BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li H, Gidley MJ, Dhital S. High-Amylose Starches to Bridge the “Fiber Gap”: Development, Structure, and Nutritional Functionality: High-amylose starch to bridge “fiber gap”. . . Comprehensive Reviews in Food Science and Food Safety 2019;18:362-79. [DOI: 10.1111/1541-4337.12416] [Cited by in Crossref: 64] [Cited by in F6Publishing: 38] [Article Influence: 21.3] [Reference Citation Analysis]
Number Citing Articles
1 Korompokis K, Verbeke K, Delcour JA. Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches: A review and a guide. Compr Rev Food Sci Food Saf 2021;20:5965-91. [PMID: 34601805 DOI: 10.1111/1541-4337.12847] [Reference Citation Analysis]
2 Lyu Y, Ma S, Liu J, Wang X. A systematic review of highland barley: Ingredients, health functions and applications. Grain & Oil Science and Technology 2021. [DOI: 10.1016/j.gaost.2021.12.002] [Reference Citation Analysis]
3 Chi C, Li X, Huang S, Chen L, Zhang Y, Li L, Miao S. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends in Food Science & Technology 2021;109:154-68. [DOI: 10.1016/j.tifs.2021.01.024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
4 Sun Y, Zhong C, Zhou Z, Lei Z, Langrish TAG. A Review of In Vitro Methods for Measuring the Glycemic Index of Single Foods: Understanding the Interaction of Mass Transfer and Reaction Engineering by Dimensional Analysis. Processes 2022;10:759. [DOI: 10.3390/pr10040759] [Reference Citation Analysis]
5 Salazar D, Arancibia M, Raza K, López-Caballero ME, Montero MP. Influence of Underutilized Unripe Banana (Cavendish) Flour in the Formulation of Healthier Chorizo. Foods 2021;10:1486. [PMID: 34206889 DOI: 10.3390/foods10071486] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 You H, Liang C, Zhang O, Xu H, Xu L, Chen Y, Xiang X. Variation of resistant starch content in different processing types and their starch granules properties in rice. Carbohydr Polym 2022;276:118742. [PMID: 34823776 DOI: 10.1016/j.carbpol.2021.118742] [Reference Citation Analysis]
7 Li HT, Li Z, Fox GP, Gidley MJ, Dhital S. Protein-starch matrix plays a key role in enzymic digestion of high-amylose wheat noodle. Food Chem 2021;336:127719. [PMID: 32768911 DOI: 10.1016/j.foodchem.2020.127719] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
8 Seung D. Amylose in starch: towards an understanding of biosynthesis, structure and function. New Phytol 2020;228:1490-504. [PMID: 32767769 DOI: 10.1111/nph.16858] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
9 Corrado M, Cherta-Murillo A, Chambers ES, Wood AJ, Plummer A, Lovegrove A, Edwards CH, Frost GS, Hazard BA. Effect of semolina pudding prepared from starch branching enzyme IIa and b mutant wheat on glycaemic response in vitro and in vivo: a randomised controlled pilot study. Food Funct 2020;11:617-27. [PMID: 31859318 DOI: 10.1039/c9fo02460c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Liu Q, Wang Y, Yang Y, Bian S, Zhou X, Zhu K, Xu L, Jin Z, Jiao A. Effects of extrusion and enzymatic debranching on the structural characteristics and digestibility of corn and potato starches. Food Bioscience 2022;47:101679. [DOI: 10.1016/j.fbio.2022.101679] [Reference Citation Analysis]
11 Li C, Dhital S, Gilbert RG, Gidley MJ. High-amylose wheat starch: Structural basis for water absorption and pasting properties. Carbohydrate Polymers 2020;245:116557. [DOI: 10.1016/j.carbpol.2020.116557] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
12 Jukanti AK, Pautong PA, Liu Q, Sreenivasulu N. Low glycemic index rice—a desired trait in starchy staples. Trends in Food Science & Technology 2020;106:132-49. [DOI: 10.1016/j.tifs.2020.10.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
13 Li H, Chen S, Bui AT, Xu B, Dhital S. Natural ‘capsule’ in food plants: Cell wall porosity controls starch digestion and fermentation. Food Hydrocolloids 2021;117:106657. [DOI: 10.1016/j.foodhyd.2021.106657] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
14 Yu J, Wang K, Beckles DM. Starch branching enzymes as putative determinants of postharvest quality in horticultural crops. BMC Plant Biol 2021;21:479. [PMID: 34674662 DOI: 10.1186/s12870-021-03253-6] [Reference Citation Analysis]
15 Junejo SA, Ding L, Fu X, Xiong W, Zhang B, Huang Q. Pea cell wall integrity controls the starch and protein digestion properties in the INFOGEST in vitro simulation. Int J Biol Macromol 2021;182:1200-7. [PMID: 33984387 DOI: 10.1016/j.ijbiomac.2021.05.014] [Reference Citation Analysis]
16 Kalra A, Bhat P, Kaur IP. Deciphering molecular mechanics in the taste masking ability of Maltodextrin: Developing pediatric formulation of Oseltamivir for viral pandemia. Carbohydr Polym 2021;260:117703. [PMID: 33712119 DOI: 10.1016/j.carbpol.2021.117703] [Reference Citation Analysis]
17 Li H, Yu W, Dhital S, Gidley MJ, Gilbert RG. Starch branching enzymes contributing to amylose and amylopectin fine structure in wheat. Carbohydrate Polymers 2019;224:115185. [DOI: 10.1016/j.carbpol.2019.115185] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
18 Luo S, Ma Q, Zhong Y, Jing J, Wei Z, Zhou W, Lu X, Tian Y, Zhang P. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava. Plant Mol Biol 2021. [PMID: 34792751 DOI: 10.1007/s11103-021-01215-y] [Reference Citation Analysis]
19 Pan T, Lin L, Zhang L, Zhang C, Liu Q, Wei C. Changes in kernel properties, in situ gelatinization, and physicochemical properties of waxy rice with inhibition of starch branching enzyme during cooking. Int J Food Sci Technol 2019;54:2780-91. [DOI: 10.1111/ijfs.14193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
20 Apostolidis E, Mandala I. Modification of resistant starch nanoparticles using high-pressure homogenization treatment. Food Hydrocolloids 2020;103:105677. [DOI: 10.1016/j.foodhyd.2020.105677] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
21 Hu X, Cheng L, Hong Y, Li Z, Li C, Gu Z. An extensive review: How starch and gluten impact dough machinability and resultant bread qualities. Crit Rev Food Sci Nutr 2021;:1-12. [PMID: 34423705 DOI: 10.1080/10408398.2021.1969535] [Reference Citation Analysis]
22 Xie Y, Zhu M, Liu H, Fan Z, Zhang Y, Qin X, Liu X. Effects of β-glucan and various thermal processing methods on the in vitro digestion of hulless barley starch. Food Chem 2021;360:129952. [PMID: 34000632 DOI: 10.1016/j.foodchem.2021.129952] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Li H, Sartika RS, Kerr ED, Schulz BL, Gidley MJ, Dhital S. Starch granular protein of high-amylose wheat gives innate resistance to amylolysis. Food Chemistry 2020;330:127328. [DOI: 10.1016/j.foodchem.2020.127328] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
24 Li H, Dhital S, Flanagan BM, Mata J, Gilbert EP, Gidley MJ. High-amylose wheat and maize starches have distinctly different granule organization and annealing behaviour: A key role for chain mobility. Food Hydrocolloids 2020;105:105820. [DOI: 10.1016/j.foodhyd.2020.105820] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
25 Zhong Y, Qu JZ, Liu X, Ding L, Liu Y, Bertoft E, Petersen BL, Hamaker BR, Hebelstrup KH, Blennow A. Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways. Carbohydrate Polymers 2022;287:119327. [DOI: 10.1016/j.carbpol.2022.119327] [Reference Citation Analysis]
26 Chen L, Dai R, Shan Z, Chen H. Fabrication and characterization of one high-hygroscopicity liquid starch-based mulching materials for facilitating the growth of plant. Carbohydr Polym 2020;230:115582. [PMID: 31887860 DOI: 10.1016/j.carbpol.2019.115582] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Korompokis K, Deleu LJ, De Brier N, Delcour JA. Use of Amylomaltase to Steer the Functional and Nutritional Properties of Wheat Starch. Foods 2021;10:303. [PMID: 33540801 DOI: 10.3390/foods10020303] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Li C, Hu Y, Gu F, Gong B. Causal relations among starch fine molecular structure, lamellar/crystalline structure and in vitro digestion kinetics of native rice starch. Food Funct 2021;12:682-95. [DOI: 10.1039/d0fo02934c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 13.0] [Reference Citation Analysis]
29 Narayanamoorthy S, Zhang C, Xu Z, Ma M, Sui Z, Li K, Corke H. Genetic Diversity and Inter‐Relationships of Common Bean ( Phaseolus vulgaris L.) Starch Traits. Starch Stärke 2022;74:2100189. [DOI: 10.1002/star.202100189] [Reference Citation Analysis]
30 Yang X, Chi C, Liu X, Zhang Y, Zhang H, Wang H. Understanding the structural and digestion changes of starch in heat-moisture treated polished rice grains with varying amylose content. International Journal of Biological Macromolecules 2019;139:785-92. [DOI: 10.1016/j.ijbiomac.2019.08.051] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
31 Wen J, Li M, Hu J, Tan H, Nie S. Resistant starches and gut microbiota. Food Chemistry 2022;387:132895. [DOI: 10.1016/j.foodchem.2022.132895] [Reference Citation Analysis]
32 Lin L, Huang J, Zhang L, Zhang C, Liu Q, Wei C. Effects of inhibiting starch branching enzymes on molecular and crystalline structures of starches from endosperm different regions in rice. Food Chemistry 2019;301:125271. [DOI: 10.1016/j.foodchem.2019.125271] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Quilliam C, Ren Y, Morris T, Ai Y, Weber LP. The Effects of 7 Days of Feeding Pulse-Based Diets on Digestibility, Glycemic Response and Taurine Levels in Domestic Dogs. Front Vet Sci 2021;8:654223. [PMID: 34026892 DOI: 10.3389/fvets.2021.654223] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Gaenssle ALO, Satyawan CA, Xiang G, van der Maarel MJEC, Jurak E. Long chains and crystallinity govern the enzymatic degradability of gelatinized starches from conventional and new sources. Carbohydr Polym 2021;260:117801. [PMID: 33712149 DOI: 10.1016/j.carbpol.2021.117801] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Compart J, Li X, Fettke J. Starch-A complex and undeciphered biopolymer. J Plant Physiol 2021;258-259:153389. [PMID: 33652172 DOI: 10.1016/j.jplph.2021.153389] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
36 Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. High-amylose starch: Structure, functionality and applications. Crit Rev Food Sci Nutr 2022;:1-23. [PMID: 35373669 DOI: 10.1080/10408398.2022.2056871] [Reference Citation Analysis]
37 Li C, Hu Y. A kinetics-based decomposition approach to reveal the nature of starch asymmetric gelatinization thermograms at non-isothermal conditions. Food Chem 2021;344:128697. [PMID: 33267983 DOI: 10.1016/j.foodchem.2020.128697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
38 Du J, Pan R, Obadi M, Li H, Shao F, Sun J, Wang Y, Qi Y, Xu B. In vitro starch digestibility of buckwheat cultivars in comparison to wheat: The key role of starch molecular structure. Food Chem 2021;368:130806. [PMID: 34399184 DOI: 10.1016/j.foodchem.2021.130806] [Reference Citation Analysis]
39 Sharma V, Fandade V, Kumar P, Parveen A, Madhawan A, Bathla M, Mishra A, Sharma H, Rishi V, Satbhai SB, Roy J. Protein targeting to starch 1, a functional protein of starch biosynthesis in wheat (Triticum aestivum L.). Plant Mol Biol 2022. [PMID: 35332427 DOI: 10.1007/s11103-022-01260-1] [Reference Citation Analysis]
40 Shipman EN, Yu J, Zhou J, Albornoz K, Beckles DM. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? Hortic Res 2021;8:1. [PMID: 33384412 DOI: 10.1038/s41438-020-00428-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
41 Chen J, Hawkins E, Seung D. Towards targeted starch modification in plants. Curr Opin Plant Biol 2021;60:102013. [PMID: 33677239 DOI: 10.1016/j.pbi.2021.102013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Wang Z, Hu Z, Deng B, Gilbert RG, Sullivan MA. The effect of high-amylose resistant starch on the glycogen structure of diabetic mice. Int J Biol Macromol 2021:S0141-8130(21)02694-5. [PMID: 34968551 DOI: 10.1016/j.ijbiomac.2021.12.071] [Reference Citation Analysis]
43 Feng L, Lu C, Yang Y, Lu Y, Li Q, Huang L, Fan X, Liu Q, Zhang C. The Physicochemical Properties of Starch Are Affected by Wxlv in Indica Rice. Foods 2021;10:3089. [PMID: 34945643 DOI: 10.3390/foods10123089] [Reference Citation Analysis]
44 Yang J, Gu Z, Cheng L, Li Z, Li C, Ban X, Hong Y. Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch. Carbohydr Polym 2021;262:117926. [PMID: 33838805 DOI: 10.1016/j.carbpol.2021.117926] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Li Y, Liu P, Ma C, Zhang N, Shang X, Wang L, Xie F. Structural Disorganization and Chain Aggregation of High-Amylose Starch in Different Chloride Salt Solutions. ACS Sustainable Chem Eng 2020;8:4838-47. [DOI: 10.1021/acssuschemeng.9b07726] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
46 Li H, Dhital S, Gidley MJ, Gilbert RG. A more general approach to fitting digestion kinetics of starch in food. Carbohydrate Polymers 2019;225:115244. [DOI: 10.1016/j.carbpol.2019.115244] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
47 Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Commun 2021;2:100237. [PMID: 34746765 DOI: 10.1016/j.xplc.2021.100237] [Reference Citation Analysis]
48 Iqbal S, Wu P, Kirk TV, Chen XD. Amylose content modulates maize starch hydrolysis, rheology, and microstructure during simulated gastrointestinal digestion. Food Hydrocolloids 2021;110:106171. [DOI: 10.1016/j.foodhyd.2020.106171] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 13.0] [Reference Citation Analysis]
49 Almeida VO, Di-Medeiros MCB, Batista KA, Moraes MG, Fernandes KF. Morphological and physicochemical characterization of starches from underground stems of Trimezia juncifolia collected in different phenological stages. Int J Biol Macromol 2021;166:127-37. [PMID: 33098905 DOI: 10.1016/j.ijbiomac.2020.10.109] [Reference Citation Analysis]
50 Lin L, Huang J, Zhang L, Liu Q, Wei C. Effects of inhibition of starch branching enzymes on starch ordered structure and component accumulation in developing kernels of rice. Journal of Cereal Science 2020;91:102884. [DOI: 10.1016/j.jcs.2019.102884] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Liu X, Huang S, Chao C, Yu J, Copeland L, Wang S. Changes of starch during thermal processing of foods: Current status and future directions. Trends in Food Science & Technology 2022;119:320-37. [DOI: 10.1016/j.tifs.2021.12.011] [Reference Citation Analysis]
52 Gidley MJ. Give peas a chance. Nat Food 2020;1:663-4. [DOI: 10.1038/s43016-020-00168-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Giuberti G, Albertini E, Miggiano GAD, Dall'Asta M, Rossi F. Effect of biscuits formulated with high-amylose maize flour on satiety-related sensations and food intake. Int J Food Sci Nutr 2021;:1-8. [PMID: 33870842 DOI: 10.1080/09637486.2021.1911961] [Reference Citation Analysis]
54 An D, Li H, Zhang D, Huang Y, Li D, Obadi M, Xu B. Relation between adhesiveness and surface leachate rheological properties of cooked noodles: From the view of starch fine molecular structure. Food Research International 2022;155:111111. [DOI: 10.1016/j.foodres.2022.111111] [Reference Citation Analysis]
55 Junejo SA, Flanagan BM, Zhang B, Dhital S. Starch structure and nutritional functionality - Past revelations and future prospects. Carbohydr Polym 2022;277:118837. [PMID: 34893254 DOI: 10.1016/j.carbpol.2021.118837] [Reference Citation Analysis]
56 Li L, Liu Z, Zhang W, Xue B, Luo Z. Production and Applications of Amylose‐Lipid Complexes as Resistant Starch: Recent Approaches. Starch ‐ Stärke 2021;73:2000249. [DOI: 10.1002/star.202000249] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Zhong Y, Qu J, Blennow A, Liu X, Guo D. Expression Pattern of Starch Biosynthesis Genes in Relation to the Starch Molecular Structure in High-Amylose Maize. J Agric Food Chem 2021;69:2805-15. [PMID: 33645979 DOI: 10.1021/acs.jafc.0c07354] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Zhou Q, Fu X, Dhital S, Zhai H, Huang Q, Zhang B. In vitro fecal fermentation outcomes of starch-lipid complexes depend on starch assembles more than lipid type. Food Hydrocolloids 2021;120:106941. [DOI: 10.1016/j.foodhyd.2021.106941] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
59 Zhong Y, Liu L, Qu J, Li S, Blennow A, Seytahmetovna SA, Liu X, Guo D. The relationship between the expression pattern of starch biosynthesis enzymes and molecular structure of high amylose maize starch. Carbohydr Polym 2020;247:116681. [PMID: 32829809 DOI: 10.1016/j.carbpol.2020.116681] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
60 Zhou L, Zhang C, Zhang Y, Wang C, Liu Q. Genetic manipulation of endosperm amylose for designing superior quality rice to meet the demands in the 21st century. Journal of Cereal Science 2022. [DOI: 10.1016/j.jcs.2022.103481] [Reference Citation Analysis]
61 Prakash PK, Aswathanarayana Setty JL. Macronutrient Interactions to Facilitate Sustained Carbohydrate Digestibility in Tertiary Food Matrix Systems and Their Potential Applications in Indian Pancake. Starch Stärke 2022;74:2100117. [DOI: 10.1002/star.202100117] [Reference Citation Analysis]
62 Di Marco AE, Ixtaina VY, Tomás MC. Analytical and technological aspects of amylose inclusion complexes for potential applications in functional foods. Food Bioscience 2022. [DOI: 10.1016/j.fbio.2022.101625] [Reference Citation Analysis]
63 Selma-gracia R, Laparra JM, Haros CM. Potential beneficial effect of hydrothermal treatment of starches from various sources on in vitro digestion. Food Hydrocolloids 2020;103:105687. [DOI: 10.1016/j.foodhyd.2020.105687] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
64 Guedes‐oliveira JM, Brad Kim YH, Conte‐junior CA. What are the potential strategies to achieve potentially more healthful meat products? Int J of Food Sci Tech 2021;56:6157-70. [DOI: 10.1111/ijfs.15104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Li H, Gilbert RG, Gidley MJ. Molecular-structure evolution during in vitro fermentation of granular high-amylose wheat starch is different to in vitro digestion. Food Chem 2021;362:130188. [PMID: 34090046 DOI: 10.1016/j.foodchem.2021.130188] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Zhong Y, Qu J, Li Z, Tian Y, Zhu F, Blennow A, Liu X. Rice starch multi-level structure and functional relationships. Carbohydr Polym 2022;275:118777. [PMID: 34742453 DOI: 10.1016/j.carbpol.2021.118777] [Reference Citation Analysis]
67 Almeida MCBDM, Costa SDS, Cavalcanti MT, Almeida EL. Characterization of Prata Banana ( Musa AAB‐ Prata ) Starch: Native and Modified by Annealing. Starch ‐ Stärke 2020;72:1900137. [DOI: 10.1002/star.201900137] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Lv X, Hong Y, Zhou Q, Jiang C. Structural Features and Digestibility of Corn Starch With Different Amylose Content. Front Nutr 2021;8:692673. [PMID: 34235171 DOI: 10.3389/fnut.2021.692673] [Reference Citation Analysis]
69 Chen C, Li C, Xie W, Zhang J, Chen W, Ye Z, Liu Y, Long K, Beres B. Identification of a novel ZmSBEIIb-interacting protein involved in apparent amylose synthesis. Can J Plant Sci 2020;100:674-82. [DOI: 10.1139/cjps-2019-0219] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]