BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nicaise AM, Wagstaff LJ, Willis CM, Paisie C, Chandok H, Robson P, Fossati V, Williams A, Crocker SJ. Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc Natl Acad Sci U S A 2019;116:9030-9. [PMID: 30910981 DOI: 10.1073/pnas.1818348116] [Cited by in Crossref: 72] [Cited by in F6Publishing: 63] [Article Influence: 24.0] [Reference Citation Analysis]
Number Citing Articles
1 Papadopoulos D, Magliozzi R, Mitsikostas DD, Gorgoulis VG, Nicholas RS. Aging, Cellular Senescence, and Progressive Multiple Sclerosis. Front Cell Neurosci 2020;14:178. [PMID: 32694983 DOI: 10.3389/fncel.2020.00178] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
2 Xie YY, Pan TT, Xu DE, Huang X, Tang Y, Huang W, Chen R, Lu L, Chi H, Ma QH. Clemastine Ameliorates Myelin Deficits via Preventing Senescence of Oligodendrocytes Precursor Cells in Alzheimer's Disease Model Mouse. Front Cell Dev Biol 2021;9:733945. [PMID: 34746130 DOI: 10.3389/fcell.2021.733945] [Reference Citation Analysis]
3 Fortune AJ, Fletcher JL, Blackburn NB, Young KM. Using MS induced pluripotent stem cells to investigate MS aetiology. Multiple Sclerosis and Related Disorders 2022. [DOI: 10.1016/j.msard.2022.103839] [Reference Citation Analysis]
4 Ogrodnik M, Evans SA, Fielder E, Victorelli S, Kruger P, Salmonowicz H, Weigand BM, Patel AD, Pirtskhalava T, Inman CL, Johnson KO, Dickinson SL, Rocha A, Schafer MJ, Zhu Y, Allison DB, von Zglinicki T, LeBrasseur NK, Tchkonia T, Neretti N, Passos JF, Kirkland JL, Jurk D. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 2021;20:e13296. [PMID: 33470505 DOI: 10.1111/acel.13296] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
5 Gillispie GJ, Sah E, Krishnamurthy S, Ahmidouch MY, Zhang B, Orr ME. Evidence of the Cellular Senescence Stress Response in Mitotically Active Brain Cells-Implications for Cancer and Neurodegeneration. Life (Basel) 2021;11:153. [PMID: 33671362 DOI: 10.3390/life11020153] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
6 Galichet C, Clayton RW, Lovell-Badge R. Novel Tools and Investigative Approaches for the Study of Oligodendrocyte Precursor Cells (NG2-Glia) in CNS Development and Disease. Front Cell Neurosci 2021;15:673132. [PMID: 33994951 DOI: 10.3389/fncel.2021.673132] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Gruchot J, Weyers V, Göttle P, Förster M, Hartung HP, Küry P, Kremer D. The Molecular Basis for Remyelination Failure in Multiple Sclerosis. Cells 2019;8:E825. [PMID: 31382620 DOI: 10.3390/cells8080825] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
8 Bellanti F, di Bello G, Tamborra R, Amatruda M, Lo Buglio A, Dobrakowski M, Kasperczyk A, Kasperczyk S, Serviddio G, Vendemiale G. Impact of senescence on the transdifferentiation process of human hepatic progenitor-like cells. World J Stem Cells 2021; 13(10): 1595-1609 [PMID: 34786160 DOI: 10.4252/wjsc.v13.i10.1595] [Reference Citation Analysis]
9 Schirmer L, Schafer DP, Bartels T, Rowitch DH, Calabresi PA. Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends Immunol 2021;42:228-47. [PMID: 33593693 DOI: 10.1016/j.it.2021.01.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wood H. Premature cellular ageing limits remyelination in progressive MS. Nat Rev Neurol 2019;15:309. [PMID: 30967624 DOI: 10.1038/s41582-019-0187-z] [Reference Citation Analysis]
11 Balasubramanian P, Branen L, Sivasubramanian MK, Monteiro R, Subramanian M. Aging is associated with glial senescence in the brainstem - implications for age-related sympathetic overactivity. Aging (Albany NY) 2021;13:13460-73. [PMID: 34038388 DOI: 10.18632/aging.203111] [Reference Citation Analysis]
12 Willis CM, Nicaise AM, Hamel R, Pappa V, Peruzzotti-Jametti L, Pluchino S. Harnessing the Neural Stem Cell Secretome for Regenerative Neuroimmunology. Front Cell Neurosci 2020;14:590960. [PMID: 33250716 DOI: 10.3389/fncel.2020.590960] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
13 Perdaens O, van Pesch V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front Neurol 2022;12:811518. [DOI: 10.3389/fneur.2021.811518] [Reference Citation Analysis]
14 Yong HYF, Yong VW. Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat Rev Neurol 2021. [PMID: 34732831 DOI: 10.1038/s41582-021-00581-x] [Reference Citation Analysis]
15 Psenicka MW, Smith BC, Tinkey RA, Williams JL. Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Front Cell Neurosci 2021;15:654284. [PMID: 34234647 DOI: 10.3389/fncel.2021.654284] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Wilkins JM, Gakh O, Kabiraj P, McCarthy CB, Tobin WO, Howe CL, Lucchinetti CF. Signatures of cell stress and altered bioenergetics in skin fibroblasts from patients with multiple sclerosis. Aging (Albany NY) 2020;12:15134-56. [PMID: 32640422 DOI: 10.18632/aging.103612] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Xu C, Shen WB, Reece EA, Hasuwa H, Harman C, Kaushal S, Yang P. Maternal diabetes induces senescence and neural tube defects sensitive to the senomorphic rapamycin. Sci Adv 2021;7:eabf5089. [PMID: 34193422 DOI: 10.1126/sciadv.abf5089] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Orthmann-Murphy J, Call CL, Molina-Castro GC, Hsieh YC, Rasband MN, Calabresi PA, Bergles DE. Remyelination alters the pattern of myelin in the cerebral cortex. Elife 2020;9:e56621. [PMID: 32459173 DOI: 10.7554/eLife.56621] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
19 Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Zamboni RJ, Kodukula K, Chen X. Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. Biores Open Access 2020;9:94-105. [PMID: 32257625 DOI: 10.1089/biores.2020.0004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Marangon D, Caporale N, Boccazzi M, Abbracchio MP, Testa G, Lecca D. Novel in vitro Experimental Approaches to Study Myelination and Remyelination in the Central Nervous System. Front Cell Neurosci 2021;15:748849. [PMID: 34720882 DOI: 10.3389/fncel.2021.748849] [Reference Citation Analysis]
21 Sams EC. Oligodendrocytes in the aging brain. Neuronal Signal 2021;5:NS20210008. [PMID: 34290887 DOI: 10.1042/NS20210008] [Reference Citation Analysis]
22 Windrem MS, Schanz SJ, Zou L, Chandler-Militello D, Kuypers NJ, Nedergaard M, Lu Y, Mariani JN, Goldman SA. Human Glial Progenitor Cells Effectively Remyelinate the Demyelinated Adult Brain. Cell Rep 2020;31:107658. [PMID: 32433967 DOI: 10.1016/j.celrep.2020.107658] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
23 Cinat D, Coppes RP, Barazzuol L. DNA Damage-Induced Inflammatory Microenvironment and Adult Stem Cell Response. Front Cell Dev Biol 2021;9:729136. [PMID: 34692684 DOI: 10.3389/fcell.2021.729136] [Reference Citation Analysis]
24 Liu Y, Chen Q. Senescent Mesenchymal Stem Cells: Disease Mechanism and Treatment Strategy. Curr Mol Biol Rep 2020;6:173-82. [PMID: 33816065 DOI: 10.1007/s40610-020-00141-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Gharagozloo M, Bannon R, Calabresi PA. Breaking the barriers to remyelination in multiple sclerosis. Current Opinion in Pharmacology 2022;63:102194. [DOI: 10.1016/j.coph.2022.102194] [Reference Citation Analysis]
26 Talma N, Gerrits E, Wang B, Eggen BJL, Demaria M. Identification of distinct and age-dependent p16High microglia subtypes. Aging Cell 2021;20:e13450. [PMID: 34598318 DOI: 10.1111/acel.13450] [Reference Citation Analysis]
27 Rouillard ME, Hu J, Sutter PA, Kim HW, Huang JK, Crocker SJ. The Cellular Senescence Factor Extracellular HMGB1 Directly Inhibits Oligodendrocyte Progenitor Cell Differentiation and Impairs CNS Remyelination. Front Cell Neurosci 2022;16:833186. [DOI: 10.3389/fncel.2022.833186] [Reference Citation Analysis]
28 Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019;8:E1236. [PMID: 31614602 DOI: 10.3390/cells8101236] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
29 Pijewski RS, Sutter PA, Duszak VA, Singh N, Yan R, Smith PP, Crocker SJ. Distinct profiles of cellular senescence-associated gene expression in the aged, diseased or injured central nervous system. Neuroscience Letters 2022;772:136480. [DOI: 10.1016/j.neulet.2022.136480] [Reference Citation Analysis]
30 Wang J, Yang L, Dong C, Wang J, Xu L, Qiu Y, Weng Q, Zhao C, Xin M, Lu QR. EED-mediated histone methylation is critical for CNS myelination and remyelination by inhibiting WNT, BMP, and senescence pathways. Sci Adv 2020;6:eaaz6477. [PMID: 32851157 DOI: 10.1126/sciadv.aaz6477] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
31 Nicaise AM, Willis CM, Crocker SJ, Pluchino S. Stem Cells of the Aging Brain. Front Aging Neurosci 2020;12:247. [PMID: 32848716 DOI: 10.3389/fnagi.2020.00247] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
32 Eschborn M, Pawlitzki M, Wirth T, Nelke C, Pfeuffer S, Schulte-Mecklenbeck A, Lohmann L, Rolfes L, Pape K, Eveslage M, Bittner S, Gross CC, Ruck T, Wiendl H, Meuth SG, Klotz L. Evaluation of Age-Dependent Immune Signatures in Patients With Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm 2021;8:e1094. [PMID: 34667129 DOI: 10.1212/NXI.0000000000001094] [Reference Citation Analysis]
33 Dansu DK, Sauma S, Casaccia P. Oligodendrocyte progenitors as environmental biosensors. Semin Cell Dev Biol 2021;116:38-44. [PMID: 33092959 DOI: 10.1016/j.semcdb.2020.09.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
34 Mangiameli E, Cecchele A, Morena F, Sanvito F, Matafora V, Cattaneo A, Della Volpe L, Gnani D, Paulis M, Susani L, Martino S, Di Micco R, Bachi A, Gritti A. Human iPSC-based neurodevelopmental models of globoid cell leukodystrophy uncover patient- and cell type-specific disease phenotypes. Stem Cell Reports 2021;16:1478-95. [PMID: 33989519 DOI: 10.1016/j.stemcr.2021.04.011] [Reference Citation Analysis]
35 Sutiwisesak R, Burns TC, Rodriguez M, Warrington AE. Remyelination therapies for multiple sclerosis: optimizing translation from animal models into clinical trials. Expert Opin Investig Drugs 2021;30:857-76. [PMID: 34126015 DOI: 10.1080/13543784.2021.1942840] [Reference Citation Analysis]
36 Willis CM, Sutter P, Rouillard M, Crocker SJ. The Effects of IL-1β on Astrocytes are Conveyed by Extracellular Vesicles and Influenced by Age. Neurochem Res 2020;45:694-707. [DOI: 10.1007/s11064-019-02937-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Pluchino S, Smith JA, Peruzzotti-Jametti L. Promises and Limitations of Neural Stem Cell Therapies for Progressive Multiple Sclerosis. Trends Mol Med 2020;26:898-912. [PMID: 32448751 DOI: 10.1016/j.molmed.2020.04.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
38 Absinta M, Lassmann H, Trapp BD. Mechanisms underlying progression in multiple sclerosis. Curr Opin Neurol 2020;33:277-85. [PMID: 32324705 DOI: 10.1097/WCO.0000000000000818] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
39 Ziegler DV, Martin N, Bernard D. Cellular senescence links mitochondria-ER contacts and aging. Commun Biol 2021;4:1323. [PMID: 34819602 DOI: 10.1038/s42003-021-02840-5] [Reference Citation Analysis]
40 Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Waubant E. Ageing and multiple sclerosis. Mult Scler Relat Disord 2020;38:101953. [PMID: 32164909 DOI: 10.1016/j.msard.2020.101953] [Reference Citation Analysis]
41 Koutsoudaki PN, Papadopoulos D, Passias P, Koutsoudaki P, Gorgoulis VG. Cellular senescence and failure of myelin repair in multiple sclerosis. Mechanisms of Ageing and Development 2020;192:111366. [DOI: 10.1016/j.mad.2020.111366] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Beck J, Turnquist C, Horikawa I, Harris C. Targeting cellular senescence in cancer and aging: roles of p53 and its isoforms. Carcinogenesis 2020;41:1017-29. [PMID: 32619002 DOI: 10.1093/carcin/bgaa071] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
43 Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int J Mol Sci 2019;20:E4472. [PMID: 31510091 DOI: 10.3390/ijms20184472] [Cited by in Crossref: 91] [Cited by in F6Publishing: 72] [Article Influence: 30.3] [Reference Citation Analysis]
44 Masaldan S, Belaidi AA, Ayton S, Bush AI. Cellular Senescence and Iron Dyshomeostasis in Alzheimer's Disease. Pharmaceuticals (Basel) 2019;12:E93. [PMID: 31248150 DOI: 10.3390/ph12020093] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
45 Kelley WJ, Zemans RL, Goldstein DR. Cellular senescence: friend or foe to respiratory viral infections? Eur Respir J 2020;56:2002708. [PMID: 33033152 DOI: 10.1183/13993003.02708-2020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
46 Sahu MR, Rani L, Subba R, Mondal AC. Cellular senescence in the Aging Brain: A promising target for neurodegenerative diseases. Mechanisms of Ageing and Development 2022. [DOI: 10.1016/j.mad.2022.111675] [Reference Citation Analysis]
47 Song P, An J, Zou MH. Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases. Cells 2020;9:E671. [PMID: 32164335 DOI: 10.3390/cells9030671] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
48 Di Santo S, Widmer HR. Sustained neuronal viability by paracrine factors: new opportunities for endothelial progenitor cell secretome. Neural Regen Res 2021;16:1429-30. [PMID: 33318440 DOI: 10.4103/1673-5374.301007] [Reference Citation Analysis]
49 Brola W, Sobolewski P, Żak M, Flaga S, Fudala M, Siutka D, Kapica K, Chorąży M, Kułakowska A, Perenc A, Bartosik-psujek H, Psujek M, Głąbiński A, Pawełczyk M, Gacek S, Potemkowski A. Profile of Polish patients with primary progressive multiple sclerosis. Multiple Sclerosis and Related Disorders 2019;33:33-8. [DOI: 10.1016/j.msard.2019.05.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
50 Neely SA, Williamson JM, Klingseisen A, Zoupi L, Early JJ, Williams A, Lyons DA. New oligodendrocytes exhibit more abundant and accurate myelin regeneration than those that survive demyelination. Nat Neurosci. [DOI: 10.1038/s41593-021-01009-x] [Reference Citation Analysis]
51 Mutukula N, Man Z, Takahashi Y, Iniesta Martinez F, Morales M, Carreon-Guarnizo E, Hernandez Clares R, Garcia-Bernal D, Martinez Martinez L, Lajara J, Nuñez Delicado E, Meca Lallana JE, Izpisua Belmonte JC. Generation of RRMS and PPMS specific iPSCs as a platform for modeling Multiple Sclerosis. Stem Cell Res 2021;53:102319. [PMID: 33894548 DOI: 10.1016/j.scr.2021.102319] [Reference Citation Analysis]
52 Sutter PA, Mckenna MG, Imitola J, Pijewski RS, Crocker SJ. Therapeutic opportunities for targeting cellular senescence in progressive multiple sclerosis. Current Opinion in Pharmacology 2022;63:102184. [DOI: 10.1016/j.coph.2022.102184] [Reference Citation Analysis]
53 Kular L, Jagodic M. Epigenetic insights into multiple sclerosis disease progression. J Intern Med 2020;288:82-102. [DOI: 10.1111/joim.13045] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
54 Saito Y, Miyajima M, Yamamoto S, Sato T, Miura N, Fujimiya M, Chikenji TS. Accumulation of Senescent Neural Cells in Murine Lupus With Depression-Like Behavior. Front Immunol 2021;12:692321. [PMID: 34804003 DOI: 10.3389/fimmu.2021.692321] [Reference Citation Analysis]
55 Imitola J. Regenerative neuroimmunology: The impact of immune and neural stem cell interactions for translation in neurodegeneration and repair. Journal of Neuroimmunology 2019;331:1-3. [DOI: 10.1016/j.jneuroim.2019.04.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
56 Imitola J. New age for progressive multiple sclerosis. Proc Natl Acad Sci U S A 2019;116:8646-8. [PMID: 31004053 DOI: 10.1073/pnas.1903796116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Tian J, Li X, Zhao L, Shen P, Wang Z, Zhu L, Li C, Su C, Zhang Y. Glycyrrhizic acid promotes neural repair by directly driving functional remyelination. Food Funct 2020;11:992-1005. [PMID: 31808502 DOI: 10.1039/c9fo01459d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
58 Buonvicino D, Ranieri G, Chiarugi A. Cuprizone-Dependent De/Remyelination Responses and Functional Correlates in Mouse Strains Adopted to Model Relapsing, Chronic and Progressive Experimental Autoimmune Encephalomyelitis. Neurotox Res 2021;39:658-66. [PMID: 33475965 DOI: 10.1007/s12640-021-00331-3] [Reference Citation Analysis]
59 Morales Pantoja IE, Smith MD, Rajbhandari L, Cheng L, Gao Y, Mahairaki V, Venkatesan A, Calabresi PA, Fitzgerald KC, Whartenby KA. iPSCs from people with MS can differentiate into oligodendrocytes in a homeostatic but not an inflammatory milieu. PLoS One 2020;15:e0233980. [PMID: 32511247 DOI: 10.1371/journal.pone.0233980] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
60 Liu Y, Schwam J, Chen Q. Senescence-Associated Cell Transition and Interaction (SACTAI): A Proposed Mechanism for Tissue Aging, Repair, and Degeneration. Cells 2022;11:1089. [DOI: 10.3390/cells11071089] [Reference Citation Analysis]
61 Mozafari S, Starost L, Manot-Saillet B, Garcia-Diaz B, Xu YKT, Roussel D, Levy MJF, Ottoboni L, Kim KP, Schöler HR, Kennedy TE, Antel JP, Martino G, Angulo MC, Kuhlmann T, Baron-Van Evercooren A. Multiple sclerosis iPS-derived oligodendroglia conserve their properties to functionally interact with axons and glia in vivo. Sci Adv 2020;6:eabc6983. [PMID: 33277253 DOI: 10.1126/sciadv.abc6983] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
62 Miner AE, Graves JS. What telomeres teach us about MS. Mult Scler Relat Disord 2021;54:103084. [PMID: 34371369 DOI: 10.1016/j.msard.2021.103084] [Reference Citation Analysis]
63 Martínez-Larrosa J, Matute-Blanch C, Montalban X, Comabella M. Modelling multiple sclerosis using induced pluripotent stem cells. J Neuroimmunol 2020;349:577425. [PMID: 33130461 DOI: 10.1016/j.jneuroim.2020.577425] [Reference Citation Analysis]
64 Willis CM, Nicaise AM, Peruzzotti-jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Research 2020;1729:146615. [DOI: 10.1016/j.brainres.2019.146615] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
65 Zhu Q, Chen L, Li Y, Huang M, Shao J, Li S, Cheng J, Yang H, Wu Y, Zhang J, Feng J, Fan M, Wu H. Rack1 is essential for corticogenesis by preventing p21-dependent senescence in neural stem cells. Cell Rep 2021;36:109639. [PMID: 34469723 DOI: 10.1016/j.celrep.2021.109639] [Reference Citation Analysis]
66 Joruiz SM, Beck JA, Horikawa I, Harris CC. The Δ133p53 Isoforms, Tuners of the p53 Pathway. Cancers (Basel) 2020;12:E3422. [PMID: 33218139 DOI: 10.3390/cancers12113422] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
67 Jakimovski D, Eckert SP, Zivadinov R, Weinstock-Guttman B. Considering patient age when treating multiple sclerosis across the adult lifespan. Expert Rev Neurother 2021;21:353-64. [PMID: 33595379 DOI: 10.1080/14737175.2021.1886082] [Reference Citation Analysis]
68 Starost L, Lindner M, Herold M, Xu YKT, Drexler HCA, Heß K, Ehrlich M, Ottoboni L, Ruffini F, Stehling M, Röpke A, Thomas C, Schöler HR, Antel J, Winkler J, Martino G, Klotz L, Kuhlmann T. Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis. Acta Neuropathol 2020;140:715-36. [PMID: 32894330 DOI: 10.1007/s00401-020-02217-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
69 Si Z, Sun L, Wang X. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed Pharmacother 2021;137:111327. [PMID: 33545662 DOI: 10.1016/j.biopha.2021.111327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
70 Baydyuk M, Morrison VE, Gross PS, Huang JK. Extrinsic Factors Driving Oligodendrocyte Lineage Cell Progression in CNS Development and Injury. Neurochem Res 2020;45:630-42. [PMID: 31997102 DOI: 10.1007/s11064-020-02967-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
71 Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, Bhatt N, Sonawane M, Sengupta U, Kayed R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Rep 2021;36:109419. [PMID: 34289368 DOI: 10.1016/j.celrep.2021.109419] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
72 Melchor GS, Khan T, Reger JF, Huang JK. Remyelination Pharmacotherapy Investigations Highlight Diverse Mechanisms Underlying Multiple Sclerosis Progression. ACS Pharmacol Transl Sci 2019;2:372-86. [PMID: 32259071 DOI: 10.1021/acsptsci.9b00068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
73 Tuttle CSL, Luesken SWM, Waaijer MEC, Maier AB. Senescence in tissue samples of humans with age-related diseases: A systematic review. Ageing Res Rev 2021;68:101334. [PMID: 33819674 DOI: 10.1016/j.arr.2021.101334] [Reference Citation Analysis]
74 Mozafari S, Baron-Van Evercooren A. Human stem cell-derived oligodendrocytes: From humanized animal models to cell therapy in myelin diseases. Semin Cell Dev Biol 2021;116:53-61. [PMID: 33082116 DOI: 10.1016/j.semcdb.2020.09.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
75 Lopez-Caraballo L, Martorell-Marugan J, Carmona-Sáez P, Gonzalez-Munoz E. iPS-Derived Early Oligodendrocyte Progenitor Cells from SPMS Patients Reveal Deficient In Vitro Cell Migration Stimulation. Cells 2020;9:E1803. [PMID: 32751289 DOI: 10.3390/cells9081803] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol 2021;9:696434. [PMID: 34307372 DOI: 10.3389/fcell.2021.696434] [Reference Citation Analysis]
77 De Blander H, Morel AP, Senaratne AP, Ouzounova M, Puisieux A. Cellular Plasticity: A Route to Senescence Exit and Tumorigenesis. Cancers (Basel) 2021;13:4561. [PMID: 34572787 DOI: 10.3390/cancers13184561] [Reference Citation Analysis]
78 Carreno G, Guiho R, Martinez-Barbera JP. Cell senescence in neuropathology: A focus on neurodegeneration and tumours. Neuropathol Appl Neurobiol 2021;47:359-78. [PMID: 33378554 DOI: 10.1111/nan.12689] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
79 Parmigiani E, Scalera M, Mori E, Tantillo E, Vannini E. Old Stars and New Players in the Brain Tumor Microenvironment. Front Cell Neurosci 2021;15:709917. [PMID: 34690699 DOI: 10.3389/fncel.2021.709917] [Reference Citation Analysis]
80 Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res Rev 2020;60:101072. [PMID: 32298812 DOI: 10.1016/j.arr.2020.101072] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
81 Zhan J, Mann T, Joost S, Behrangi N, Frank M, Kipp M. The Cuprizone Model: Dos and Do Nots. Cells 2020;9:E843. [PMID: 32244377 DOI: 10.3390/cells9040843] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
82 Kiss T, Nyúl-tóth Á, Delfavero J, Balasubramanian P, Tarantini S, Faakye J, Gulej R, Ahire C, Ungvari A, Yabluchanskiy A, Wiley G, Garman L, Ungvari Z, Csiszar A. Spatial transcriptomic analysis reveals inflammatory foci defined by senescent cells in the white matter, hippocampi and cortical grey matter in the aged mouse brain. GeroScience. [DOI: 10.1007/s11357-022-00521-7] [Reference Citation Analysis]