BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tümay SO, Yeşilot S. Highly selective “turn-on” fluorescence determination of mercury ion in food and environmental samples through novel anthracene and pyrene appended Schiff bases. Journal of Photochemistry and Photobiology A: Chemistry 2021;407:113093. [DOI: 10.1016/j.jphotochem.2020.113093] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Balkaner O, Sarıoğulları DI, Uslu A. A synthetic strategy of P-stereogenic ligands for catalysis: Examples based on cyclotriphosphazenes. Journal of Molecular Structure 2022;1261:132834. [DOI: 10.1016/j.molstruc.2022.132834] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Kumar A, Virender, Saini M, Mohan B, Shayoraj, Kamboj M. Colorimetric and Fluorescent Schiff Base Sensors for Trace Detection of Pollutants and Biologically Significant Cations: A Review (2010-2021). Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107798] [Reference Citation Analysis]
3 Santra A, Mishra S, Panda SK, Singh AK. ESIPT and PET-based easy-to-synthesize unsymmetrical ligand in the reversible fluorimetric sensing of Al3+ and relay sensing of inorganic and biological phosphates. Inorganica Chimica Acta 2022;537:120933. [DOI: 10.1016/j.ica.2022.120933] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Tomer N, Goel A, Bhalla P, Bhagat P, Malhotra R. Chromone derived effective probe for the detection of metal ion (Cu2+) and chemical explosive (p-nitrotoluene). Journal of Photochemistry and Photobiology A: Chemistry 2022;427:113823. [DOI: 10.1016/j.jphotochem.2022.113823] [Reference Citation Analysis]
5 Huang S, Zheng L, Zheng S, Guo H, Yang F. First fluorescence sensor for hydrazine ion: An effective “turn-on” detection based on thiophene-cyanodistyrene Schiff-base. Journal of Photochemistry and Photobiology A: Chemistry 2022;427:113851. [DOI: 10.1016/j.jphotochem.2022.113851] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Adhikari A, Mukherjee S, Chakraborty AK, Biswas S, Basu A, Chakraborty M, Chattopadhyay S, Das D, Chattopadhyay D. Lac-extract doped Polyaniline Nano-Ribbons as Fluorescence Sensor and Molecular Switch for Detection of Aqueous AsO43- and Fe3+ contaminants. Journal of Photochemistry and Photobiology A: Chemistry 2022. [DOI: 10.1016/j.jphotochem.2022.114000] [Reference Citation Analysis]
7 Dong X, Wang M, Tang Y. Green synthesis of fluorescent carbon nanospheres from chrysanthemum as a multifunctional sensor for permanganate, Hg(II), and captopril. Spectrochim Acta A Mol Biomol Spectrosc 2022;271:120886. [PMID: 35063823 DOI: 10.1016/j.saa.2022.120886] [Reference Citation Analysis]
8 Palabıyık D, Mutlu Balcı C. Synthesis, characterization, and spectroscopic properties of the new type of aminoquinoline-modified cyclotriphosphazenes. Phosphorus, Sulfur, and Silicon and the Related Elements. [DOI: 10.1080/10426507.2022.2046570] [Reference Citation Analysis]
9 Bilgic A, Cimen A, Bastug E, Kursunlu AN. Fluorescent sporopollenin microcapsule modified by BODIPY for sensitive&selective recognition and efficient removal of Cu (II) from aqueous solution. Chemical Engineering Research and Design 2022;178:61-72. [DOI: 10.1016/j.cherd.2021.12.014] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Bakir EM, Sayed AR, El-lateef HMA. Colorimetric detection of Hg2+ ion using fluorescein/thiourea sensor as a receptor in aqueous medium. Journal of Photochemistry and Photobiology A: Chemistry 2022;422:113569. [DOI: 10.1016/j.jphotochem.2021.113569] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
11 Goshisht MK, Patra GK, Tripathi N. Fluorescent Schiff base sensors as a versatile tool for metal ion detection: strategies, mechanistic insights, and applications. Mater Adv . [DOI: 10.1039/d1ma01175h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Immanuel David C, Movuleeshwaran P, Jayaraj H, Prabakaran G, Parimala devi D, Kumar MS, Abiram A, Satheesh Babu T, Prabhu J, Nandhakumar R. Highly selective, reversible and ICT-based fluorescent chemosensor for bismuth ions: Applications in bacterial imaging, logic gate and food sample analysis. Journal of Photochemistry and Photobiology A: Chemistry 2022;422:113558. [DOI: 10.1016/j.jphotochem.2021.113558] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Haddad Irani-Nezhad M, Jalili R, Kohan E, Khataee A, Yoon Y. Tungsten disulfide (WS2)/fluorescein ratiometric fluorescent probe for detection of cefixime residues in milk. Environ Res 2021;205:112512. [PMID: 34896085 DOI: 10.1016/j.envres.2021.112512] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Reji R, Tripathi NP, Rani K, Dalal A, Babu SA, Sengupta S. Structure‐Property Correlation of C10‐(H)‐Arylated‐N‐(pyren‐1‐yl)‐picolinamide Regioisomers towards Cu 2+ and Fe 3+ Sensing. ChemistrySelect 2021;6:12022-31. [DOI: 10.1002/slct.202103030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Tümay SO. A Novel Selective “Turn‐On” Fluorescent Chemosensor Based on Thiophene Appended Cyclotriphosphazene Schiff Base for Detection of Ag + Ions. ChemistrySelect 2021;6:10561-72. [DOI: 10.1002/slct.202102052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
16 Kan C, Wang X, Wu L, Shao X, Xing H, You M, Zhu J. A fluorescent probe for rapid detection of low concentration mercury ions and its application in biological cells. Anal Methods 2021;13:3987-93. [PMID: 34528936 DOI: 10.1039/d1ay01109j] [Reference Citation Analysis]
17 Ömeroğlu İ, Tümay SO, Makhseed S, Husain A, Durmuş M. A highly sensitive "ON-OFF-ON" dual optical sensor for the detection of Cu(II) ion and triazole pesticides based on novel BODIPY-substituted cavitand. Dalton Trans 2021;50:6437-43. [PMID: 33890599 DOI: 10.1039/d1dt00792k] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Yao S, Zhao C, Shang M, Li J, Wang J. Enzyme-free and label-free detection of Staphylococcus aureus based on target-inhibited fluorescence signal recovery. Food Chem Toxicol 2021;150:112071. [PMID: 33609594 DOI: 10.1016/j.fct.2021.112071] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Tümay SO, Şenocak A, Mermer A. A “turn-on” small molecule fluorescent sensor for the determination of Al 3+ ion in real samples: theoretical calculations, and photophysical and electrochemical properties. New J Chem 2021;45:18400-11. [DOI: 10.1039/d1nj03462f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
20 Khose RV, Chakraborty G, Bondarde MP, Wadekar PH, Ray AK, Some S. Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg( ii ). New J Chem 2021;45:4617-25. [DOI: 10.1039/d0nj06259f] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Tümay SO, Şanko V, Şenocak A, Demirbas E. A hybrid nanosensor based on novel fluorescent iron oxide nanoparticles for highly selective determination of Hg 2+ ions in environmental samples. New J Chem 2021;45:14495-507. [DOI: 10.1039/d1nj02908h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
22 Mutlu Balcı C, Tümay SO, Beşli S. ESIPT on/off switching and crystallization-enhanced emission properties of new design phenol-pyrazole modified cyclotriphosphazenes. New J Chem 2021;45:8492-505. [DOI: 10.1039/d1nj00894c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]