbst S, Campbell P, Harvey J, Bernard EM, Papayannopoulos V, Wood NW, Morris HR, Gutierrez MG. LRRK2 activation controls the repair of damaged endomembranes in macrophages. EMBO J 2020;39:e104494. [PMID: 32643832 DOI: 10.15252/embj.2020104494] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Cui M, Yoshimori T, Nakamura S. Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochem Int 2022;:105308. [PMID: 35181396 DOI: 10.1016/j.neuint.2022.105308] [Reference Citation Analysis]
2 Zoncu R, Perera RM. Built to last: lysosome remodeling and repair in health and disease. Trends in Cell Biology 2022. [DOI: 10.1016/j.tcb.2021.12.009] [Reference Citation Analysis]
3 Marchand A, Sarchione A, Athanasopoulos PS, Roy HB, Goveas L, Magnez R, Drouyer M, Emanuele M, Ho FY, Liberelle M, Melnyk P, Lebègue N, Thuru X, Nichols RJ, Greggio E, Kortholt A, Galli T, Chartier-harlin M, Taymans J. A Phosphosite Mutant Approach on LRRK2 Links Phosphorylation and Dephosphorylation to Protective and Deleterious Markers, Respectively. Cells 2022;11:1018. [DOI: 10.3390/cells11061018] [Reference Citation Analysis]
4 Verma A, Ebanks K, Fok CY, Lewis PA, Bettencourt C, Bandopadhyay R. In silico comparative analysis of LRRK2 interactomes from brain, kidney and lung. Brain Res 2021;1765:147503. [PMID: 33915162 DOI: 10.1016/j.brainres.2021.147503] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Russo I, Bubacco L, Greggio E. LRRK2 as a target for modulating immune system responses. Neurobiology of Disease 2022. [DOI: 10.1016/j.nbd.2022.105724] [Reference Citation Analysis]
6 Kalogeropulou AF, Freemantle JB, Lis P, Vides EG, Polinski NK, Alessi DR. Endogenous Rab29 does not impact basal or stimulated LRRK2 pathway activity. Biochem J 2020;477:4397-423. [PMID: 33135724 DOI: 10.1042/BCJ20200458] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
7 Erb ML, Moore DJ. LRRK2 and the Endolysosomal System in Parkinson's Disease. J Parkinsons Dis 2020;10:1271-91. [PMID: 33044192 DOI: 10.3233/JPD-202138] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Iannotta L, Greggio E. LRRK2 signaling in neurodegeneration: two decades of progress. Essays Biochem 2021:EBC20210013. [PMID: 34897411 DOI: 10.1042/EBC20210013] [Reference Citation Analysis]
9 Mamais A, Kluss JH, Bonet-Ponce L, Landeck N, Langston RG, Smith N, Beilina A, Kaganovich A, Ghosh MC, Pellegrini L, Kumaran R, Papazoglou I, Heaton GR, Bandopadhyay R, Maio N, Kim C, LaVoie MJ, Gershlick DC, Cookson MR. Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biol 2021;19:e3001480. [PMID: 34914695 DOI: 10.1371/journal.pbio.3001480] [Reference Citation Analysis]
10 Zhen Y, Radulovic M, Vietri M, Stenmark H. Sealing holes in cellular membranes. EMBO J 2021;40:e106922. [PMID: 33644904 DOI: 10.15252/embj.2020106922] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Domingues N, Gonçalves T, Girao H. Phagolysosomal remodeling to confine Candida albicans in the macrophage. Trends Microbiol 2022:S0966-842X(22)00066-X. [PMID: 35346551 DOI: 10.1016/j.tim.2022.03.004] [Reference Citation Analysis]
12 Radulovic M, Stenmark H. LRRK2 to the rescue of damaged endomembranes. EMBO J 2020;39:e106162. [PMID: 32803793 DOI: 10.15252/embj.2020106162] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Kluss JH, Mazza MC, Li Y, Manzoni C, Lewis PA, Cookson MR, Mamais A. Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo. Mol Neurodegener 2021;16:17. [PMID: 33741046 DOI: 10.1186/s13024-021-00441-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Yang Q, Wang G, Zhang F. Role of Peripheral Immune Cells-Mediated Inflammation on the Process of Neurodegenerative Diseases. Front Immunol 2020;11:582825. [PMID: 33178212 DOI: 10.3389/fimmu.2020.582825] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
15 Rocha EM, Keeney MT, Di Maio R, De Miranda BR, Greenamyre JT. LRRK2 and idiopathic Parkinson's disease. Trends Neurosci 2022:S0166-2236(21)00250-2. [PMID: 34991886 DOI: 10.1016/j.tins.2021.12.002] [Reference Citation Analysis]
16 Tasegian A, Singh F, Ganley IG, Reith AD, Alessi DR. Impact of Type II LRRK2 inhibitors on signaling and mitophagy. Biochem J 2021;478:3555-73. [PMID: 34515301 DOI: 10.1042/BCJ20210375] [Reference Citation Analysis]
17 Chittoor-Vinod VG, Nichols RJ, Schüle B. Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. Int J Mol Sci 2021;22:1045. [PMID: 33494262 DOI: 10.3390/ijms22031045] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
18 Xu L, Nagai Y, Kajihara Y, Ito G, Tomita T. The Regulation of Rab GTPases by Phosphorylation. Biomolecules 2021;11:1340. [PMID: 34572553 DOI: 10.3390/biom11091340] [Reference Citation Analysis]
19 Patrick KL, Watson RO. Mitochondria: Powering the Innate Immune Response to Mycobacterium tuberculosis Infection. Infect Immun 2021;89:e00687-20. [PMID: 33558322 DOI: 10.1128/IAI.00687-20] [Reference Citation Analysis]
20 Daussy CF, Wodrich H. "Repair Me if You Can": Membrane Damage, Response, and Control from the Viral Perspective. Cells 2020;9:E2042. [PMID: 32906744 DOI: 10.3390/cells9092042] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Gutierrez MG, Enninga J. Intracellular niche switching as host subversion strategy of bacterial pathogens. Curr Opin Cell Biol 2022;76:102081. [PMID: 35487154 DOI: 10.1016/j.ceb.2022.102081] [Reference Citation Analysis]
22 Nirujogi RS, Tonelli F, Taylor M, Lis P, Zimprich A, Sammler E, Alessi DR. Development of a multiplexed targeted mass spectrometry assay for LRRK2-phosphorylated Rabs and Ser910/Ser935 biomarker sites. Biochem J 2021;478:299-326. [PMID: 33367571 DOI: 10.1042/BCJ20200930] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
23 Usmani A, Shavarebi F, Hiniker A. The Cell Biology of LRRK2 in Parkinson's Disease. Mol Cell Biol 2021;41:e00660-20. [PMID: 33526455 DOI: 10.1128/MCB.00660-20] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Polanco JC, Götz J. Exosomal and vesicle-free tau seeds-propagation and convergence in endolysosomal permeabilization. FEBS J 2021. [PMID: 34092031 DOI: 10.1111/febs.16055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
25 Abe T, Kuwahara T. Targeting of Lysosomal Pathway Genes for Parkinson's Disease Modification: Insights From Cellular and Animal Models. Front Neurol 2021;12:681369. [PMID: 34194386 DOI: 10.3389/fneur.2021.681369] [Reference Citation Analysis]
26 Ogata J, Hirao K, Nishioka K, Hayashida A, Li Y, Yoshino H, Shimizu S, Hattori N, Imai Y. A Novel LRRK2 Variant p.G2294R in the WD40 Domain Identified in Familial Parkinson's Disease Affects LRRK2 Protein Levels. Int J Mol Sci 2021;22:3708. [PMID: 33918221 DOI: 10.3390/ijms22073708] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Herbst S, Lewis PA. From structure to ætiology: a new window on the biology of leucine-rich repeat kinase 2 and Parkinson's disease. Biochem J 2021;478:2945-51. [PMID: 34328508 DOI: 10.1042/BCJ20210383] [Reference Citation Analysis]
28 Albanese F, Domenicale C, Volta M, Morari M. Modeling Parkinson's disease in LRRK2 mice: focus on synaptic dysfunction and the autophagy-lysosomal pathway. Biochem Soc Trans 2022;50:621-32. [PMID: 35225340 DOI: 10.1042/BST20211288] [Reference Citation Analysis]
29 Zhang Q, Wu L, Bai B, Li D, Xiao P, Li Q, Zhang Z, Wang H, Li L, Jiang Q. Quantitative Proteomics Reveals Association of Neuron Projection Development Genes ARF4, KIF5B, and RAB8A With Hirschsprung Disease. Mol Cell Proteomics 2020;20:100007. [PMID: 33561610 DOI: 10.1074/mcp.RA120.002325] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
30 Lara Ordóñez AJ, Fasiczka R, Naaldijk Y, Hilfiker S. Rab GTPases in Parkinson's disease: a primer. Essays Biochem 2021;65:961-74. [PMID: 34414419 DOI: 10.1042/EBC20210016] [Reference Citation Analysis]
31 Araki M, Ito K, Takatori S, Ito G, Tomita T. BORCS6 is involved in the enlargement of lung lamellar bodies in Lrrk2 knockout mice. Hum Mol Genet 2021:ddab146. [PMID: 34077533 DOI: 10.1093/hmg/ddab146] [Reference Citation Analysis]