BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang F, Wang K, Kong Q, Wang J, Xi D, Gu B, Lu S, Wei T, Chen X. Recent studies focusing on the development of fluorescence probes for zinc ion. Coordination Chemistry Reviews 2021;429:213636. [DOI: 10.1016/j.ccr.2020.213636] [Cited by in Crossref: 7] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Guo X, Wu J, Han H, Xing Y, Liu Y, Wei K, Kang M, Yang X, Pei M, Zhang G. A novel oxazole-based fluorescence sensor towards Ga3+ and PPi for sequential determination and application. Journal of Photochemistry and Photobiology A: Chemistry 2022;433:114202. [DOI: 10.1016/j.jphotochem.2022.114202] [Reference Citation Analysis]
2 Muthusamy S, Rajalakshmi K, Seo Y, Xie M, Kannan P, Lodi RS, Song J, Xu Y. Push-pull electronic effects on benzothiazole derived probes for the detection of Zn2+: Exploring the sensing strategies and its applications. Dyes and Pigments 2022;207:110709. [DOI: 10.1016/j.dyepig.2022.110709] [Reference Citation Analysis]
3 Zhang J, Hou S, Zhang J, Liang N, Zhao L. A facile aptamer-based sensing strategy for dopamine detection through the fluorescence energy transfer between dye and single-wall carbon nanohorns. Spectrochim Acta A Mol Biomol Spectrosc 2022;279:121415. [PMID: 35636140 DOI: 10.1016/j.saa.2022.121415] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Chang H, Mei Y, Li Y, Shang L. An AIE and ESIPT based neuraminidase fluorescent probe for influenza virus detection and imaging. Talanta 2022;247:123583. [DOI: 10.1016/j.talanta.2022.123583] [Reference Citation Analysis]
5 Guo X, Guo C, Xing Y, Liu Y, Wei K, Kang M, Yang X, Pei M, Zhang G. A novel Schiff base sensor through “off-on-off” fluorescence behavior for sequentially monitoring Al3+ and Cu2+. Journal of Photochemistry and Photobiology A: Chemistry 2022;430:113990. [DOI: 10.1016/j.jphotochem.2022.113990] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Dong H, Zhao L, Chen Y, Li M, Chen W, Wang Y, Wei X, Zhang Y, Zhou Y, Xu M. Dual-Ligand Near-Infrared Luminescent Lanthanide-Based Metal-Organic Framework Coupled with In Vivo Microdialysis for Highly Sensitive Ratiometric Detection of Zn2+ in a Mouse Model of Alzheimer's Disease. Anal Chem 2022. [PMID: 35981232 DOI: 10.1021/acs.analchem.2c02898] [Reference Citation Analysis]
7 Kong M, Xing F, Zhu S. A new tripodal 8-hydroxyquinoline as a high sensitivity fluorescence sensor for Zn(II) in ethanol and its two morphology in solid. Inorganic Chemistry Communications 2022;141:109530. [DOI: 10.1016/j.inoche.2022.109530] [Reference Citation Analysis]
8 Fang H, Li Y, Yao S, Geng S, Chen Y, Guo Z, He W. An Endoplasmic Reticulum-Targeted Ratiometric Fluorescent Molecule Reveals Zn2+ Micro-Dynamics During Drug-Induced Organelle Ionic Disorder. Front Pharmacol 2022;13:927609. [DOI: 10.3389/fphar.2022.927609] [Reference Citation Analysis]
9 Wang D, Li SJ, Cao W, Wang Z, Ma Y. ESIPT-Active 8-Hydroxyquinoline-Based Fluorescence Sensor for Zn(II) Detection and Aggregation-Induced Emission of the Zn(II) Complex. ACS Omega 2022;7:18017-26. [PMID: 35664592 DOI: 10.1021/acsomega.2c01414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Yan L, Yang H, Li J, Zhou C, Li L, Wu X, Lei C. A near infrared fluorescent probe for detection and bioimaging of zinc ions and hypochloric acid. Analytica Chimica Acta 2022;1206:339750. [DOI: 10.1016/j.aca.2022.339750] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Jain N, Kaur N. A comprehensive compendium of literature of 1,8-Naphthalimide based chemosensors from 2017 to 2021. Coordination Chemistry Reviews 2022;459:214454. [DOI: 10.1016/j.ccr.2022.214454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Li L, Wang J, Xu S, Li C, Dong B. Recent Progress in Fluorescent Probes For Metal Ion Detection. Front Chem 2022;10:875241. [DOI: 10.3389/fchem.2022.875241] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Li F, Wang X, Zhu M, Liu D, Liu D, Zhao J. Fluorescence properties of fluorescein and rhodamine supported on alumina nanowire films. Ceramics International 2022;48:11181-91. [DOI: 10.1016/j.ceramint.2021.12.338] [Reference Citation Analysis]
14 Chen L, Jiang H, Li N, Meng Q, Li Z, Han Q, Liu X. A Schiff-based AIE fluorescent probe for Zn2+ detection and its application as "fluorescence paper-based indicator". Spectrochim Acta A Mol Biomol Spectrosc 2022;268:120704. [PMID: 34896683 DOI: 10.1016/j.saa.2021.120704] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Kaur N, Gauri. Anthraquinone appended chemosensors for fluorescence monitoring of anions and/or metal ions. Inorganica Chimica Acta 2022. [DOI: 10.1016/j.ica.2022.120917] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Wu Y, Wang R, Dong G, Fu L. Two stable cobalt(II) coordination polymers as dual-functional fluorescent sensors for efficient detection of Zn2+/Cu2+ ions and norfloxacin. Journal of Solid State Chemistry 2022. [DOI: 10.1016/j.jssc.2022.123022] [Reference Citation Analysis]
17 Wu J, Shi Z, Zhu L, Li J, Han X, Xu M, Hao S, Fan Y, Shao T, Bai H, Peng B, Hu W, Liu X, Yao C, Li L, Huang W. The Design and Bioimaging Applications of NIR Fluorescent Organic Dyes with High Brightness. Advanced Optical Materials 2022;10:2102514. [DOI: 10.1002/adom.202102514] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Li M, Jin Y, Chen H, Jing R, Zhao N, Lian Z. The hybridizaiton of iodoplumbate with xanthene dye: white emission and high photocurrent response driven by strong organic/inorganic interactions. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2021.2025104] [Reference Citation Analysis]
19 Chen GY, Wan W, Cao QY, Xie Y. Aminoquinoline-anchored polynorbornene for sequential fluorescent sensing of Zn2+ and ATP. Spectrochim Acta A Mol Biomol Spectrosc 2021;269:120771. [PMID: 34952445 DOI: 10.1016/j.saa.2021.120771] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Jeon S, Lee S, Choi Y, Kim M, Lee S. A highly selective fluorescent sensor for Cu 2+ based on naphthalimide containing aza‐crown ether. Bull Korean Chem Soc. [DOI: 10.1002/bkcs.12444] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Mitchell MM, Liyana Gunawardana VW, Ramakrishna G, Mezei G. Pyrene-Functionalized Fluorescent Nanojars: Synthesis, Mass Spectrometric, and Photophysical Studies. ACS Omega 2021;6:33180-91. [PMID: 34901669 DOI: 10.1021/acsomega.1c05619] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Yang J, Guo J, He J. Precise recognition of Zn(II) ions by a finely designed pair of α-NiS and β-NiS nanostructures: A sandwich mode recognition approach. Journal of Environmental Chemical Engineering 2021;9:106837. [DOI: 10.1016/j.jece.2021.106837] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Yu W, Wang L, Wang L, Li Y, Zhang N, Zheng K. Quinoline based colorimetric and “turn-off” fluorescent chemosensor for phosgene sensing in solution and vapor phase. Microchemical Journal 2021;168:106334. [DOI: 10.1016/j.microc.2021.106334] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
24 Qiao L, Shao X, Gao S, Ming Z, Fu X, Wei Q. Research on endoplasmic reticulum-targeting fluorescent probes and endoplasmic reticulum stress-mediated nanoanticancer strategies: A review. Colloids Surf B Biointerfaces 2021;208:112046. [PMID: 34419809 DOI: 10.1016/j.colsurfb.2021.112046] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
25 Shellaiah M, Chen YT, Thirumalaivasan N, Aazaad B, Awasthi K, Sun KW, Wu SP, Lin MC, Ohta N. Pyrene-Based AIEE Active Nanoprobe for Zn2+ and Tyrosine Detection Demonstrated by DFT, Bioimaging, and Organic Thin-Film Transistor. ACS Appl Mater Interfaces 2021;13:28610-26. [PMID: 34110776 DOI: 10.1021/acsami.1c04744] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
26 Sivakumar R, Lee NY. Paper-Based Fluorescence Chemosensors for Metal Ion Detection in Biological and Environmental Samples. BioChip J 2021;15:216-32. [DOI: 10.1007/s13206-021-00026-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
27 Liu Y, Jiang B, Zhao L, Zhao L, Wang Q, Wang C, Xu B. A dansyl-based fluorescent probe for sensing Cu2+ in aqueous solution. Spectrochim Acta A Mol Biomol Spectrosc 2021;261:120009. [PMID: 34087769 DOI: 10.1016/j.saa.2021.120009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
28 Bartoli F, Conti L, Romano GM, Massai L, Paoli P, Rossi P, Pietraperzia G, Gellini C, Bencini A. Protonation of cyclen-based chelating agents containing fluorescent moieties. New J Chem 2021;45:16926-38. [DOI: 10.1039/d1nj03539h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]