BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yiallouros PK, Kouis P, Pirpa P, Michailidou K, Loizidou MA, Potamiti L, Kalyva M, Koutras G, Kyriacou K, Hadjisavvas A. Wide phenotypic variability in RSPH9-associated primary ciliary dyskinesia: review of a case-series from Cyprus. J Thorac Dis 2019;11:2067-75. [PMID: 31285900 DOI: 10.21037/jtd.2019.04.71] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Kühnapfel A, Horn K, Klotz U, Kiehntopf M, Rosolowski M, Loeffler M, Ahnert P, Suttorp N, Witzenrath M, Scholz M. Genetic Regulation of Cytokine Response in Patients with Acute Community-Acquired Pneumonia. Genes (Basel) 2022;13:111. [PMID: 35052452 DOI: 10.3390/genes13010111] [Reference Citation Analysis]
2 Brennan SK, Ferkol TW, Davis SD. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia. Int J Mol Sci 2021;22:8272. [PMID: 34361034 DOI: 10.3390/ijms22158272] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
3 Yiallouros PK, Kouis P, Kyriacou K, Evriviadou A, Anagnostopoulou P, Matthaiou A, Tsiolakis I, Pirpa P, Michailidou K, Potamiti L, Loizidou MA, Hadjisavvas A. Implementation of multigene panel NGS diagnosis in the national primary ciliary dyskinesia cohort of Cyprus: An island with a high disease prevalence. Hum Mutat 2021;42:e62-77. [PMID: 33715250 DOI: 10.1002/humu.24196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Rocca MS, Piatti G, Michelucci A, Guazzo R, Bertini V, Vinanzi C, Caligo MA, Valetto A, Foresta C. A novel genetic variant in DNAI2 detected by custom gene panel in a newborn with Primary Ciliary Dyskinesia: case report. BMC Med Genet 2020;21:220. [PMID: 33167880 DOI: 10.1186/s12881-020-01160-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zou W, Lv Y, Liu ZI, Xia P, Li H, Jiao J. Loss of Rsph9 causes neonatal hydrocephalus with abnormal development of motile cilia in mice. Sci Rep 2020;10:12435. [PMID: 32709945 DOI: 10.1038/s41598-020-69447-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
6 Ardura-Garcia C, Goutaki M, Carr SB, Crowley S, Halbeisen FS, Nielsen KG, Pennekamp P, Raidt J, Thouvenin G, Yiallouros PK, Omran H, Kuehni CE. Registries and collaborative studies for primary ciliary dyskinesia in Europe. ERJ Open Res 2020;6:00005-2020. [PMID: 32494577 DOI: 10.1183/23120541.00005-2020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
7 Zhang X, Wang X, Li H, Wang W, Zhao S. The value of nasal nitric oxide measurement in the diagnosis of primary ciliary dyskinesia. Pediatr Investig 2019;3:209-13. [PMID: 32851324 DOI: 10.1002/ped4.12160] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
8 Kouis P, Evriviadou A, Yiallouros PK. Nasal nitric oxide measurement for primary ciliary dyskinesia diagnosis: The impact of underlying genetic defects on diagnostic accuracy. Pediatr Investig 2019;3:214-6. [PMID: 32851325 DOI: 10.1002/ped4.12171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Poprzeczko M, Bicka M, Farahat H, Bazan R, Osinka A, Fabczak H, Joachimiak E, Wloga D. Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019;8:E1614. [PMID: 31835861 DOI: 10.3390/cells8121614] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]