BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li H, Dhital S, Slade AJ, Yu W, Gilbert RG, Gidley MJ. Altering starch branching enzymes in wheat generates high-amylose starch with novel molecular structure and functional properties. Food Hydrocolloids 2019;92:51-9. [DOI: 10.1016/j.foodhyd.2019.01.041] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhong Y, Liu L, Qu J, Blennow A, Hansen AR, Wu Y, Guo D, Liu X. Amylose content and specific fine structures affect lamellar structure and digestibility of maize starches. Food Hydrocolloids 2020;108:105994. [DOI: 10.1016/j.foodhyd.2020.105994] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
2 Zhang Z, Li E, Fan X, Yang C, Ma H, Gilbert RG. The effects of the chain-length distributions of starch molecules on rheological and thermal properties of wheat flour paste. Food Hydrocolloids 2020;101:105563. [DOI: 10.1016/j.foodhyd.2019.105563] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
3 Li C, Gong B. Relations between rice starch fine molecular and lamellar/crystalline structures. Food Chem 2021;353:129467. [PMID: 33740510 DOI: 10.1016/j.foodchem.2021.129467] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Li HT, Li Z, Fox GP, Gidley MJ, Dhital S. Protein-starch matrix plays a key role in enzymic digestion of high-amylose wheat noodle. Food Chem 2021;336:127719. [PMID: 32768911 DOI: 10.1016/j.foodchem.2020.127719] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
5 Li C, Gidley MJ. Starch structure and exchangeable protons contribute to reduced aging of high-amylose wheat bread. Food Chemistry 2022;385:132673. [DOI: 10.1016/j.foodchem.2022.132673] [Reference Citation Analysis]
6 Liu W, Zhang Y, Xu Z, Pan W, Shen M, Han J, Sun X, Zhang Y, Xie J, Zhang X, Yu L(. Cross-linked corn bran arabinoxylan improves the pasting, rheological, gelling properties of corn starch and reduces its in vitro digestibility. Food Hydrocolloids 2022;126:107440. [DOI: 10.1016/j.foodhyd.2021.107440] [Reference Citation Analysis]
7 Li C, Hu Y. A kinetics-based decomposition approach to reveal the nature of starch asymmetric gelatinization thermograms at non-isothermal conditions. Food Chem 2021;344:128697. [PMID: 33267983 DOI: 10.1016/j.foodchem.2020.128697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
8 Sun Y, Zhong C, Zhou Z, Lei Z, Langrish TAG. A Review of In Vitro Methods for Measuring the Glycemic Index of Single Foods: Understanding the Interaction of Mass Transfer and Reaction Engineering by Dimensional Analysis. Processes 2022;10:759. [DOI: 10.3390/pr10040759] [Reference Citation Analysis]
9 Dhir A, Kaur C, Devi V, Singh A, Das AK, Rakshit S, Chaudhary DP. A Rapid Single Kernel Screening Method for Preliminary Estimation of Amylose in Maize. Food Anal Methods. [DOI: 10.1007/s12161-022-02277-4] [Reference Citation Analysis]
10 Li S, Wu W, Li J, Zhu S, Yang X, Sun L. α-Amylase Changed the Catalytic Behaviors of Amyloglucosidase Regarding Starch Digestion Both in the Absence and Presence of Tannic Acid. Front Nutr 2022;9:817039. [DOI: 10.3389/fnut.2022.817039] [Reference Citation Analysis]
11 Zhu J, Yu W, Zhang C, Zhu Y, Xu J, Li E, Gilbert RG, Liu Q. New insights into amylose and amylopectin biosynthesis in rice endosperm. Carbohydr Polym 2020;230:115656. [PMID: 31887861 DOI: 10.1016/j.carbpol.2019.115656] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
12 Corrado M, Cherta-Murillo A, Chambers ES, Wood AJ, Plummer A, Lovegrove A, Edwards CH, Frost GS, Hazard BA. Effect of semolina pudding prepared from starch branching enzyme IIa and b mutant wheat on glycaemic response in vitro and in vivo: a randomised controlled pilot study. Food Funct 2020;11:617-27. [PMID: 31859318 DOI: 10.1039/c9fo02460c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Bui AT, Williams BA, Hoedt EC, Morrison M, Mikkelsen D, Gidley MJ. High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles. Food Funct 2020;11:5635-46. [DOI: 10.1039/d0fo00198h] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
14 Korompokis K, Verbeke K, Delcour JA. Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches: A review and a guide. Compr Rev Food Sci Food Saf 2021;20:5965-91. [PMID: 34601805 DOI: 10.1111/1541-4337.12847] [Reference Citation Analysis]
15 Zhu J, Zhang CQ, Xu J, Gilbert RG, Liu Q. Identification of Structure-Controlling Rice Biosynthesis Enzymes. Biomacromolecules 2021;22:2148-59. [PMID: 33914519 DOI: 10.1021/acs.biomac.1c00248] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Li C, Luo J, Zhang C, Yu W. Causal relations among starch chain-length distributions, short-term retrogradation and cooked rice texture. Food Hydrocolloids 2020;108:106064. [DOI: 10.1016/j.foodhyd.2020.106064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Li C, Wu A, Yu W, Hu Y, Li E, Zhang C, Liu Q. Parameterizing starch chain-length distributions for structure-property relations. Carbohydr Polym 2020;241:116390. [PMID: 32507172 DOI: 10.1016/j.carbpol.2020.116390] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 15.0] [Reference Citation Analysis]
18 Kan L, Capuano E, Oliviero T, Renzetti S. Wheat starch-tannic acid complexes modulate physicochemical and rheological properties of wheat starch and its digestibility. Food Hydrocolloids 2022;126:107459. [DOI: 10.1016/j.foodhyd.2021.107459] [Reference Citation Analysis]
19 Li C, Gong B, Hu Y, Liu X, Guan X, Zhang B. Combined crystalline, lamellar and granular structural insights into in vitro digestion rate of native starches. Food Hydrocolloids 2020;105:105823. [DOI: 10.1016/j.foodhyd.2020.105823] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
20 Hu S, Deng H, Liu R, Yu W. Molecular brewing: The molecular structural effects of starch adjuncts on barley malt brewing performances. Int J Biol Macromol 2021;193:661-71. [PMID: 34717974 DOI: 10.1016/j.ijbiomac.2021.10.097] [Reference Citation Analysis]
21 Yu W, Zhai H, Xia GB, Tao K, Li C, Yang X, Li L. Starch fine molecular structures as a significant controller of the malting, mashing, and fermentation performance during beer production. Trends in Food Science & Technology 2020;105:296-307. [DOI: 10.1016/j.tifs.2020.09.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Liu W, Zhang Y, Wang R, Li J, Pan W, Zhang X, Xiao W, Wen H, Xie J. Chestnut starch modification with dry heat treatment and addition of xanthan gum: Gelatinization, structural and functional properties. Food Hydrocolloids 2022;124:107205. [DOI: 10.1016/j.foodhyd.2021.107205] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Li C, Gong B. Insights into chain-length distributions of amylopectin and amylose molecules on the gelatinization property of rice starches. International Journal of Biological Macromolecules 2020;155:721-9. [DOI: 10.1016/j.ijbiomac.2020.04.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
24 Korompokis K, Deleu LJ, De Brier N, Delcour JA. Investigation of starch functionality and digestibility in white wheat bread produced from a recipe containing added maltogenic amylase or amylomaltase. Food Chem 2021;362:130203. [PMID: 34091172 DOI: 10.1016/j.foodchem.2021.130203] [Reference Citation Analysis]
25 Li C, Dhital S, Gilbert RG, Gidley MJ. High-amylose wheat starch: Structural basis for water absorption and pasting properties. Carbohydrate Polymers 2020;245:116557. [DOI: 10.1016/j.carbpol.2020.116557] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
26 Fonseca-Santanilla EB, Betancourt-López LL. Physicochemical and structural characterization of starches from Andean roots and tubers grown in Colombia. Food Sci Technol Int 2021;:1082013221997313. [PMID: 33653148 DOI: 10.1177/1082013221997313] [Reference Citation Analysis]
27 Wang Z, Hu Z, Deng B, Gilbert RG, Sullivan MA. The effect of high-amylose resistant starch on the glycogen structure of diabetic mice. Int J Biol Macromol 2021:S0141-8130(21)02694-5. [PMID: 34968551 DOI: 10.1016/j.ijbiomac.2021.12.071] [Reference Citation Analysis]
28 Li H, Gilbert RG, Gidley MJ. Molecular-structure evolution during in vitro fermentation of granular high-amylose wheat starch is different to in vitro digestion. Food Chem 2021;362:130188. [PMID: 34090046 DOI: 10.1016/j.foodchem.2021.130188] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Li H, Dhital S, Gidley MJ, Gilbert RG. A more general approach to fitting digestion kinetics of starch in food. Carbohydrate Polymers 2019;225:115244. [DOI: 10.1016/j.carbpol.2019.115244] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
30 Xia C, Zhong L, Wang J, Zhang L, Chen X, Ji H, Ma S, Dong W, Ye X, Huang Y, Li Z, Cui Z. Structural and digestion properties of potato starch modified using an efficient starch branching enzyme AqGBE. Int J Biol Macromol 2021;184:551-7. [PMID: 34171255 DOI: 10.1016/j.ijbiomac.2021.06.135] [Reference Citation Analysis]
31 Li H, Yu W, Dhital S, Gidley MJ, Gilbert RG. Starch branching enzymes contributing to amylose and amylopectin fine structure in wheat. Carbohydrate Polymers 2019;224:115185. [DOI: 10.1016/j.carbpol.2019.115185] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
32 Li H, Sartika RS, Kerr ED, Schulz BL, Gidley MJ, Dhital S. Starch granular protein of high-amylose wheat gives innate resistance to amylolysis. Food Chemistry 2020;330:127328. [DOI: 10.1016/j.foodchem.2020.127328] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
33 Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. High-amylose starch: Structure, functionality and applications. Crit Rev Food Sci Nutr 2022;:1-23. [PMID: 35373669 DOI: 10.1080/10408398.2022.2056871] [Reference Citation Analysis]
34 Li H, Dhital S, Flanagan BM, Mata J, Gilbert EP, Gidley MJ. High-amylose wheat and maize starches have distinctly different granule organization and annealing behaviour: A key role for chain mobility. Food Hydrocolloids 2020;105:105820. [DOI: 10.1016/j.foodhyd.2020.105820] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]