BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: O'Harte FP, Ng MT, Lynch AM, Conlon JM, Flatt PR. Dogfish glucagon analogues counter hyperglycaemia and enhance both insulin secretion and action in diet-induced obese diabetic mice. Diabetes Obes Metab 2016;18:1013-24. [PMID: 27357054 DOI: 10.1111/dom.12713] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Graham GV, Conlon JM, Abdel-wahab YH, Flatt PR. Glucagon-related peptides from phylogenetically ancient fish reveal new approaches to the development of dual GCGR and GLP1R agonists for type 2 diabetes therapy. Peptides 2018;110:19-29. [DOI: 10.1016/j.peptides.2018.10.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
2 Parthsarathy V, Hogg C, Flatt PR, O'harte FPM. Beneficial long‐term antidiabetic actions of N ‐ and C ‐terminally modified analogues of apelin‐13 in diet‐induced obese diabetic mice. Diabetes Obes Metab 2017;20:319-27. [DOI: 10.1111/dom.13068] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
3 O'harte FP, Parthsarathy V, Hogg C, Flatt PR. Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties. Biochemical Pharmacology 2017;146:165-73. [DOI: 10.1016/j.bcp.2017.10.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
4 Green AD, Vasu S, Flatt PR. Cellular models for beta-cell function and diabetes gene therapy. Acta Physiol (Oxf) 2018;222. [PMID: 29226587 DOI: 10.1111/apha.13012] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
5 Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon-like peptides-1 from phylogenetically ancient fish show potent anti-diabetic activities by acting as dual GLP1R and GCGR agonists. Mol Cell Endocrinol 2019;480:54-64. [PMID: 30312651 DOI: 10.1016/j.mce.2018.10.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
6 Evers A, Haack T, Lorenz M, Bossart M, Elvert R, Henkel B, Stengelin S, Kurz M, Glien M, Dudda A, Lorenz K, Kadereit D, Wagner M. Design of Novel Exendin-Based Dual Glucagon-like Peptide 1 (GLP-1)/Glucagon Receptor Agonists. J Med Chem 2017;60:4293-303. [DOI: 10.1021/acs.jmedchem.7b00174] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 12.2] [Reference Citation Analysis]
7 Bailey CJ. Glucose-lowering therapies in type 2 diabetes: Opportunities and challenges for peptides. Peptides 2018;100:9-17. [DOI: 10.1016/j.peptides.2017.11.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
8 Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon from the phylogenetically ancient paddlefish provides a template for the design of a long-acting peptide with effective anti-diabetic and anti-obesity activities. Eur J Pharmacol 2020;878:173101. [PMID: 32320703 DOI: 10.1016/j.ejphar.2020.173101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Conlon JM, Attoub S, Musale V, Leprince J, Casewell NR, Sanz L, Calvete JJ. Isolation and characterization of cytotoxic and insulin-releasing components from the venom of the black-necked spitting cobra Naja nigricollis (Elapidae). Toxicon X 2020;6:100030. [PMID: 32550585 DOI: 10.1016/j.toxcx.2020.100030] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
10 Graham GV, Mccloskey A, Abdel-wahab YH, Conlon JM, Flatt PR. A long-acting, dual-agonist analogue of lamprey GLP-1 shows potent insulinotropic, β-cell protective, and anorexic activities and improves glucose homeostasis in high fat-fed mice. Molecular and Cellular Endocrinology 2020;499:110584. [DOI: 10.1016/j.mce.2019.110584] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
11 Evers A, Bossart M, Pfeiffer-marek S, Elvert R, Schreuder H, Kurz M, Stengelin S, Lorenz M, Herling A, Konkar A, Lukasczyk U, Pfenninger A, Lorenz K, Haack T, Kadereit D, Wagner M. Dual Glucagon-like Peptide 1 (GLP-1)/Glucagon Receptor Agonists Specifically Optimized for Multidose Formulations. J Med Chem 2018;61:5580-93. [DOI: 10.1021/acs.jmedchem.8b00292] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
12 Graham GV, Conlon JM, Abdel-wahab YH, Gault VA, Flatt PR. Evaluation of the insulinotropic and glucose-lowering actions of zebrafish GIP in mammalian systems: Evidence for involvement of the GLP-1 receptor. Peptides 2018;100:182-9. [DOI: 10.1016/j.peptides.2017.11.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
13 Peterson RG, Jackson CV, Zimmerman KM, Alsina-Fernandez J, Michael MD, Emmerson PJ, Coskun T. Glucose dysregulation and response to common anti-diabetic agents in the FATZO/Pco mouse. PLoS One. 2017;12:e0179856. [PMID: 28640857 DOI: 10.1371/journal.pone.0179856] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
14 Patil M, Deshmukh NJ, Patel M, Sangle GV. Glucagon-based therapy: Past, present and future. Peptides 2020;127:170296. [DOI: 10.1016/j.peptides.2020.170296] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
15 Lafferty RA, O'Harte FPM, Irwin N, Gault VA, Flatt PR. Proglucagon-Derived Peptides as Therapeutics. Front Endocrinol (Lausanne) 2021;12:689678. [PMID: 34093449 DOI: 10.3389/fendo.2021.689678] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Graham GV, Conlon JM, Moffett RC, Abdel-Wahab YH, Flatt PR. Effects of long-acting analogues of lamprey GLP-1 and paddlefish glucagon on alpha- to beta-cell transdifferentiation in an insulin-deficient transgenic mouse model. J Pept Sci 2021;27:e3328. [PMID: 33843129 DOI: 10.1002/psc.3328] [Reference Citation Analysis]
17 Conlon JM, O'Harte FPM, Flatt PR. Dual-agonist incretin peptides from fish with potential for obesity-related Type 2 diabetes therapy - A review. Peptides 2021;147:170706. [PMID: 34861327 DOI: 10.1016/j.peptides.2021.170706] [Reference Citation Analysis]
18 Lafferty RA, Tanday N, McCloskey A, Bompada P, De Marinis Y, Flatt PR, Irwin N. Peptide YY (1-36) peptides from phylogenetically ancient fish targeting mammalian neuropeptide Y1 receptors demonstrate potent effects on pancreatic β-cell function, growth and survival. Diabetes Obes Metab 2020;22:404-16. [PMID: 31692207 DOI: 10.1111/dom.13908] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
19 Elvert R, Herling AW, Bossart M, Weiss T, Zhang B, Wenski P, Wandschneider J, Kleutsch S, Butty U, Kannt A, Wagner M, Haack T, Evers A, Dudda A, Lorenz M, Keil S, Larsen PJ. Running on mixed fuel-dual agonistic approach of GLP-1 and GCG receptors leads to beneficial impact on body weight and blood glucose control: A comparative study between mice and non-human primates. Diabetes Obes Metab 2018;20:1836-51. [PMID: 29938884 DOI: 10.1111/dom.13212] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]