1
|
Rosenthal R, Waesch A, Masete KV, Massarani AS, Schulzke JD, Hering NA. The green tea component (-)-epigallocatechin-3-gallate protects against cytokine-induced epithelial barrier damage in intestinal epithelial cells. Front Pharmacol 2025; 16:1559812. [PMID: 40438590 PMCID: PMC12117334 DOI: 10.3389/fphar.2025.1559812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
Background Green tea consumption is associated with health benefits, which are mainly attributed to its catechins, especially the main catechin (-)-epigallocatechin-3-gallate (EGCG). Among other beneficial effects, EGCG was shown to be protective in inflammatory bowel disease (IBD), a condition associated with barrier dysfunction. To elucidate the mechanisms behind this, the present study analyzed the impact of EGCG on barrier properties and inflammatory cytokine-induced barrier dysfunction in three different intestinal cell models. Methods T84 cells served as a colon model, while Caco-2 and 2D-organoids derived from human duodenum biopsies were used as small intestinal models. Epithelial monolayers grown on filter supports were challenged with EGCG and a combination of the two main IBD cytokines, tumor necrosis factor α (TNFα) and interferon γ (IFNγ). Barrier properties were monitored by measuring transepithelial resistance (TER), macromolecule permeability, apoptosis, and tight junction protein expression and localization. Results EGCG protected against barrier defects induced by TNFα and IFNγ. The cytokines decreased TER (T84: 11% ± 1% of initial value; Caco-2: 65% ± 2% of initial value; 2D-organoids: 57 ± 8 Ω*cm2 versus control 239 ± 29 Ω*cm2) which was prevented by 200 µM EGCG (T84: 89% ± 5%; Caco-2: 89% ± 3%; 2D-organoids: 343 ± 24 Ω*cm2; in all three models p < 0.001). In parallel, EGCG attenuated the cytokine-induced increase in macromolecular permeability by reducing apoptosis, as shown by reduced caspase-3 cleavage by >50% compared to cytokine-stimulated controls in all three models (p < 0.001). Furthermore, alterations in tight junction protein expression and localization contributed to barrier protection. In the small intestinal models, 200 µM EGCG stabilized barrier function, as demonstrated by an increase in TER (Caco-2: 105% ± 3% versus control 90% ± 3%; 2D-organoids: 182% ± 12% versus control 105% ± 2%, in both models p < 0.001), upregulation of claudin-4 (Caco-2: 140% ± 15%, p < 0.05; 2D-organoids: 115% ± 5%, p < 0.01) and reduced expression of claudin-2 (Caco-2: 75% ± 10%, p < 0.5; 2D-organoids: 66% ± 6%, p < 0.01) and claudin-7 (Caco-2: 64% ± 7%, p < 0.001; 2D-organoids: 65% ± 9%, p < 0.01). In the colon model, EGCG prevented the delocalization of claudin-1 and -5 that was induced by TNFα and IFNγ. Conclusion The green tea component EGCG stabilizes the intestinal barrier and protects against barrier dysfunction induced by pro-inflammatory cytokines. These findings highlight the potential of EGCG as a supportive treatment strategy for IBD.
Collapse
Affiliation(s)
- Rita Rosenthal
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Waesch
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Kopano Valerie Masete
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alain S. Massarani
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nina A. Hering
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Jiang Y, Chen J, Du Y, Fan M, Shen L. Immune modulation for the patterns of epithelial cell death in inflammatory bowel disease. Int Immunopharmacol 2025; 154:114462. [PMID: 40186907 DOI: 10.1016/j.intimp.2025.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease of the intestine whose primary pathological presentation is the destruction of the intestinal epithelium. The intestinal epithelium, located between the lumen and lamina propria, transmits luminal microbial signals to the immune cells in the lamina propria, which also modulate the intestinal epithelium. In IBD patients, intestinal epithelial cells (IECs) die dysfunction and the mucosal barrier is disrupted, leading to the recruitment of immune cells and the release of cytokines. In this review, we describe the structure and functions of the intestinal epithelium and mucosal barrier in the physiological state and under IBD conditions, as well as the patterns of epithelial cell death and how immune cells modulate the intestinal epithelium providing a reference for clinical research and drug development of IBD. In addition, according to the targeting of epithelial apoptosis and necroptotic pathways and the regulation of immune cells, we summarized some new methods for the treatment of IBD, such as necroptosis inhibitors, microbiome regulation, which provide potential ideas for the treatment of IBD. This review also describes the potential for integrating AI-driven approaches into innovation in IBD treatments.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Minwei Fan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Toghyani M, Kim E, Macelline SP, González-Ortiz G, Barekatain R, Liu SY. Xylanase and stimbiotic supplementation improve broilers performance and nutrient digestibility across both wheat-barley and corn-based diets. Poult Sci 2025; 104:105224. [PMID: 40319581 PMCID: PMC12123333 DOI: 10.1016/j.psj.2025.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
The present study investigated the effects of supplemental xylanase or stimbiotic in male broiler chickens fed either corn- or wheat-barley-based diets. A total of 1,296 Ross 308 day-old chicks were assigned to a 2 × 3 factorial design, evaluating the effects of diet grain source (wheat-barley or corn) and additives (none, xylanase, or stimbiotic). The stimbiotic used in the present study contained xylanase and fermentable xylo-oligosaccharides. Each treatment was replicated 8 times, with 27 birds per replicate pen. At day 21, 3 birds per pen were selected for blood sample collection and another 3 birds at day 27 for digesta collection. The final body weight at day 42 was not statistically affected by grain source, additive supplementation, or their interaction (P > 0.05). Over the entire production period (0-42 d), an interaction between grain source and additive supplementation was found for feed conversion ratio (FCR), where xylanase or stimbiotic improved the FCR across the diet type, with a more pronounced improvement achieved when supplemented to the wheat-barley based diets (P < 0.01). A feed grain × additive interaction resulted in lower total feed intake in birds fed the wheat-barley based diets only in response to stimbiotic (P < 0.05). Ileal viscosity was also affected by an interaction between grain source and additive supplementation, in which viscosity reduction by xylanase or stimbiotic was only achieved in birds fed the wheat-barley based diets (P < 0.01). Similarly, an interaction was found in the ileal digestibility coefficient of protein (P = 0.016) and starch (P = 0.006), where either xylanase or stimbiotic improved the digestibility only in birds offered the wheat-barley based diets. Serum fluorescein isothiocyanate dextran level was higher in birds fed the corn-based diets compared to those fed the wheat-barley based diets (P < 0.01). These results suggest that dietary supplementation with either xylanase or stimbiotic improved feed efficiency, regardless of the dietary grain source, likely through enhanced nutrient digestibility and/or reduced digesta viscosity.
Collapse
Affiliation(s)
- Mehdi Toghyani
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown 2006 NSW, Australia; Poultry Research Foundation, The University of Sydney, Camden 2570 NSW, Australia.
| | - Eunjoo Kim
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown 2006 NSW, Australia; Poultry Research Foundation, The University of Sydney, Camden 2570 NSW, Australia
| | - Shemil P Macelline
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown 2006 NSW, Australia; Poultry Research Foundation, The University of Sydney, Camden 2570 NSW, Australia
| | | | - Reza Barekatain
- Poultry Research Foundation, The University of Sydney, Camden 2570 NSW, Australia; South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
| | - Sonia Y Liu
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown 2006 NSW, Australia; Poultry Research Foundation, The University of Sydney, Camden 2570 NSW, Australia
| |
Collapse
|
4
|
Braga-Neto MB, Qazi T, Fulmer C, Holubar SD, Fiocchi C, Ivanov AI, Rieder F. Cellular and molecular mechanisms in the pathogenesis of pouchitis: more than just the microbiota. Gut 2025:gutjnl-2024-334445. [PMID: 40240062 DOI: 10.1136/gutjnl-2024-334445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Pouchitis, defined as inflammation of the ileal pouch, is the most common complication following restorative proctocolectomy for refractory ulcerative colitis. Antibiotics remain the first line of therapy for pouchitis, but the majority of patients develop subsequent episodes and some are refractory to antibiotic therapy. This highlights the need for more effective treatment options and points to a more complex pathophysiology beyond the role of th pouch microbiome, similar to what is seen in inflammatory bowel disease. In this review, we outline the putative mechanisms of pouchitis, including genetic predisposition, microbiome alterations, dysfunction of the intestinal barrier and the immune system and review the available animal models of pouchitis. In addition, we introduce the concept of pouchitis as a possible transmural disease and discuss the potential role of non-immune cells, including stromal cells, in perpetuating inflammation and intestinal barrier dysfunction. We discuss future directions, implications for novel therapies and propose novel multicellular disease models that can better capture the complexity of pouchitis pathogenesis.
Collapse
Affiliation(s)
- Manuel B Braga-Neto
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Taha Qazi
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Clifton Fulmer
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stefan D Holubar
- Department of Colon and Rectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Program for Global Translational Inflammatory Bowel Disease, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Bu F, Chen K, Chen S, Jiang Y. Gut microbiota and intestinal immunity interaction in ulcerative colitis and its application in treatment. Front Cell Infect Microbiol 2025; 15:1565082. [PMID: 40292216 PMCID: PMC12031664 DOI: 10.3389/fcimb.2025.1565082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic, non-specific inflammatory bowel disease characterized by inflammation and injury of the colonic mucosa, exhibiting an increasing global incidence. Although research into UC pathogenesis is ongoing, the precise mechanisms remain to be fully elucidated. Studies indicate that UC development results from a complex interplay of factors, including genetic predisposition, environmental exposures, gut microbial dysbiosis, and immune dysregulation. Specifically, UC pathogenesis involves aberrant immune responses triggered by interactions between the host and gut microbiota. A complex, dynamic relationship exists between the microbial community and the host immune system throughout UC pathogenesis. Accumulating evidence suggests that changes in microbiota composition significantly impact gut immunity. This review will examine the intricate balance between the gut microbiota and mucosal immunity in UC progression and discuss potential therapeutic applications, providing a reference for further clinical treatment of this patient population.
Collapse
Affiliation(s)
| | | | - Siche Chen
- Department of Colorectal Surgery, Zhejiang Provincial People’s Hospital,
Affiliated People’s Hospital of Hangzhou Medical College, HangZhou, China
| | - Yi Jiang
- Department of Colorectal Surgery, Zhejiang Provincial People’s Hospital,
Affiliated People’s Hospital of Hangzhou Medical College, HangZhou, China
| |
Collapse
|
6
|
Kalkan AE, BinMowyna MN, Raposo A, Ahmad MF, Ahmed F, Otayf AY, Carrascosa C, Saraiva A, Karav S. Beyond the Gut: Unveiling Butyrate's Global Health Impact Through Gut Health and Dysbiosis-Related Conditions: A Narrative Review. Nutrients 2025; 17:1305. [PMID: 40284169 PMCID: PMC12029953 DOI: 10.3390/nu17081305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Short-chain fatty acids (SCFAs), mainly produced by gut microbiota through the fermentation process of dietary fibers and proteins, are crucial to human health, with butyrate, a famous four-carbon SCFA, standing out for its inevitably regulatory impact on both gut and immune functions. Within this narrative review, the vital physiological functions of SCFAs were examined, with emphasis on butyrate's role as an energy source for colonocytes and its ability to enhance the gut barrier while exhibiting anti-inflammatory effects. Knowledge of butyrate synthesis, primarily generated by Firmicutes bacteria, can be influenced by diets with specifically high contents of resistant starches and fiber. Butyrate can inhibit histone deacetylase, modulate gene expression, influence immune functionality, and regulate tight junction integrity, supporting the idea of its role in gut barrier preservation. Butyrate possesses systemic anti-inflammatory properties, particularly, its capacity to reduce pro-inflammatory cytokines and maintain immune homeostasis, highlighting its therapeutic potential in managing dysbiosis and inflammatory diseases. Although butyrate absorption into circulation is typically minimal, its broader health implications are substantial, especially regarding obesity and type 2 diabetes through its influence on metabolic regulation and inflammation. Furthermore, this narrative review thoroughly examines butyrate's growing recognition as a modulator of neurological health via its interaction with the gut-brain axis. Additionally, butyrate's neuroprotective effects are mediated through activation of specific G-protein-coupled receptors, such as FFAR3 and GPR109a, and inhibition of histone deacetylases (HDACs). Research indicates that butyrate can alleviate neurological disorders, including Alzheimer's, Parkinson's, autism spectrum disorder, and Huntington's disease, by reducing neuroinflammation, enhancing neurotransmitter modulation, and improving histone acetylation. This focus will help unlock its full therapeutic potential for metabolic and neurological health, rather than exclusively on its well-known benefits for gut health, as these are often interconnected.
Collapse
Affiliation(s)
- Arda Erkan Kalkan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - Mona N. BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; (M.F.A.); (A.Y.O.)
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia;
| | - Abdullah Y. Otayf
- Department of Clinical Nutrition, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; (M.F.A.); (A.Y.O.)
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| |
Collapse
|
7
|
Zhang L, Huang D, Gu J, Liang H, Ren M. The Significant Enhancing Effect of Vitamin B 6-Fortified Feed on the Intestinal Digestive Efficiency, Immunity, and Antioxidant Defense Mechanisms of Juvenile Largemouth Bass ( Micropterus salmoides). Antioxidants (Basel) 2025; 14:313. [PMID: 40227288 PMCID: PMC11939574 DOI: 10.3390/antiox14030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
A 12-week aquaculture trial was conducted to evaluate the effects of vitamin B6 on the intestinal health of largemouth bass (Micropterus salmoides). Six feeds with a vitamin B6 content of 2.03 (control group), 2.91, 3.30, 6.03, 9.53, and 21.79 mg/kg were prepared. The results were as follows. Regarding digestive efficiency, the 9.53 mg/kg group showed significantly higher activities of AMY, LPS, and TRY compared to the control group; the 6.03 mg/kg group exhibited increased AKP and Na+/K+ ATPase activities. Regarding immunity, the 6.03 mg/kg group had markedly higher relative expressions of zo-1 and occ than the control group; the 9.53 mg/kg group showed significantly higher relative expressions of il-10, tgf-β, igm, and cd83, while il-8 and tnf-α were notably lower, and nf-κb was noticeably decreased in 21.79 mg/kg group. For antioxidant capacity, the 6.03 mg/kg group had markedly higher activities of CAT, SOD, GSH-Px, and T-AOC levels, compared to the control group; the MDA level in the control group was markedly higher than in the other groups. The relative expressions of nrf2, cat, Cu-Zn sod, and gpx were highest in 9.53 mg/kg group and significantly higher than in the control group. In conclusion, an appropriate level of vitamin B6 in the feed is vital for protecting the intestinal health of largemouth bass.
Collapse
Affiliation(s)
- Leimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
8
|
Ikenouchi J, Shigetomi K. Role of lipids in the organization of tight junction. Microscopy (Oxf) 2024; 73:457-462. [PMID: 39185601 DOI: 10.1093/jmicro/dfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Cell membrane structures are supramolecular complexes that require the ordered assembly of membrane proteins and lipids. The morphology of various cell adhesion structures in multicellular organisms, such as those between epithelial cells, neural synapses and immune synapses, was initially described through electron microscopic analyses. Subsequent studies aimed to catalog their constituent proteins, which encompass transmembrane cell adhesion molecules, cytoskeletal proteins and scaffolding proteins that bind the two components. However, the diversity of plasma membrane lipids and their significance in the organization of cell adhesion structures were underappreciated until recently. It is now understood that phase separation of lipids and liquid-liquid phase separation of proteins are important driving forces for such self-assembly. In this review, we summarized recent findings on the role of lipids as scaffolds for supramolecular complexes using tight junctions in epithelial cells as an example.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Zhao Y, Guo K, Yan Y, Jiang B. Cucurbitacin IIb alleviates colitis via regulating gut microbial composition and metabolites. Heliyon 2024; 10:e38051. [PMID: 39347394 PMCID: PMC11437856 DOI: 10.1016/j.heliyon.2024.e38051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Cucurbitacin IIb, a member of the triterpenoid family, exerts beneficial effects on intestinal diseases, including enteritis and bacillary dysentery. However, its effects and mechanisms of action on colitis have not yet been explored. In this study, we used a mouse model of dextran sulfate sodium (DSS)-induced colitis and explored the effects of cucurbitacin IIb on colitis symptoms, inflammatory responses, microbiota, and metabolite profiles. The results showed that cucurbitacin IIb alleviated colitis symptoms including body weight loss, an increase in the disease activity index, and elevated levels of myeloperoxidase and eosinophil peroxidase content. Additionally, it ameliorated intestinal morphology impairment, reduced the phosphorylation of NFκB protein, and mitigated accumulation of pro-inflammatory cytokines IL-6 and IL-1β. Furthermore, cucurbitacin IIb alleviated alterations in gut microbial composition and metabolites in DSS-treated mice. However, antibiotic treatment diminishes the beneficial effects of cucurbitacin IIb on colitis. We further found that transplantation of fresh feces or heat-inactivated feces from mice treated with cucurbitacin IIb to DSS-treated mice alleviated colitis, similar to the effects of cucurbitacin IIb. Collectively, our results suggest that cucurbitacin IIb exerted anti-inflammatory effects in colitis by regulating the microbiota composition and metabolites, thereby alleviating colitis symptoms.
Collapse
Affiliation(s)
- Yinyin Zhao
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315000, China
| | - Kangxiao Guo
- Pharmaceutical College, Changsha Health Vocational College, Changsha, 410699, China
| | - Yongwang Yan
- Pharmaceutical College, Changsha Health Vocational College, Changsha, 410699, China
| | - Binyuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| |
Collapse
|
10
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
11
|
Yang Z, Zhang S, Ying L, Zhang W, Chen X, Liang Y, Chen R, Yao K, Li C, Yu C, Jamilian P, Zarezadeh M, Kord-Varkaneh H, Wang J, Li H. The effect of probiotics supplementation on cancer-treatment complications: a critical umbrella review of interventional meta-analyses. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39002141 DOI: 10.1080/10408398.2024.2372880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Cancer-related complications pose significant challenges in the management and treatment of patients with malignancies. Several meta-analyses have indicated improving effects of probiotics on cancer complications, while some studies have reported contentious findings. The purpose of the present study was to evaluate the efficacy of probiotics in addressing cancer complications, including diarrhea, mucositis, and infections, following chemotherapy, radiotherapy, and surgery. Relevant studies were searched in the PubMed, Scopus, Embase and Web of Science databases and Google Scholar up to September 2023. All meta-analyses addressing the effects of probiotics on all cancer treatments-induced complications including infection, diarrhea and oral mucositis were included. The pooled results were calculated using a random-effects model. Analyses of subgroups, sensitivity and publication bias were also conducted. The results revealed that the probiotics supplementation was effective on reduction of total cancer complications (OR:0.53; 95% CI: 0.44, 0.62, p < 0.001; I2=79.0%, p < 0.001), total infection rate (OR:0.47; 95%CI: 0.41, 0.52, p < 0.001; I2= 48.8%, p < 0.001); diarrhea (OR:0.50; 95%CI: 0.44, 0.57, p < 0.001; I2=44.4%, p = 0.023) and severe diarrhea (OR: 0.4; 95%CI: 0.27, 0.56, p < 0.001; I2=31.3%, p = 0.178), oral mucositis (OR: 0.76; 95%CI: 0.58, 0.94, p < 0.001; I2=95.5%, p < 0.001) and severe oral mucositis (OR:0.65, 95%CI: 0.58, 0.72 p < 0.001; I2=22.1%, p = 0.274). Multi strain probiotic (OR:0.49; 95%CI: 0.32, 0.65, p < 0.001; I2=90.7%, p < 0.001) were more efficacious than single strain (OR:0.73; 95%CI: 0.66, 0.81, p < 0.001; I2=0.00%, p = 0.786). The findings of the current umbrella meta-analysis provide strong evidence that probiotic supplementation can reduce cancer complications.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, China
| | - Shijie Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Xinchang Pharmaceutical Factory, Zhejiang Medicine Co., Ltd, Shaoxing, China
| | - Lu Ying
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, China
| | - Wenjing Zhang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoyang Chen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Youfeng Liang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Ruolan Chen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Keying Yao
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Chunhui Li
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Parmida Jamilian
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Kord-Varkaneh
- Department of Nutrition and Food Hygiene, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Hanmin Li
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine (Hubei University of Traditional Chinese Medicine Affiliated Hospital), Wuhan, Hubei Province, China
- Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Key Laboratory, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Ulluwishewa D, Nicholls G, Henderson H, Bernstein D, Fraser K, Barnett MPG, Barnes MJ. Effects of bovine whey protein on exercise-induced gut permeability in healthy adults: a randomised controlled trial. Eur J Appl Physiol 2024; 124:2045-2056. [PMID: 38386104 PMCID: PMC11199293 DOI: 10.1007/s00421-024-05423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE Intestinal permeability is a critical component of gut barrier function. Barrier dysfunction can be triggered by certain stressors such as exercise, and if left unmanaged can lead to local and systemic disorders. The aim of this study was to investigate the effects of a specific whey protein fraction in alleviating exercise-induced gut permeability as assessed by recovery of lactulose/rhamnose (L/R) and lactulose/mannitol (L/M) urinary probes. METHODS Eight males and eight females (aged 18-50) completed two arms of a double-blind, placebo-controlled, crossover study. For each arm participants performed two baseline intestinal permeability assessments, following which they consumed the treatment (2 g/day of milk powder containing 200 mg of whey protein) or placebo (2 g/day of milk powder) for 14 days, before performing a post-exercise permeability assessment. The exercise protocol involved a 20-min run at 80% of maximal oxygen uptake on a 1% incline. RESULTS Mixed model analysis revealed an increase in L/R (23%; P < 0.001) and L/M (20%; P < 0.01) recovery following exercise. However, there was no treatment or treatment × exercise effect. CONCLUSION The exercise protocol utilised in our study induces gut permeability. However, consuming whey protein, at the dose and timing prescribed, is not able to mitigate this effect.
Collapse
Affiliation(s)
| | - Grayson Nicholls
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | | | | | - Karl Fraser
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Matthew P G Barnett
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Matthew J Barnes
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| |
Collapse
|
13
|
Cicala M, Gori M, Balestrieri P, Altomare A, Tullio A, Di Cola S, Dejongh S, Graziani MG, Pagnini C, Carotti S, Perrone G, Ribolsi M, Fiorani M, Guarino MPL, Farré R. Colonic Epithelial Permeability to Ions Is Restored after Vedolizumab Treatment and May Predict Clinical Response in Inflammatory Bowel Disease Patients. Int J Mol Sci 2024; 25:5817. [PMID: 38892004 PMCID: PMC11172326 DOI: 10.3390/ijms25115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Vedolizumab (VDZ) is used for treating inflammatory bowel disease (IBD) patients. A study investigating colonic epithelial barrier function ex vivo following VDZ is lacking. This work aims to evaluate ex vivo the colonic epithelial barrier function in IBD patients at baseline and during VDZ treatment, and to investigate the relationships between barrier function and clinical parameters. Colonic specimens were obtained from 23 IBD patients before, and at 24 and 52 weeks after VDZ treatment, and from 26 healthy volunteers (HV). Transepithelial electrical resistance (TEER, permeability to ions) and paracellular permeability were measured in Ussing chambers. IBD patients showed increased epithelial permeability to ions (TEER, 13.80 ± 1.04 Ω × cm2 vs. HV 20.70 ± 1.52 Ω × cm2, p < 0.001) without changes in paracellular permeability of a 4 kDa probe. VDZ increased TEER (18.09 ± 1.44 Ω × cm2, p < 0.001) after 52 weeks. A clinical response was observed in 58% and 25% of patients at week 24, and in 62% and 50% at week 52, in ulcerative colitis and Crohn's disease, respectively. Clinical and endoscopic scores were strongly associated with TEER. TEER < 14.65 Ω × cm2 predicted response to VDZ (OR 11; CI 2-59). VDZ reduces the increased permeability to ions observed in the colonic epithelium of IBD patients before treatment, in parallel to a clinical, histological (inflammatory infiltrate), and endoscopic improvement. A low TEER predicts clinical response to VDZ therapy.
Collapse
Affiliation(s)
- Michele Cicala
- Gastroenterology Unit, Fondazione Policlinico Universitario Campus Bio-Medico and Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.C.); (P.B.); (A.A.); (A.T.); (S.D.C.); (M.R.); (M.F.); (M.P.L.G.)
| | - Manuele Gori
- Gastroenterology Unit, Fondazione Policlinico Universitario Campus Bio-Medico and Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.C.); (P.B.); (A.A.); (A.T.); (S.D.C.); (M.R.); (M.F.); (M.P.L.G.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), International Campus “A. Buzzati-Traverso”, Via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Paola Balestrieri
- Gastroenterology Unit, Fondazione Policlinico Universitario Campus Bio-Medico and Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.C.); (P.B.); (A.A.); (A.T.); (S.D.C.); (M.R.); (M.F.); (M.P.L.G.)
| | - Annamaria Altomare
- Gastroenterology Unit, Fondazione Policlinico Universitario Campus Bio-Medico and Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.C.); (P.B.); (A.A.); (A.T.); (S.D.C.); (M.R.); (M.F.); (M.P.L.G.)
| | - Alessandro Tullio
- Gastroenterology Unit, Fondazione Policlinico Universitario Campus Bio-Medico and Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.C.); (P.B.); (A.A.); (A.T.); (S.D.C.); (M.R.); (M.F.); (M.P.L.G.)
| | - Simone Di Cola
- Gastroenterology Unit, Fondazione Policlinico Universitario Campus Bio-Medico and Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.C.); (P.B.); (A.A.); (A.T.); (S.D.C.); (M.R.); (M.F.); (M.P.L.G.)
| | - Sander Dejongh
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium; (S.D.); (R.F.)
- Laboratory of Nephrology and Renal Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Maria Giovanna Graziani
- Department of Gastroenterology and Digestive Endoscopy, S. Giovanni Addolorata Hospital, 00184 Rome, Italy; (M.G.G.); (C.P.)
| | - Cristiano Pagnini
- Department of Gastroenterology and Digestive Endoscopy, S. Giovanni Addolorata Hospital, 00184 Rome, Italy; (M.G.G.); (C.P.)
| | - Simone Carotti
- Microscopic and Ultrastructural Anatomy Research Unit Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Predictive Molecular Diagnostics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Giuseppe Perrone
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
| | - Mentore Ribolsi
- Gastroenterology Unit, Fondazione Policlinico Universitario Campus Bio-Medico and Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.C.); (P.B.); (A.A.); (A.T.); (S.D.C.); (M.R.); (M.F.); (M.P.L.G.)
| | - Marcello Fiorani
- Gastroenterology Unit, Fondazione Policlinico Universitario Campus Bio-Medico and Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.C.); (P.B.); (A.A.); (A.T.); (S.D.C.); (M.R.); (M.F.); (M.P.L.G.)
| | - Michele P. L. Guarino
- Gastroenterology Unit, Fondazione Policlinico Universitario Campus Bio-Medico and Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.C.); (P.B.); (A.A.); (A.T.); (S.D.C.); (M.R.); (M.F.); (M.P.L.G.)
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium; (S.D.); (R.F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
14
|
Li S, Wu L, Zeng H, Zhang J, Qin S, Liang LX, Andersson J, Meng WJ, Chen XY, Wu QZ, Lin LZ, Chou WC, Dong GH, Zeng XW. Hepatic injury and ileitis associated with gut microbiota dysbiosis in mice upon F-53B exposure. ENVIRONMENTAL RESEARCH 2024; 248:118305. [PMID: 38307183 DOI: 10.1016/j.envres.2024.118305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Chlorinated polyfluorinated ether sulfonate (F-53B), a substitute of perfluorooctane sulfonic acid (PFOS), has attracted significant attention for its link to hepatotoxicity and enterotoxicity. Nevertheless, the underlying mechanisms of F-53B-induced enterohepatic toxicity remain incompletely understood. This study aimed to explore the role of F-53B exposure on enterohepatic injury based on the gut microbiota, pathological and molecular analysis in mice. Here, we exposed C57BL/6 mice to F-53B (0, 4, 40, and 400 μg/L) for 28 days. Our findings revealed a significant accumulation of F-53B in the liver, followed by small intestines, and feces. In addition, F-53B induced pathological collagen fiber deposition and lipoid degeneration, up-regulated the expression of fatty acid β-oxidation-related genes (PPARα and PPARγ, etc), while simultaneously down-regulating pro-inflammatory genes (Nlrp3, IL-1β, and Mcp1) in the liver. Meanwhile, F-53B induced ileal mucosal barrier damage, and an up-regulation of pro-inflammatory genes and mucosal barrier-related genes (Muc1, Muc2, Claudin1, Occludin, Mct1, and ZO-1) in the ileum. Importantly, F-53B distinctly altered gut microbiota compositions by increasing the abundance of Akkermansia and decreasing the abundance of Prevotellaceae_NK3B31_group in the feces. F-53B-altered microbiota compositions were significantly associated with genes related to fatty acid β-oxidation, inflammation, and mucosal barrier. In summary, our results demonstrate that F-53B is capable of inducing hepatic injury, ileitis, and gut microbiota dysbiosis in mice, and the gut microbiota dysbiosis may play an important role in the F-53B-induced enterohepatic toxicity.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - LuYin Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - HuiXian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - ShuangJian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Li-Xia Liang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - John Andersson
- Department of Psychology Umeå University, Umeå, SE-90187, Sweden.
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xing-Yu Chen
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States.
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Li J, Wang L, Ma Y, Liu Y. Inflammatory bowel disease and allergic diseases: A Mendelian randomization study. Pediatr Allergy Immunol 2024; 35:e14147. [PMID: 38773751 DOI: 10.1111/pai.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) and allergic diseases possess similar genetic backgrounds and pathogenesis. Observational studies have shown a correlation, but the exact direction of cause and effect remains unclear. The aim of this Mendelian randomization (MR) study is to assess bidirectional causality between inflammatory bowel disease and allergic diseases. METHOD We comprehensively analyzed the causal relationship between inflammatory bowel disease (IBD), Crohn's disease (CD), ulcerative colitis (UC) and allergic disease (asthma, Hay fever, and eczema) as a whole, allergic conjunctivitis (AC), atopic dermatitis (AD), allergic asthma (AAS), and allergic rhinitis (AR) by performing a bidirectional Mendelian randomization study using summary-level data from genome-wide association studies. The analysis results mainly came from the random-effects model of inverse variance weighted (IVW-RE). In addition, multivariate Mendelian randomization (MVMR) analysis was conducted to adjust the effect of body mass index (BMI) on the instrumental variables. RESULTS The IVW-RE method revealed that IBD genetically increased the risk of allergic disease as a whole (OR = 1.03, 95% CI = 1.01-1.04, fdr.p = .015), AC (OR = 1.04, 95% CI = 1.01-1.06, fdr.p = .011), and AD (OR = 1.06, 95% CI = 1.02-1.09, fdr.p = .004). Subgroup analysis further confirmed that CD increased the risk of allergic disease as a whole (OR = 1.02, 95% CI = 1.00-1.03, fdr.p = .031), AC (OR = 1.03, 95% CI = 1.01-1.05, fdr.p = .012), AD (OR = 1.06, 95% CI = 1.02-1.09, fdr.p = 2E-05), AAS (OR = 1.05, 95% CI = 1.02-1.08, fdr.p = .002) and AR (OR = 1.03, 95% CI = 1.00-1.07, fdr.p = .025), UC increased the risk of AAS (OR = 1.02, 95% CI = 0.98-1.07, fdr.p = .038). MVMR results showed that after taking BMI as secondary exposure, the causal effects of IBD on AC, IBD on AD, CD on allergic disease as a whole, CD on AC, CD on AD, CD on AAS, and CD on AR were still statistically significant. No significant association was observed in the reverse MR analysis. CONCLUSION This Mendelian randomized study demonstrated that IBD is a risk factor for allergic diseases, which is largely attributed to its subtype CD increasing the risk of AC, AD, ASS, and AR. Further investigations are needed to explore the causal relationship between allergic diseases and IBD.
Collapse
Affiliation(s)
- Jiawei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijun Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqi Ma
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Feng D, Zhang H, Li Z, Li Y, Yan J, Zhang Y, Yang Y. Categorization of the effects of E. coli LF82 and mutants lacking the chuT and shuU genes on survival, the transcriptome, and metabolome in germ-free honeybee. FEBS Open Bio 2024; 14:756-770. [PMID: 38403884 PMCID: PMC11073505 DOI: 10.1002/2211-5463.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
The precise etiology of inflammatory bowel diseases (IBDs) remains elusive. The Escherichia coli strain LF82 (LF82) is known to be associated with IBD, and we hypothesized that this association may be related to the chuT and shuU genes. Here we constructed a germ-free (GF) honeybee model to investigate the effects of LF82 chuT and shuU genes on the honeybee intestine and their mechanisms. The chuT and shuU gene deletion strains LF82∆chuT and LF82∆shuU were generated by CRISPR-Cas9. These strains, together with nonpathogenic E. coli MG1655 (MG1655) and wildtype LF82, were allowed to colonize the guts of GF honeybees to establish single bacterial colonization models. Intestinal permeability was assessed following the administration of a sterile Brilliant Blue (FCF) solution. Comprehensive transcriptomic and metabolomic analyses of intestinal samples indicated that MG1655 had few disadvantageous effects on honeybees. Conversely, colonization with LF82 and its gene-deletion mutants provoked pronounced activation of genes associated with innate immune pathways, stimulated defensive responses, and induced expression of genes associated with inflammation, oxidative stress, and glycosaminoglycan degradation. Crucially, the LF82∆chuT and LF82∆shuU strains perturbed host heme and iron regulation, as well as tryptophan metabolism. These findings suggest that the deletion of chuT and shuU genes in E. coli LF82 may alleviate intestinal inflammation by partially modulating tryptophan catabolism. Our study proposes that targeting iron uptake mechanisms could be a potential strategy to mitigate the virulence of IBD-associated bacteria.
Collapse
Affiliation(s)
- Dongping Feng
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hujun Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhengpeng Li
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yiyuan Li
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jingshuang Yan
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
17
|
Shiratori W, Ohta Y, Matsusaka K, Ohyama Y, Mamiya Y, Nakazawa H, Takahashi S, Horio R, Goto C, Sonoda M, Kurosugi A, Kaneko T, Akizue N, Ishigami H, Taida T, Okimoto K, Saito K, Matsumura T, Shiko Y, Ozawa Y, Kato J, Ikeda J, Kato N. Differences in Mucosal Permeability Among Patients With Ulcerative Colitis Classified Based on the Colonic Location and Disease Activity. Clin Transl Gastroenterol 2024; 15:e00692. [PMID: 38363861 PMCID: PMC11124768 DOI: 10.14309/ctg.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
INTRODUCTION Factors affecting mucosal permeability (MP) in ulcerative colitis (UC) are largely unknown. We aimed to investigate the difference in MP among patients with UC classified according to the colonic locations and to evaluate the correlations between local MP and endoscopic or histological activity of UC. METHODS The transepithelial electrical resistance (TER), which is inversely proportional to permeability, of tissue samples from the mucosa of the ascending colon, descending colon, and rectum of patients with UC and healthy individuals (HIs) was measured by using the Ussing chamber. TERs were compared between patients with UC and HIs and evaluated according to colonic locations and disease activity of UC. RESULTS Thirty-eight patients with UC and 12 HIs were included in this study. Both in HIs and patients with UC, MP tends to be higher in the anal side. TER in the ascending colon was significantly lower in patients with UC than in HIs (45.3 ± 9.0 Ω × cm 2 vs 53.5 ± 9.7 Ω × cm 2 , P = 0.01). The increased permeability in UC was observed also in the descending colon, only when the inflammation involved the location. A significant correlation between TER and endoscopic activity was found in the rectum only ( r = -0.49, P = 0.002). There were no significant correlations between TERs and UC histology. DISCUSSION The MP in the colon differs according to the colonic location. The ascending colon among patients with UC showed disease-specific changes in MP, whereas the MP is increased in proportion to the endoscopic activity in the rectum.
Collapse
Affiliation(s)
- Wataru Shiratori
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
- National Hospital Organization Chiba Medical Center, Chiba, Japan
| | - Yuki Ohta
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | | | - Yuhei Ohyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Yukiyo Mamiya
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Hayato Nakazawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Satsuki Takahashi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Ryosuke Horio
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Chihiro Goto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Michiko Sonoda
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Akane Kurosugi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Tatsuya Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Naoki Akizue
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Hideaki Ishigami
- Department of Gastroenterology, Chiba Rosai Hospital, Chiba, Japan;
| | - Takashi Taida
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Kenichiro Okimoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Keiko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Tomoaki Matsumura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Yuki Shiko
- Clinical Research Center, Chiba University, Chiba, Japan.
| | | | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Junichiro Ikeda
- Department of Pathology, Chiba University Hospital, Chiba, Japan;
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan;
| |
Collapse
|
18
|
Zhao L, Zhang T, Zhang K. Pharmacological effects of ginseng and ginsenosides on intestinal inflammation and the immune system. Front Immunol 2024; 15:1353614. [PMID: 38698858 PMCID: PMC11064651 DOI: 10.3389/fimmu.2024.1353614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.
Collapse
Affiliation(s)
| | | | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Liu S, Hong L, Zhang S, Tian Y, Wang Y, Zhao D, Lv J, Zhuang J, Xu H, Xia G. Sporisorium reilianum polysaccharides improve DSS-induced ulcerative colitis by regulating intestinal barrier function and metabolites. Int J Biol Macromol 2024; 265:130863. [PMID: 38490380 DOI: 10.1016/j.ijbiomac.2024.130863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
This study investigated the regulatory effects of Sporisorium reilianum polysaccharides (SRPS) on metabolism and the intestinal barrier in mice with colitis induced by dextran sulfate sodium (DSS). SRPS were resistant to the digestion of saliva, gastric juices, and intestinal fluid. SRPS significantly reduced the disease activity index and inhibited DSS-induced colon shortening. The expression of proinflammatory cytokines in the colon was normal (P < 0.05). Acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid contents increased. Moreover, 64 biomarker metabolites were affected, including 42 abnormal decreases and 22 abnormal increases caused by DSS, which targeted amino acid biosynthesis; tryptophan metabolism; protein digestion and absorption; aminoacyl-tRNA biosynthesis; and glycine, serine, and threonine metabolism. In addition, SRPS reduced goblet cell loss and increased mucin secretion. The short-chain fatty acid receptor GPR41 was activated, and zonula occludens-1 and occludin expression levels were upregulated. Epithelial cell apoptosis was inhibited by increased Bcl-2 and decreased Bax expression NLRP3, ASC, and caspase-1 protein levels decreased. Intestinal barrier damage improved, and colon inflammation was reduced. Thus, our preliminary findings reveal that SRPS regulates metabolism and has the potential to protect the intestinal barrier in ulcerative colitis mice.
Collapse
Affiliation(s)
- Shuaichen Liu
- Department of Food Science and Engineering, College of Agricultural, Yanbian University, Yanji 133000, Jilin, China; Department of Food Science and Engineering, College of Integration Science, Yanbian University, Yanji 133000, Jilin, China
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China
| | - Song Zhang
- Department of Food Science and Engineering, College of Agricultural, Yanbian University, Yanji 133000, Jilin, China
| | - Yuxin Tian
- Department of Food Science and Engineering, College of Agricultural, Yanbian University, Yanji 133000, Jilin, China
| | - Yuchen Wang
- Department of Food Science and Engineering, College of Integration Science, Yanbian University, Yanji 133000, Jilin, China
| | - Duanduan Zhao
- Department of Food Science and Engineering, College of Integration Science, Yanbian University, Yanji 133000, Jilin, China
| | - Jingheng Lv
- Department of Food Science and Engineering, College of Integration Science, Yanbian University, Yanji 133000, Jilin, China
| | - Jingjing Zhuang
- Department of Food Science and Engineering, College of Agricultural, Yanbian University, Yanji 133000, Jilin, China
| | - Hongyan Xu
- Department of Food Science and Engineering, College of Agricultural, Yanbian University, Yanji 133000, Jilin, China; Department of Food Science and Engineering, College of Integration Science, Yanbian University, Yanji 133000, Jilin, China.
| | - Guangjun Xia
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133000, Jilin, China.
| |
Collapse
|
20
|
Parfenov AI. The value of increased intestinal permeability in the pathogenesis of internal diseases. TERAPEVT ARKH 2024; 96:85-90. [DOI: 10.26442/00403660.2024.02.202587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In the process of evolution in the gastrointestinal tract, a system of protection against bacterial and food antigens from getting into the blood was formed. The causes of increased intestinal permeability (IIP) can be microbiota imbalance, use of antibiotics, non-steroidal anti-inflammatory drugs, stress, diet rich in fructose, glucose, sucrose and long-chain fatty acids. The appearance of IIP may be of paramount importance in the pathogenesis of autoimmune diseases. A diet low in fermentable oligodimonosaccharides and polyols, pre- and probiotics, polyphenols, vitamins, short-chain fatty acids, dietary fiber, glutamine contributes to the reduction of IIP. It has been established that the cytoprotector rebamipide strengthens the barrier function throughout the gastrointestinal tract, which is reflected in practical recommendations for its use in diseases accompanied by IIP. The study of this direction will contribute to the emergence of a new strategy for the treatment of internal diseases.
Collapse
|
21
|
Wu J, Lv Y, Hao P, Zhang Z, Zheng Y, Chen E, Fan Y. Immunological profile of lactylation-related genes in Crohn's disease: a comprehensive analysis based on bulk and single-cell RNA sequencing data. J Transl Med 2024; 22:300. [PMID: 38521905 PMCID: PMC10960451 DOI: 10.1186/s12967-024-05092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Crohn's disease (CD) is a disease characterized by intestinal immune dysfunction, often accompanied by metabolic abnormalities. Disturbances in lactate metabolism have been found in the intestine of patients with CD, but studies on the role of lactate and related Lactylation in the pathogenesis of CD are still unknown. METHODS We identified the core genes associated with Lactylation by downloading and merging three CD-related datasets (GSE16879, GSE75214, and GSE112366) from the GEO database, and analyzed the functions associated with the hub genes and the correlation between their expression levels and immune infiltration through comprehensive analysis. We explored the Lactylation levels of different immune cells using single-cell data and further analyzed the differences in Lactylation levels between inflammatory and non-inflammatory sites. RESULTS We identified six Lactylation-related hub genes that are highly associated with CD. Further analysis revealed that these six hub genes were highly correlated with the level of immune cell infiltration. To further clarify the effect of Lactylation on immune cells, we analyzed single-cell sequencing data of immune cells from inflammatory and non-inflammatory sites in CD patients and found that there were significant differences in the levels of Lactylation between different types of immune cells, and that the levels of Lactylation were significantly higher in immune cells from inflammatory sites. CONCLUSIONS These results suggest that Lactylation-related genes and their functions are closely associated with changes in inflammatory cells in CD patients.
Collapse
Affiliation(s)
- Jingtong Wu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yinyin Lv
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Pei Hao
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Ziyi Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yongtian Zheng
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Ermei Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| |
Collapse
|
22
|
Tuşat M, Eroz R, Bölükbaş F, Özkan E, Erdal H. Evaluation of the protective and therapeutic effects of extra virgin olive oil rich in phenol in experimental model of neonatal necrotizing enterocolitis by clinical disease score, ınflammation, apoptosis, and oxidative stress markers. Pediatr Surg Int 2024; 40:80. [PMID: 38493431 DOI: 10.1007/s00383-024-05669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIM Necrotizing Enterocolitis (NEC) is an inflammation-associated ischemic necrosis of the intestine. To investigate the effects of extra virgin olive oil (EVOO) on inflammation, oxidative stress, apoptosis, and histological changes in NEC-induced newborn rats. MATERIALS AND METHODS 24 rats were randomly divided into three groups: control, NEC and NEC + EVOO. NEC induction was performed using hypoxia-hyperoxia, formula feeding, and cold stress. The NEC + EVOO group received 2 ml/kg EVOO with high phenolic content by gavage twice a day for 3 days. 3 cm of bowel including terminal ileum, cecum, and proximal colon was excised. RESULTS Weight gain and clinical disease scores were significantly higher in the NEC + EVOO group than in the NEC group (p < 0.001). EVOO treatment caused significant decreases in IL1β, IL6 levels (p = 0.016, p = 0.029 respectively) and EGF, MDA levels (p = 0.032, p = 0.013 respectively) compared to NEC group. Significant decreases were observed in IL6 gene expression in the NEC + EVOO group compared to the NEC group (p = 0.002). In the group NEC + EVOO, the number of Caspase-3 positive cells was found to be significantly reduced (p < 0.001) and histopathological examination revealed minimal changes and significantly lower histopathological scores (p < 0.001). CONCLUSION Phenol-rich EVOO prevents intestinal damage caused by NEC by inhibiting inflammation, oxidative stress, apoptosis.
Collapse
Affiliation(s)
- Mustafa Tuşat
- Department of Pediatric Surgery, Aksaray University Medical Faculty, Aksaray, Turkey.
| | - Recep Eroz
- Department of Medical Genetics, Aksaray University Medical Faculty, Aksaray, Turkey
| | - Ferhan Bölükbaş
- Department of Histology and Embryology, Aksaray University Medical Faculty, Aksaray, Turkey
| | - Erkan Özkan
- Faculty of Veterinary Medicine, Department of Parasitology, Aksaray University, Aksaray, Turkey
| | - Hüseyin Erdal
- Department of Medical Genetics, Aksaray University Medical Faculty, Aksaray, Turkey
| |
Collapse
|
23
|
Zhang C, Li Q, Xing J, Yang Y, Zhu M, Lin L, Yu Y, Cai X, Wang X. Tannic acid and zinc ion coordination of nanase for the treatment of inflammatory bowel disease by promoting mucosal repair and removing reactive oxygen and nitrogen species. Acta Biomater 2024; 177:347-360. [PMID: 38373525 DOI: 10.1016/j.actbio.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Colon mucosal overexpression of reactive oxygen and nitrogen species (RONS) accelerates the development of inflammatory bowel disease (IBD) and destroys the mucosa and its barrier. IBD can be alleviated by removing RONS from the inflamed colon. The preparation of strong and efficient nanoantioxidants remains a challenge despite the development of numerous nanoantioxidants. In this paper, Zn-TA nanoparticles with fine hollow microstructure (HZn-TA) were successfully prepared and could be effectively used to treat IBD. In the first step, ZIF-8 nanoparticles were synthesized by a one-pot method. On this basis, HZn-TA nanoparticles were etched by TA, and a multifunctional nanase was developed for the treatment of IBD. RONS, including reactive oxygen species (ROS) and nitric oxide (NO), can be eliminated to increase cell survival following Hydrogen peroxide (H2O2) stimulation, including reactive oxygen species (ROS) and nitric oxide (NO with hydrogen peroxide (H2O2). In a model for preventing and delaying acute colitis, clearance of RONS has been shown to reduce intestinal inflammation in mice by reducing colon damage, proinflammatory cytokine levels, the spleen index, and body weight. Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate zonula occludens protein 1 (ZO-1) and claudin-1 expression. Based on the results of this study, HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS. Therefore, we pioneered the application of HZn-TA nanoparticles for the treatment of IBD, which are capable of clearing RONS without significant adverse effects. STATEMENT OF SIGNIFICANCE: ➢ HZn-TA nanoparticles were successfully prepared and could be effectively used to treat IBD. ➢ Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate ZO-1 and claudin-1 expression. ➢ HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS.
Collapse
Affiliation(s)
- Cong Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China; Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qingrong Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Jianghao Xing
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Yan Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Mengmei Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Liting Lin
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Yue Yu
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Xianwen Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
24
|
Chen Z, Wang H, Tan L, Liu X. Protective Effects of Four Structurally Distinct Sanshools Ameliorate Dextran Sodium Sulfate-Induced Ulcerative Colitis by Restoring Intestinal Barrier Function and Modulating the Gut Microbiota. Antioxidants (Basel) 2024; 13:153. [PMID: 38397751 PMCID: PMC10886262 DOI: 10.3390/antiox13020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Hydroxy-α-sanshool (HAS), hydroxy-β-sanshool (HBS), hydroxy-γ-sanshool (HRS), and γ-sanshool (RS) are the key components from the Zanthoxylum genus, processing a range of pharmacological activities. The present study investigated the protective capacities of four sanshools on a dextran sulfate sodium (DSS)-induced model of ulcerative colitis (UC). The results showed that sanshool administration alleviated the colitis symptoms by reducing body weight loss and disease activity index (DAI) score, increasing the colon length, and improving colonic injury and the change in immune organ weight. Furthermore, sanshools enhanced the antioxidant enzyme activities, and RS exhibited the lowest effect on the improvement in total antioxidative capacity (T-AOC) and antioxidant abilities compared to the other three sanshools. The p65 nuclear factor κB (p65 NFκB) signaling pathway was inhibited to prevent hyperactivation and decreased the production of inflammatory factors. The gut barrier function in DSS-induced mice was restored by increasing goblet cell number and levels of tight junction proteins (zonula occludens-1, occludin, and claudin-1), and the levels of protein in HAS and HRS groups were higher than that in the HBS group, significantly. The analysis of gut microbiota suggested that sanshool administration significantly boosted the abundance of Lachnospiraceae, Muribaculaceae, Oscillospiraceae, and Alistipes and reduced the level of Buchnera in colitis mice. Collectively, the sanshool treatment could ameliorate colitis by resisting colon injury and regulating intestinal barrier dysfunction and gut microbiota dysbiosis; meanwhile, HRS and HAS have better improvement effects.
Collapse
Affiliation(s)
- Zhaojun Chen
- College of Food Science, Southwest University, Chongqing 400715, China;
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China (L.T.)
| | - Hui Wang
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China (L.T.)
| | - Lulin Tan
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China (L.T.)
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China;
| |
Collapse
|
25
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Puri BK, Lee GS, Schwarzbach A. Reaction Time in Fibromyalgia Patients. Curr Rheumatol Rev 2024; 20:514-521. [PMID: 38314594 DOI: 10.2174/0115733971276641231201055731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Fibromyalgia has unknown aetiology and is associated with reduced information processing speed and therefore prolonged reaction time. However, the processes underlying this are unknown. OBJECTIVES First, to compare the reaction time in a cohort of fibromyalgia patients and a matched group of normal controls. Second, to assess whether detailed symptoms of pain and autonomic function, as well as measures of tinnitus, fatigue, daytime sleepiness and Mycoplasma pneumoniae infection are predictors of reaction time in fibromyalgia. METHODS The between-groups mean serial five-choice reaction time difference was assessed in a cohort of fibromyalgia patients and in a matched group of normal controls in an analytical casecontrolled study. With the mean serial five-choice reaction time as the dependent variable for the fibromyalgia group, a mixed stepwise multiple linear regression was performed with inputs relating to pain, dysautonomia, tinnitus, fatigue, daytime sleepiness and Mycoplasma pneumoniae infection. RESULTS The mean (standard error) serial five-choice reaction time for the fibromyalgia group was 448.4 (23.0) ms, compared with 386.3 (8.3) ms for the control group (p = 0.007). The final multiple linear regression model (p < 0.001; adjusted R2 = 0.772) contained 13 predictors: eight sensory pain and three affective pain parameters, and Mycoplasma pneumoniae IgG and IgA assay results. CONCLUSION Certain sensory and affective pain parameters, as well as Mycoplasma pneumoniae infection, appear to be predictors of reaction time in fibromyalgia. Further research into the pathophysiological mechanisms by which they affect information processing is warranted and may shed light on the aetiology of fibromyalgia.
Collapse
Affiliation(s)
- Basant K Puri
- Department of Molecular Biology and Medicine, Faculty of Health and Well-Being, University of Winchester & C.A.R., Cambridge, UK
| | - Gary S Lee
- Department of Psychology, University of Southampton, Southampton, UK
| | | |
Collapse
|
27
|
Mao J, Zhao Y, Wang L, Wu T, Jin Y, Meng J, Zhang M. Sea Cucumber Peptide Alleviates Ulcerative Colitis Induced by Dextran Sulfate Sodium by Alleviating Gut Microbiota Imbalance and Regulating miR-155/SOCS1 Axis in Mice. Foods 2023; 12:3434. [PMID: 37761144 PMCID: PMC10530247 DOI: 10.3390/foods12183434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Sea cucumber peptides have been proven to exhibit a variety of biological activities. Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the mucosa of the rectum and colon with increasing incidence and long duration, and is difficult to cure. The effect of sea cucumber peptide on UC is currently unknown. In this study, 1.5% dextran sulfate sodium (DSS) was added to the drinking water of mice to induce a UC model, and the daily doses of sea cucumber peptide (SP) solution of 200 mg/kg·BW, 500 mg/kg·BW, and 1000 mg/kg·BW were given to UC mice to detect the relieving effect of SP. The results showed that SP can reduce the disease activity index (DAI) of UC mice induced by DSS and can alleviate colon shortening, intestinal tissue damage, and the loss of intestinal tight junction proteins (Claudin-1, Occludin). SP decreased the spleen index, pro-inflammatory factors (IL-1β, IL-6, TNF-α), and myeloperoxidase (MPO) levels in UC mice. SP can alleviate the imbalance of gut microbiota in UC mice, increase the abundance of the Lachnospiraceae NK4A136 group, Prevotellaceae UCG-001, and Ligilactobacillus, and reduce the abundance of Bacteroides and the Eubacterium rum group, as well as alleviating the decrease in short-chain fatty acid (SCFA) content in the feces of UC mice. Notably, SP inhibited miR-155 expression in the colon tissue of UC mice and increased its target protein, suppressor of cytokine signaling 1 (SOCS1), which acts as an inflammatory inhibitor. In summary, the ameliorative effect of SP on UC may be achieved by improving the imbalance of gut microbiota and regulating the miR-155/SOCS1 axis. This study provides a new idea for developing SP as a nutritional supplement to maintain intestinal health.
Collapse
Affiliation(s)
- Jing Mao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Min Zhang
- China−Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
28
|
Yuan S, Wang KS, Meng H, Hou XT, Xue JC, Liu BH, Cheng WW, Li J, Zhang HM, Nan JX, Zhang QG. The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomed Pharmacother 2023; 165:114893. [PMID: 37352702 DOI: 10.1016/j.biopha.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/25/2023] Open
Abstract
Gut microbes constitute the main microbiota in the human body, which can regulate biological processes such as immunity, cell proliferation, and differentiation, hence playing a specific function in intestinal diseases. In recent years, gut microbes have become a research hotspot in the pharmaceutical field. Because of their enormous number, diversity, and functional complexity, gut microbes have essential functions in the development of many digestive diseases. Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease with a complex etiology, the exact cause and pathogenesis are unclear. There are no medicines that can cure IBD, and more research on therapeutic drugs is urgently needed. It has been reported that gut microbes play a critical role in pathogenesis, and there is a tight and complex association between gut microbes and IBD. The dysregulation of gut microbes may be a predisposing factor for IBD, and at the same time, IBD may exacerbate gut microbes' disorders, but the mechanism of interaction between the two is still not well defined. The study of the relationship between gut microbes and IBD is not only important to elucidate the pathogenesis but also has a positive effect on the treatment based on the regimen of regulating gut microbes. This review describes the latest research progress on the functions of gut microbes and their relationship with IBD, which can provide reference and assistance for further research. It may provide a theoretical basis for the application of probiotics, fecal microbiota transplantation, and other therapeutic methods to regulate gut microbes in IBD.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ke-Si Wang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Huan Meng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Xiao-Ting Hou
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jia-Chen Xue
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Bao-Hong Liu
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Wen-Wen Cheng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jiao Li
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Hua-Min Zhang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China.
| |
Collapse
|
29
|
Li Y, Liu X, Zheng Y, Zhang Y, Li Z, Cui Z, Jiang H, Zhu S, Wu S. Ultrasmall Cortex Moutan Nanoclusters for the Therapy of Pneumonia and Colitis. Adv Healthc Mater 2023; 12:e2300402. [PMID: 36898770 DOI: 10.1002/adhm.202300402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Infectious pneumonia and colitis are hard to be treated due to tissue infection, mucosal immune disorders, and dysbacteriosis. Although conventional nanomaterials can eliminate infection, they also damage normal tissues and intestinal flora. Herein, this work reports bactericidal nanoclusters formed through self-assembly for efficient treatment of infectious pneumonia and enteritis. The ultrasmall (about 2.3 nm) cortex moutan nanoclusters (CMNCs) has excellent antibacterial, antiviral, and immune regulation activity. The formation of nanoclusters is analyzed from the molecular dynamics mainly through the binding between polyphenol structures through hydrogen bonding and ππ stacking interaction. CMNCs have enhanced tissue and mucus permeability ability compared with natural CM. CMNCs precisely targeted bacteria due to polyphenol-rich surface structure and inhibited broad spectrum of bacteria. Besides, they killed H1N1 virus mainly through the inhibition of the neuraminidase. These CMNCs are effective in treating infectious pneumonia and enteritis relative to natural CM. In addition, they can be used for adjuvant colitis treatment by protecting colonic epithelium and altering the composition of gut microbiota. Therefore, CMNCs showed excellent application and clinical translation prospects in the treatment of immune and infectious diseases.
Collapse
Affiliation(s)
- Yuan Li
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
30
|
Zheng Y, Li JH, Liao SY, Fu YM, Zhang YJ, Lin JL, Chen XB, Sha WH, Dai SX, Ma WJ. Joint Detection of Serum Vitamin D, Body Mass Index, and Tumor Necrosis Factor Alpha for the Diagnosis of Crohn's Disease. Curr Med Sci 2023:10.1007/s11596-023-2741-6. [PMID: 37249734 DOI: 10.1007/s11596-023-2741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/16/2022] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Vitamin D (VD) deficiency was reported to contribute to the progression of Crohn's disease (CD) and affect the prognosis of CD patients. This study investigated the role of serum VD, body mass index (BMI), and tumor necrosis factor alpha (TNF-α) in the diagnosis of Crohn's disease. METHODS CD patients (n=76) and healthy subjects (n=76) were enrolled between May 2019 and December 2020. The serum 25-hydroxyvitamin D [25(OH)D] levels, BMI, and TNF-α levels, together with other biochemical parameters, were assessed before treatment. The diagnostic efficacy of the single and joint detection of serum 25(OH)D, BMI, and TNF-α was determined using receiver operating characteristic (ROC) curves. RESULTS The levels of 25(OH) D, BMI, and nutritional indicators, including hemoglobin, total protein, albumin, and high-density lipoprotein cholesterol, were much lower, and the TNF-α levels were much higher in the CD patients than in the healthy subjects (P<0.05 for all). The areas under the ROC curve for the single detection of 25(OH)D, BMI, and TNF-α were 0.887, 0.896, and 0.838, respectively, with the optimal cutoff values being 20.64 ng/mL, 19.77 kg/m2, and 6.85 fmol/mL, respectively. The diagnostic efficacy of the joint detection of 25(OH)D, BMI, and TNF-α was the highest, with an area under the ROC curve of 0.988 (95%CI: 0.968-1.000). CONCLUSION The joint detection of 25(OH)D, TNF-α, and BMI showed high sensitivity, specificity, and accuracy in CD diagnosis; thus, it would be effective for the diagnosis of CD in clinical practice.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Jing-Hong Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, China
| | - Shan-Ying Liao
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Yi-Ming Fu
- The First School of Clinical Medicine & Nanfang Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Yan-Jun Zhang
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Jun-Long Lin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, China
| | - Xin-Bin Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, China
| | - Wei-Hong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
| | - Shi-Xue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
| | - Wen-Jun Ma
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Song WS, Hung TH, Liu SH, Zheng YT, Lin HM, Yang FY. Neuroprotection by Abdominal Ultrasound in Lipopolysaccharide-Induced Systemic Inflammation. Int J Mol Sci 2023; 24:ijms24119329. [PMID: 37298275 DOI: 10.3390/ijms24119329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Systemic inflammation is associated with intestinal inflammation and neuroinflammation by imbalancing the gut-brain axis. Low-intensity pulsed ultrasound (LIPUS) has neuroprotective and anti-inflammatory effects. This study explored LIPUS's neuroprotective effects against lipopolysaccharide (LPS)-induced neuroinflammation through transabdominal stimulation. Male C57BL/6J mice were intraperitoneally injected with LPS (0.75 mg/kg) daily for seven days, and abdominal LIPUS was applied to the abdominal area for 15 min/day during the last six days. One day after the last LIPUS treatment, biological samples were collected for microscopic and immunohistochemical analysis. Histological examination showed that LPS administration leads to tissue damage in the colon and brain. Transabdominal LIPUS stimulation attenuated colonic damage, reducing histological score, colonic muscle thickness, and villi shortening. Furthermore, abdominal LIPUS reduced hippocampal microglial activation (labeled by ionized calcium-binding adaptor molecule-1 [Iba-1]) and neuronal cell loss (labeled by microtubule-associated protein 2 [MAP2]). Moreover, abdominal LIPUS attenuated the number of apoptotic cells in the hippocampus and cortex. Altogether, our results indicate that abdominal LIPUS stimulation attenuates LPS-induced colonic inflammation and neuroinflammation. These findings provide new insights into the treatment strategy for neuroinflammation-related brain disorders and may facilitate method development through the gut-brain axis pathway.
Collapse
Affiliation(s)
- Wen-Shin Song
- Division of Neurosurgery, Cheng Hsin General Hospital, Taipei 112, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 106, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Yin-Ting Zheng
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsin-Mei Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
32
|
Recharla N, Geesala R, Shi XZ. Gut Microbial Metabolite Butyrate and Its Therapeutic Role in Inflammatory Bowel Disease: A Literature Review. Nutrients 2023; 15:2275. [PMID: 37242159 PMCID: PMC10221771 DOI: 10.3390/nu15102275] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Background and objective: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disorder characterized by aberrant immune responses and compromised barrier function in the gastrointestinal tract. IBD is associated with altered gut microbiota and their metabolites in the colon. Butyrate, a gut microbial metabolite, plays a crucial role in regulating immune function, epithelial barrier function, and intestinal homeostasis. In this review, we aim to present an overview of butyrate synthesis and metabolism and the mechanism of action of butyrate in maintaining intestinal homeostasis and to discuss the therapeutic implications of butyrate in IBD. Methods: We searched the literature up to March 2023 through PubMed, Web of Science, and other sources using search terms such as butyrate, inflammation, IBD, Crohn's disease, and ulcerative colitis. Clinical studies in patients and preclinical studies in rodent models of IBD were included in the summary of the therapeutic implications of butyrate. Results: Research in the last two decades has shown the beneficial effects of butyrate on gut immune function and epithelial barrier function. Most of the preclinical and clinical studies have shown the positive effect of butyrate oral supplements in reducing inflammation and maintaining remission in colitis animal models and IBD patients. However, butyrate enema showed mixed effects. Butyrogenic diets, including germinated barley foodstuff and oat bran, are found to increase fecal butyrate concentrations and reduce the disease activity index in both animal models and IBD patients. Conclusions: The current literature suggests that butyrate is a potential add-on therapy to reduce inflammation and maintain IBD remission. Further clinical studies are needed to determine if butyrate administration alone is an effective therapeutic treatment for IBD.
Collapse
Affiliation(s)
| | | | - Xuan-Zheng Shi
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, 4.106 Basic Science Building, Galveston, TX 77555-0655, USA; (N.R.); (R.G.)
| |
Collapse
|
33
|
Huang L, Liu B, Yu XW, Pan GQ, Xu JY, Yan D, Wang YL, Guo QN. Rat tight junction proteins are disrupted after subchronic exposure to okadaic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62201-62212. [PMID: 36940028 DOI: 10.1007/s11356-023-26471-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Okadaic acid (OA), a lipophilic phycotoxin distributed worldwide, causes diarrheic shellfish poisoning and even leads to tumor formation. Currently, the consumption of contaminated seafood is the most likely cause of chronic OA exposure, but there is a serious lack of relevant data. Here, the Sprague-Dawley rats were exposure to OA by oral administration at 100 µg/kg body weight, and the tissues were collected and analyzed to assess the effect of subchronic OA exposure. The results showed that subchronic OA administration disturbed colonic mucosal integrity and induced colitis. The colonic tight junction proteins were disrupted and the cell cycle of colonic epithelial cells was accelerated. It is inferred that disruption of the colonic tight junction proteins might be related to the development of chronic diarrhea by affecting water and ion transport. Moreover, the accelerated proliferation of colonic epithelial cells indicated that subchronic OA exposure might promote the restitution process of gut barrier or induce tumor promoter activity in rat colon.
Collapse
Affiliation(s)
- Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Bo Liu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Xiao-Wen Yu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, 400021, People's Republic of China
| | - Guang-Qiang Pan
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jia-Yi Xu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Dong Yan
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Ya-Li Wang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
34
|
Structure Composition and Intracellular Transport of Clathrin-Mediated Intestinal Transmembrane Tight Junction Protein. Inflammation 2023; 46:18-34. [PMID: 36050591 DOI: 10.1007/s10753-022-01724-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Tight junctions (TJs) are located in the apical region of the junctions between epithelial cells and are widely found in organs such as the brain, retina, intestinal epithelium, and endothelial system. As a mechanical barrier of the intestinal mucosa, TJs can not only maintain the integrity of intestinal epithelial cells but also maintain intestinal mucosal permeability by regulating the entry of ions and molecules into paracellular channels. Therefore, the formation disorder or integrity destruction of TJs can induce damage to the intestinal epithelial barrier, ultimately leading to the occurrence of various gastrointestinal diseases, such as inflammatory bowel disease (IBD), gastroesophageal reflux disease (GERD), and irritable bowel syndrome (IBS). However, a large number of studies have shown that TJs protein transport disorder from the endoplasmic reticulum to the apical membrane can lead to TJs formation disorder, in addition to disruption of TJs integrity caused by external pathological factors and reduction of TJs protein synthesis. In this review, we focus on the structural composition of TJs, the formation of clathrin-coated vesicles containing transmembrane TJs from the Golgi apparatus, and the transport process from the Golgi apparatus to the plasma membrane via microtubules and finally fusion with the plasma membrane. At present, the mechanism of the intracellular transport of TJ proteins remains unclear. More studies are needed in the future to focus on the sorting of TJs protein vesicles, regulation of transport processes, and recycling of TJ proteins, etc.
Collapse
|
35
|
Ge Y, Sun F, Zhao B, Kong F, Li Z, Kong X. Bacteria derived extracellular vesicles in the pathogenesis and treatment of gastrointestinal tumours. Front Oncol 2023; 12:1103446. [PMID: 36776356 PMCID: PMC9910087 DOI: 10.3389/fonc.2022.1103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles are fundamentally significant in the communication between cells. Outer Membrane Vesicles(OMVs) are a special kind of EVs produced by Gram-negative bacteria, which are minute exosome-like particles budding from the outer membrane, which have been found to play essential roles in diverse bacterial life events, including regulation of microbial interactions, pathogenesis promotion, stress responses and biofilm formation. Recently, and more researches have explored the substantial potentials of EVs as natural functional nanoparticles in the bioengineering applications in infectious diseases, cardiovascular diseases, autoimmune diseases and neurological diseases, such as antibacterial therapy, cancer drugs and immunoadjuvants, with several candidates in clinical trials showing promising efficacy. However, due to the poor understanding of sources, membrane structures and biogenesis mechanisms of EVs, progress in clinical applications still remains timid. In this review, we summarize the latest findings of EVs, especially in gastrointestinal tract tumours, to provide a comprehensive introduction of EVs in tumorigenesis and therapeutics.
Collapse
Affiliation(s)
- Yang Ge
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China,Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Fengyuan Sun
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Bo Zhao
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Fanyang Kong
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China,Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, Shanghai, China,*Correspondence: Xiangyu Kong, ; Zhaoshen Li, ; Fanyang Kong,
| | - Zhaoshen Li
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China,*Correspondence: Xiangyu Kong, ; Zhaoshen Li, ; Fanyang Kong,
| | - Xiangyu Kong
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China,Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, Shanghai, China,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China,*Correspondence: Xiangyu Kong, ; Zhaoshen Li, ; Fanyang Kong,
| |
Collapse
|
36
|
The Local Activation of Toll-like Receptor 7 (TLR7) Modulates Colonic Epithelial Barrier Function in Rats. Int J Mol Sci 2023; 24:ijms24021254. [PMID: 36674770 PMCID: PMC9865626 DOI: 10.3390/ijms24021254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptors (TLRs)-mediated host-bacterial interactions participate in the microbial regulation of gastrointestinal functions, including the epithelial barrier function (EBF). We evaluated the effects of TLR7 stimulation on the colonic EBF in rats. TLR7 was stimulated with the selective agonist imiquimod (100/300 µg/rat, intracolonic), with or without the intracolonic administration of dimethyl sulfoxide (DMSO). Colonic EBF was assessed in vitro (electrophysiology and permeability to macromolecules, Ussing chamber) and in vivo (passage of macromolecules to blood and urine). Changes in the expression (RT-qPCR) and distribution (immunohistochemistry) of tight junction-related proteins were determined. Expression of proglucagon, precursor of the barrier-enhancer factor glucagon-like peptide 2 (GLP-2) was also assessed (RT-qPCR). Intracolonic imiquimod enhanced the EBF in vitro, reducing the epithelial conductance and the passage of macromolecules, thus indicating a pro-barrier effect of TLR7. However, the combination of TLR7 stimulation and DMSO had a detrimental effect on the EBF, which manifested as an increased passage of macromolecules. DMSO alone had no effect. The modulation of the EBF (imiquimod alone or with DMSO) was not associated with changes in gene expression or the epithelial distribution of the main tight junction-related proteins (occludin, tricellulin, claudin-2, claudin-3, junctional adhesion molecule 1 and Zonula occludens-1). No changes in the proglucagon expression were observed. These results show that TLR7 stimulation leads to the modulation of the colonic EBF, having beneficial or detrimental effects depending upon the state of the epithelium. The underlying mechanisms remain elusive, but seem independent of the modulation of the main tight junction-related proteins or the barrier-enhancer factor GLP-2.
Collapse
|
37
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
38
|
Bourgonje AR, Kloska D, Grochot-Przęczek A, Feelisch M, Cuadrado A, van Goor H. Personalized redox medicine in inflammatory bowel diseases: an emerging role for HIF-1α and NRF2 as therapeutic targets. Redox Biol 2023; 60:102603. [PMID: 36634466 PMCID: PMC9841059 DOI: 10.1016/j.redox.2023.102603] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), are intimately associated with inflammation and overproduction of reactive oxygen species (ROS). Temporal and inter-individual variabilities in disease activity and response to therapy pose significant challenges to diagnosis and patient care. Discovery and validation of truly integrative biomarkers would benefit from embracing redox metabolomics approaches with prioritization of central regulatory hubs. We here make a case for applying a personalized redox medicine approach that aims to selectively inhibit pathological overproduction and/or altered expression of specific enzymatic sources of ROS without compromising physiological function. To this end, improved 'clinical-omics integration' may help to better understand which particular redox signaling pathways are disrupted in what patient. Pharmacological interventions capable of activating endogenous antioxidant defense systems may represent viable therapeutic options to restore local/systemic redox status, with HIF-1α and NRF2 holding particular promise in this context. Achieving the implementation of clinically meaningful mechanism-based biomarkers requires development of easy-to-use, robust and cost-effective tools for secure diagnosis and monitoring of treatment efficacy. Ultimately, matching redox-directed pharmacological interventions to individual patient phenotypes using predictive biomarkers may offer new opportunities to break the therapeutic ceiling in IBD.
Collapse
Affiliation(s)
- Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands,Corresponding author.
| | - Damian Kloska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC. Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
39
|
Lv X, Chen L, Zhou C, Guo Y, Zhang G, Kang J, Tan Z, Tang S, Liu Z. Dietary tea tree ( Melaleuca alternifolia) oil supplementation enhances the expressions of amino acid transporters in goat ileal mucosa and improves intestinal immunity. Food Sci Nutr 2022; 10:3749-3758. [PMID: 36348789 PMCID: PMC9632209 DOI: 10.1002/fsn3.2972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 09/08/2024] Open
Abstract
Tea tree oil (TTO) is a plant-derived additive with anti-inflammatory, bactericidal, and growth-promoting properties. However, little is known about the effects of TTO on intestinal amino acid transport and immune function in goats. Twenty-four Ganxi goats (initial body weight of 13.5 ± 0.70 kg) were randomly allotted two treatments and fed either control (CON) or CON+TTO (0.2 ml/kg) diet. The addition of TTO to the diet significantly decreased (p < .05) tumor necrosis factor-α content and increased (p < .05) interleukin-2 (IL-2) content in goat serum; significantly decreased (p < .05) IL-12, and increased (p < .05) IL-2 content in goat ileal mucosa; significantly increased (p < .05) secreted IgA content in the jejunal and ileal mucosa; significantly upregulated (p < .05) IL-2 and downregulated (p < .05) IL-12 at the mRNA level in the ileal mucosa; significantly elevated the levels of serine, arginine, and total amino acids in the ileal mucosa (p < .05); significantly upregulated (p < .05) SLC1A1 and SLC7A1 in the ileum; and significantly enhanced (p < .05) the protein expression of Claudin-1 in the ileal mucosa. In summary, adding 0.2 ml/kg of TTO to the diet enhanced SLC1A1 and SLC7A1 mRNA expression in the ileal mucosa, and SLC1A1 and SLC7A1 could transport serine and arginine from the chyme to the ileal mucosa. Thus, increased serine and arginine content in the mucosa could improve intestinal immunity. TTO supplementation upregulated the expression of IL-2 and Claudin-1 in goat ileal mucosa, and enhanced immune function in the intestine.
Collapse
Affiliation(s)
- Xiaokang Lv
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
- College of Advanced AgriculturalUniversity of Chinese Academy of SciencesBeijingChina
| | - Liang Chen
- Shenyang Agricultural UniversityInstitute of Rural Revitalization StrategyShenyangChina
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
- College of Advanced AgriculturalUniversity of Chinese Academy of SciencesBeijingChina
- School of AgricultureNingxia UniversityYinchuanChina
| | - Yibing Guo
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Guijie Zhang
- School of AgricultureNingxia UniversityYinchuanChina
| | - Jinhe Kang
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Zhiliang Tan
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Shaoxun Tang
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
| | - Zixin Liu
- CAS Key Laboratory for Agro‐Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic ProcessInstitute of Subtropical Agriculture, Chinese Academy of SciencesChangshaChina
- College of Advanced AgriculturalUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
40
|
Ulluwishewa D, Mullaney J, Adam K, Claycomb R, Anderson RC. A bioactive bovine whey protein extract improves intestinal barrier function in vitro. JDS COMMUNICATIONS 2022; 3:387-392. [PMID: 36465501 PMCID: PMC9709612 DOI: 10.3168/jdsc.2022-0245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/30/2022] [Indexed: 06/17/2023]
Abstract
The human intestine plays an important role as a barrier against the ingress of pathogens and other harmful antigens. Accordingly, proper regulation of the intestinal barrier is essential for optimal health. Intestinal barrier function is regulated in part by the interactions between dietary compounds and the intestinal immune system. Bioactive whey proteins from bovine milk (such as lactoferrin, lactoperoxidase, and immunoglobulins) are known to exert a range of physiological functions, including modulation of the immune system, and thus have the potential to regulate intestinal barrier function. While the effects of individual whey proteins on intestinal barrier function have been studied to some extent, less is known about the potentially synergistic properties of whey protein mixtures. Here we investigated the effects of a bioactive bovine whey protein (BWP) extract containing all whey proteins with an isoelectric point >6.8 on intestinal barrier function in vitro. Intestinal epithelial cell (Caco-2) monolayers were treated with BWP before measuring the barrier integrity over 48 h by means of trans-epithelial electrical resistance (TEER). Treatment of epithelial monolayers with 1 mg/mL BWP resulted in an increase in TEER compared with untreated epithelial monolayers. To determine whether BWP could mitigate immune-mediated intestinal barrier dysfunction, we challenged differentiated Caco-2 cell monolayers with tumor necrosis factor α (TNFα) to obtain an in vitro model of a "leaky" intestinal epithelium. The TNFα challenge led to a decrease in TEER over time across untreated control monolayers, indicating a loss of barrier function. This loss of barrier function was mitigated in monolayers treated with 1 mg/mL BWP, but not monolayers treated with the equivalent amount of lactoferrin present in 1 mg/mL BWP. These data suggest that naturally co-occurring bioactive proteins together may enhance intestinal barrier integrity and protect against inflammation-induced barrier dysfunction to a greater extent than lactoferrin alone. Further work is required to determine the key proteins and protein combinations within BWP, and the mechanisms through which BWP modulates intestinal barrier function.
Collapse
Affiliation(s)
- Dulantha Ulluwishewa
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Jane Mullaney
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand
| | | | | | - Rachel C. Anderson
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| |
Collapse
|
41
|
Wu B, Tan Y, Huang H, Liu Y, Bai T, Yang L. Alleviating Effect of Methionine on Intestinal Development and Intercellular Junction Induced by Nickel. Biol Trace Elem Res 2022; 200:4007-4016. [PMID: 34739676 DOI: 10.1007/s12011-021-02992-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022]
Abstract
The aim of this study was to investigate the alleviating effect of methionine (Met) on intestinal injury induced by nickel. The mice were divided into six groups: Met-deficient + nickel group (MDN), Met-deficient group (MD), Met + nickel group (MN), high-dose Met + nickel group (HMN), high-dose Met group (HM), and blank control group (BC). Histopathological techniques, Alcian blue-periodic acid Schiff (AB-PAS) staining, enzyme-linked immunosorbent assay (ELISA), and real-time PCR were used to study the changes of intestinal development, the number of goblet cells, and the intercellular junction. The results showed that Met can inhibit the intestinal villus length and crypt depth decreases induced by nickel and increase the index villus length and crypt depth (V/C), the number of goblet cells, and the content of diamine oxidase (DAO) and decrease the content of fatty acid binding protein2 (FABP2) and endotoxin (ET) of the intestinal mucosa damage parameters, and the mRNA expression of intercellular junction (occludin, ZO-1, claudin-1) was damaged. It is suggested that Met could help inhibit the toxic effect of nickel on the intestinal development and intercellular connection.
Collapse
Affiliation(s)
- Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education People's Republic of China, Nanchong, People's Republic of China.
- College of Life Sciences, China West Normal University, Nanchong, People's Republic of China.
| | - Yongci Tan
- College of Life Sciences, China West Normal University, Nanchong, People's Republic of China
| | - Haiying Huang
- College of Life Sciences, China West Normal University, Nanchong, People's Republic of China
| | - Yiwei Liu
- College of Life Sciences, China West Normal University, Nanchong, People's Republic of China
| | - Tingrui Bai
- College of Life Sciences, China West Normal University, Nanchong, People's Republic of China
| | - Lulu Yang
- College of Life Sciences, China West Normal University, Nanchong, People's Republic of China
| |
Collapse
|
42
|
Gao Y, Zhou B, Zhang H, Chen L, Wang X, Chen H, Zhou L. l-Ergothioneine Exhibits Protective Effects against Dextran Sulfate Sodium-Induced Colitis in Mice. ACS OMEGA 2022; 7:21554-21565. [PMID: 35785312 PMCID: PMC9245115 DOI: 10.1021/acsomega.2c01350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Background: Ulcerative colitis (UC) is a chronic disease of the intestinal tract in which excessive activation of inflammatory response is correlated. l-Ergothioneine (EGT) widely existing in mushrooms has various physiological activities. In this study, the protective effects of EGT on dextran sulfate sodium (DSS)-induced colitis mice were investigated. Results: It was observed that EGT administration, especially at the high dose level, prevented the body weight loss, the colon shortening, and the increase in disease activity index and spleen index caused by DSS. Moreover, EGT supplementation attenuated DSS-induced gut barrier damage by enhancing the expression of tight-junction protein and recovering the loss of gut mucus layer. Furthermore, EGT considerably decreased the colonic myeloperoxidase (MPO) activity induced by DSS, but no significant differences were observed in the concentrations of IL-6 and TNF-α in colon tissues. Additionally, EGT downregulated the populations of CD4+ T cells and macrophages, indicating that EGT stabilized the immune response caused by DSS. Conclusion: Together these results suggest that EGT can alleviate DSS-induced colitis and provide important insights concerning the potential anticolitis activity of such food products.
Collapse
Affiliation(s)
- Yanju Gao
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Bo Zhou
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Han Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Lin Chen
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Xiaohong Wang
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Hongbing Chen
- State
Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German
Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Lin Zhou
- Department
of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
43
|
Yang T, Shen J. Small nucleolar RNAs and SNHGs in the intestinal mucosal barrier: Emerging insights and current roles. J Adv Res 2022; 46:75-85. [PMID: 35700920 PMCID: PMC10105082 DOI: 10.1016/j.jare.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous studies have focused on the involvement of small nucleolar RNAs (snoRNAs) and SNHGs in tumor cell proliferation, apoptosis, invasion, and metastasis via multiple pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), Wnt/β catenin, and mitogen-activated protein kinase (MAPK). These molecular mechanisms affect the integrity of the intestinal mucosal barrier. AIM OF REVIEW Current evidence regarding snoRNAs and SNHGs in the context of the mucosal barrier and modulation of homeostasis is fragmented. In this review, we collate the established information on snoRNAs and SNHGs as well as discuss the major pathways affecting the mucosal barrier. KEY SCIENTIFIC CONCEPTS OF REVIEW Intestinal mucosal immunity, microflora, and the physical barrier are altered in non-neoplastic diseases such as inflammatory bowel diseases. Dysregulated snoRNAs and SNHGs may impact the intestinal mucosal barrier to promote the pathogenesis and progression of multiple diseases. SnoRNAs or SNHGs has been shown to be associated with poor disease behaviors, indicating that they may be exploited as prognostic biomarkers. Additionally, clarifying the complicated interactions between snoRNAs or SNHGs and the mucosal barrier may provide novel insights for the therapeutic treatment targeting strengthen the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Tian Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China.
| |
Collapse
|
44
|
Xia P, Hou T, Ma M, Li S, Jin H, Luo X, Li J, Geng F, Li B. Konjac oligosaccharides attenuate DSS-induced ulcerative colitis in mice: mechanistic insights. Food Funct 2022; 13:5626-5639. [PMID: 35506498 DOI: 10.1039/d1fo04004a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study aims to explore the protective effect of konjac oligosaccharides (KOS) on inflammatory bowel disease in colitis mice. During the experimental period, mice were administered 200 mg kg-1 or 600 mg kg-1 KOS, 200 mg kg-1 sulfasalazine and a combination of KOS and sulfasalazine for 14 days. The mice were then treated with drinking water containing 2.5% DSS for 9 days, while the intervention of KOS and sulfasalazine continued. At the end of the experiment, the phenotype, pathological lesion of the colon, parameters of cytokines and gut microbiota were evaluated. The results showed that mice treated with KOS exhibited alleviated pathological lesion of the colon tissue and significantly increased expression of tight junction proteins (p < 0.05). The level of inflammatory cytokines in the colon tissue of the colitis mice tended to be normal. Moreover, the analysis of the gut microbiota revealed that the structures and composition of the intestinal microorganisms were also regulated by KOS treatment. The possible internal mechanism is that KOS down-regulates the abundance of pro-inflammatory bacteria (Proteobacteria, Campilobacterota and Clostridiaceae) and up-regulates the abundance of anti-inflammatory bacteria (Bifidobacteriaceae and Akkermansiaceae). These findings provide new insights into dietary management for patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Muyuan Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xuan Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
45
|
Rao K, Qin S, Yang Y, Zhan K, Wu H, Zheng H, Huang S. Shenling Baizhu Powder Alleviates TNBS-Induced Colitis in Rats by Improving Intestinal Epithelial Permeability and Inhibiting Inflammation Through the TLR5/MyD88/NF-κB Pathway. Front Pharmacol 2022; 13:883918. [PMID: 35571126 PMCID: PMC9096158 DOI: 10.3389/fphar.2022.883918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Aim of the study: To evaluate the protective effect and mechanism of shenling baizhu powder (SBP) on TNBS-induced colitis. Methods: Rats were given TNBS to establish the model of colitis and subsequently treated with different doses of SBP or mesalamine (MES). In addition, the expression of the TLR5/MyD88/NF-κB signaling pathway and critical targets of the intestinal mucosal barrier was detected by immunochemical analysis techniques. Results: SBP significantly ameliorated the symptoms of TNBS-induced colitis in rats and reduced the secretion of pro-inflammatory cytokines. SBP could effectively strengthen epithelial barrier integrity in TNBS-induced colitis by increasing the secretion of mucin and tight junction and inhibiting apoptosis. Furthermore, we identified the crucial role of the TLR5/MyD88/NF-κB signaling pathway in exerting the therapeutic effect of SBP. Conclusion: The results of our study suggest that SBP has therapeutic effects on TNBS-induced colitis and potential value in treating and maintaining remission of colitis.
Collapse
Affiliation(s)
- Kehan Rao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shumin Qin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou, China
| | - Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Kai Zhan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haomeng Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou, China
| | - Huan Zheng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou, China
- *Correspondence: Huan Zheng, ; Shaogang Huang,
| | - Shaogang Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou, China
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
- *Correspondence: Huan Zheng, ; Shaogang Huang,
| |
Collapse
|
46
|
Chen Z, Zhang Z, Liu J, Qi H, Li J, Chen J, Huang Q, Liu Q, Mi J, Li X. Gut Microbiota: Therapeutic Targets of Ginseng Against Multiple Disorders and Ginsenoside Transformation. Front Cell Infect Microbiol 2022; 12:853981. [PMID: 35548468 PMCID: PMC9084182 DOI: 10.3389/fcimb.2022.853981] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Panax ginseng, as the king of Chinese herb, has significant therapeutic effects on obesity, type 2 diabetes mellitus, fatty liver disease, colitis, diarrhea, and many other diseases. This review systematically summarized recent findings, which show that ginseng plays its role by regulating gut microbiota diversity, and gut microbiota could also regulate the transformation of ginsenosides. We conclude the characteristics of ginseng in regulating gut microbiota, as the potential targets to prevent and treat metabolic diseases, colitis, neurological diseases, cancer, and other diseases. Ginseng treatment can increase some probiotics such as Bifidobacterium, Bacteroides, Verrucomicrobia, Akkermansia, and reduce pathogenic bacteria such as Deferribacters, Lactobacillus, Helicobacter against various diseases. Meanwhile, Bacteroides, Eubacterium, and Bifidobacterium were found to be the key bacteria for ginsenoside transformation in vivo. Overall, ginseng can regulate gut microbiome diversity, further affect the synthesis of secondary metabolites, as well as promote the transformation of ginsenosides for improving the absorptivity of ginsenosides. This review can provide better insight into the interaction of ginseng with gut microbiota in multiple disorders and ginsenoside transformation.
Collapse
Affiliation(s)
- Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Qing Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Jia Mi, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Jia Mi, ; Xiangyan Li,
| |
Collapse
|
47
|
Tam RY, van Dorst JM, McKay I, Coffey M, Ooi CY. Intestinal Inflammation and Alterations in the Gut Microbiota in Cystic Fibrosis: A Review of the Current Evidence, Pathophysiology and Future Directions. J Clin Med 2022; 11:649. [PMID: 35160099 PMCID: PMC8836727 DOI: 10.3390/jcm11030649] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting autosomal recessive multisystem disease. While its burden of morbidity and mortality is classically associated with pulmonary disease, CF also profoundly affects the gastrointestinal (GI) tract. Chronic low-grade inflammation and alterations to the gut microbiota are hallmarks of the CF intestine. The etiology of these manifestations is likely multifactorial, resulting from cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, a high-fat CF diet, and the use of antibiotics. There may also be a bidirectional pathophysiological link between intestinal inflammation and changes to the gut microbiome. Additionally, a growing body of evidence suggests that these GI manifestations may have significant clinical associations with growth and nutrition, quality of life, and respiratory function in CF. As such, the potential utility of GI therapies and long-term GI outcomes are areas of interest in CF. Further research involving microbial modulation and multi-omics techniques may reveal novel insights. This article provides an overview of the current evidence, pathophysiology, and future research and therapeutic considerations pertaining to intestinal inflammation and alterations in the gut microbiota in CF.
Collapse
Affiliation(s)
- Rachel Y. Tam
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Josie M. van Dorst
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Isabelle McKay
- Wagga Wagga Base Hospital, Wagga Wagga, NSW 2650, Australia;
| | - Michael Coffey
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
| | - Chee Y. Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
| |
Collapse
|
48
|
Kai L, Zong X, Jiang Q, Lu Z, Wang F, Wang Y, Wang T, Jin M. Protective effects of polysaccharides from Atractylodes macrocephalae Koidz. against dextran sulfate sodium induced intestinal mucosal injury on mice. Int J Biol Macromol 2022; 195:142-151. [PMID: 34896465 DOI: 10.1016/j.ijbiomac.2021.12.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023]
Abstract
In the present research, the water-soluble polysaccharides (AMP) from Atractylodes macrocephalae Koidz. were isolated and prepared. The protective effects of AMP on intestinal mucosal barrier injury induced by dextran sulfate sodium (DSS) in mice were investigated. It was found that AMP treatment significantly alleviated the body weight decreases and shorten colon length, and ameliorated colonic damage induced by DSS. Importantly, AMP prevented the over-expression of proinflammatory cytokines TNF-α, IL-1β and IL-6, and decreased the infiltration of neutrophils in colon. Additionally, AMP could raise expressions of Mucin 2 and tight junction protein Claudin-1. AMP also modulated the intestinal microbiota by enhancing the overall richness and diversity, greatly reducing the proportion of harmful bacteria, for instance, Clostridiumsensu stricto1 and Escherichia Shigella, however, augmenting the ratio of potential beneficial bacteria such as Faecalibaculum and Bifidobacterium. This work offers some important insights on protective effects of polysaccharides AMP against intestinal barrier dysfunction and provides underlying mechanism of health-beneficial properties of these biological macromolecules.
Collapse
Affiliation(s)
- Lixia Kai
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou 310058, PR China; Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Zong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou 310058, PR China; Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qin Jiang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zeqing Lu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou 310058, PR China; Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fengqin Wang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou 310058, PR China; Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yizhen Wang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou 310058, PR China; Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Tenghao Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Qinglian Food Co., Ltd., Jiaxing 314399, PR China.
| | - Mingliang Jin
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, PR China; National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou 310058, PR China; Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
49
|
The Protective Effects of Lactoferrin on Aflatoxin M1-Induced Compromised Intestinal Integrity. Int J Mol Sci 2021; 23:ijms23010289. [PMID: 35008712 PMCID: PMC8745159 DOI: 10.3390/ijms23010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
Aflatoxin M1 (AFM1), the only toxin with maximum residue levels in milk, has adverse effects on the intestinal barrier, resulting in intestinal inflammatory disease. Lactoferrin (LF), one of the important bioactive proteins in milk, performs multiple biological functions, but knowledge of the protective effects of LF on the compromised intestinal barrier induced by AFM1 has not been investigated. In the present study, results using Balb/C mice and differentiated Caco-2 cells showed that LF intervention decreased AFM1-induced increased intestinal permeability, improved the protein expression of claudin-3, occludin and ZO-1, and repaired the injured intestinal barrier. The transcriptome and proteome were used to clarify the underlying mechanisms. It was found that LF reduced the intestinal barrier dysfunction caused by AFM1 and was associated with intestinal cell survival related pathways, such as cell cycle, apoptosis and MAPK signaling pathway and intestinal integrity related pathways including endocytosis, tight junction, adherens junction and gap junction. The cross-omics analysis suggested that insulin receptor (INSR), cytoplasmic FMR1 interacting protein 2 (CYFIP2), dedicator of cytokinesis 1 (DOCK1) and ribonucleotide reductase regulatory subunit M2 (RRM2) were the potential key regulators as LF repaired the compromised intestinal barrier. These findings indicated that LF may be an alternative treatment for the compromised intestinal barrier induced by AFM1.
Collapse
|
50
|
Naskar A, Cho H, Lee S, Kim KS. Biomimetic Nanoparticles Coated with Bacterial Outer Membrane Vesicles as a New-Generation Platform for Biomedical Applications. Pharmaceutics 2021; 13:1887. [PMID: 34834302 PMCID: PMC8618801 DOI: 10.3390/pharmaceutics13111887] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
The biomedical field is currently reaping the benefits of research on biomimetic nanoparticles (NPs), which are synthetic nanoparticles fabricated with natural cellular materials for nature-inspired biomedical applications. These camouflage NPs are capable of retaining not only the physiochemical properties of synthetic nanoparticles but also the original biological functions of the cellular materials. Accordingly, NPs coated with cell-derived membrane components have achieved remarkable growth as prospective biomedical materials. Particularly, bacterial outer membrane vesicle (OMV), which is a cell membrane coating material for NPs, is regarded as an important molecule that can be employed in several biomedical applications, including immune response activation, cancer therapeutics, and treatment for bacterial infections with photothermal activity. The currently available cell membrane-coated NPs are summarized in this review. Furthermore, the general features of bacterial OMVs and several multifunctional NPs that could serve as inner core materials in the coating strategy are presented, and several methods that can be used to prepare OMV-coated NPs (OMV-NPs) and their characterization are highlighted. Finally, some perspectives of OMV-NPs in various biomedical applications for future potential breakthrough are discussed. This in-depth review, which includes potential challenges, will encourage researchers to fabricate innovative and improvised, new-generation biomimetic materials through future biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.N.); (H.C.); (S.L.)
| |
Collapse
|