BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas JR, Randell S, Boucher RC, Döring G. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002;109:317-25. [PMID: 11827991 DOI: 10.1172/JCI13870] [Cited by in Crossref: 64] [Cited by in F6Publishing: 427] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 2007;297:277-95. [PMID: 17466590 DOI: 10.1016/j.ijmm.2007.03.012] [Cited by in Crossref: 137] [Cited by in F6Publishing: 129] [Article Influence: 9.1] [Reference Citation Analysis]
2 Sønderholm M, Bjarnsholt T, Alhede M, Kolpen M, Jensen PØ, Kühl M, Kragh KN. The Consequences of Being in an Infectious Biofilm: Microenvironmental Conditions Governing Antibiotic Tolerance. Int J Mol Sci 2017;18:E2688. [PMID: 29231866 DOI: 10.3390/ijms18122688] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 6.4] [Reference Citation Analysis]
3 Poh WH, Lin J, Colley B, Müller N, Goh BC, Schleheck D, El Sahili A, Marquardt A, Liang Y, Kjelleberg S, Lescar J, Rice SA, Klebensberger J. The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa. PLoS One 2020;15:e0241019. [PMID: 33156827 DOI: 10.1371/journal.pone.0241019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Quinn RA, Comstock W, Zhang T, Morton JT, da Silva R, Tran A, Aksenov A, Nothias LF, Wangpraseurt D, Melnik AV, Ackermann G, Conrad D, Klapper I, Knight R, Dorrestein PC. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci Adv 2018;4:eaau1908. [PMID: 30263961 DOI: 10.1126/sciadv.aau1908] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
5 Marozkina NV, Gaston B. Nitrogen balance in the ecosystem of the cystic fibrosis lung. Am J Respir Crit Care Med 2011;183:1290-2. [PMID: 21596830 DOI: 10.1164/rccm.201102-0288ED] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
6 Price-Whelan A, Dietrich LE, Newman DK. Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 2007;189:6372-81. [PMID: 17526704 DOI: 10.1128/JB.00505-07] [Cited by in Crossref: 211] [Cited by in F6Publishing: 119] [Article Influence: 14.1] [Reference Citation Analysis]
7 Caceres SM, Malcolm KC, Taylor-Cousar JL, Nichols DP, Saavedra MT, Bratton DL, Moskowitz SM, Burns JL, Nick JA. Enhanced in vitro formation and antibiotic resistance of nonattached Pseudomonas aeruginosa aggregates through incorporation of neutrophil products. Antimicrob Agents Chemother 2014;58:6851-60. [PMID: 25182651 DOI: 10.1128/AAC.03514-14] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
8 Benedyk M, Byrne DP, Glowczyk I, Potempa J, Olczak M, Olczak T, Smalley JW. Pyocyanina contributory factor in haem acquisition and virulence enhancement of Porphyromonas gingivalis in the lung [corrected]. PLoS One 2015;10:e0118319. [PMID: 25706529 DOI: 10.1371/journal.pone.0118319] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
9 Bhardwaj S, Bhatia S, Singh S, Franco F Jr. Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A critical review. Iran J Basic Med Sci 2021;24:699-719. [PMID: 34630947 DOI: 10.22038/IJBMS.2021.49151.11254] [Reference Citation Analysis]
10 Reiniger N, Lee MM, Coleman FT, Ray C, Golan DE, Pier GB. Resistance to Pseudomonas aeruginosa chronic lung infection requires cystic fibrosis transmembrane conductance regulator-modulated interleukin-1 (IL-1) release and signaling through the IL-1 receptor. Infect Immun 2007;75:1598-608. [PMID: 17283089 DOI: 10.1128/IAI.01980-06] [Cited by in Crossref: 52] [Cited by in F6Publishing: 34] [Article Influence: 3.5] [Reference Citation Analysis]
11 Schurr MJ. Which bacterial biofilm exopolysaccharide is preferred, Psl or alginate? J Bacteriol 2013;195:1623-6. [PMID: 23417492 DOI: 10.1128/JB.00173-13] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
12 Wolak JE, Esther CR Jr, O'Connell TM. Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients. Biomarkers 2009;14:55-60. [PMID: 19283525 DOI: 10.1080/13547500802688194] [Cited by in Crossref: 78] [Cited by in F6Publishing: 72] [Article Influence: 6.0] [Reference Citation Analysis]
13 Wu K, Yau YC, Matukas L, Waters V. Biofilm compared to conventional antimicrobial susceptibility of Stenotrophomonas maltophilia Isolates from cystic fibrosis patients. Antimicrob Agents Chemother 2013;57:1546-8. [PMID: 23295930 DOI: 10.1128/AAC.02215-12] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
14 Danis-Wlodarczyk K, Vandenheuvel D, Jang HB, Briers Y, Olszak T, Arabski M, Wasik S, Drabik M, Higgins G, Tyrrell J, Harvey BJ, Noben JP, Lavigne R, Drulis-Kawa Z. A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections. Sci Rep 2016;6:28115. [PMID: 27301427 DOI: 10.1038/srep28115] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 9.5] [Reference Citation Analysis]
15 van Tilburg Bernardes E, Charron-Mazenod L, Reading DJ, Reckseidler-Zenteno SL, Lewenza S. Exopolysaccharide-Repressing Small Molecules with Antibiofilm and Antivirulence Activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017;61:e01997-16. [PMID: 28223377 DOI: 10.1128/AAC.01997-16] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 4.2] [Reference Citation Analysis]
16 Eschbach M, Schreiber K, Trunk K, Buer J, Jahn D, Schobert M. Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J Bacteriol 2004;186:4596-604. [PMID: 15231792 DOI: 10.1128/JB.186.14.4596-4604.2004] [Cited by in Crossref: 166] [Cited by in F6Publishing: 86] [Article Influence: 9.2] [Reference Citation Analysis]
17 Rivas Caldas R, Le Gall F, Revert K, Rault G, Virmaux M, Gouriou S, Héry-Arnaud G, Barbier G, Boisramé S. Pseudomonas aeruginosa and Periodontal Pathogens in the Oral Cavity and Lungs of Cystic Fibrosis Patients: a Case-Control Study. J Clin Microbiol 2015;53:1898-907. [PMID: 25854483 DOI: 10.1128/JCM.00368-15] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 3.1] [Reference Citation Analysis]
18 Goddard AF, Staudinger BJ, Dowd SE, Joshi-Datar A, Wolcott RD, Aitken ML, Fligner CL, Singh PK. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci U S A 2012;109:13769-74. [PMID: 22872870 DOI: 10.1073/pnas.1107435109] [Cited by in Crossref: 185] [Cited by in F6Publishing: 173] [Article Influence: 18.5] [Reference Citation Analysis]
19 Fowler RC, Hanson ND. The OpdQ porin of Pseudomonas aeruginosa is regulated by environmental signals associated with cystic fibrosis including nitrate-induced regulation involving the NarXL two-component system. Microbiologyopen 2015;4:967-82. [PMID: 26459101 DOI: 10.1002/mbo3.305] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
20 Kang D, Kirienko NV. Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa. J Microbiol 2018;56:449-57. [PMID: 29948830 DOI: 10.1007/s12275-018-8114-3] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 8.3] [Reference Citation Analysis]
21 Bianconi I, Jeukens J, Freschi L, Alcalá-Franco B, Facchini M, Boyle B, Molinaro A, Kukavica-Ibrulj I, Tümmler B, Levesque RC, Bragonzi A. Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection. BMC Genomics 2015;16:1105. [PMID: 26714629 DOI: 10.1186/s12864-015-2276-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
22 Lewis AM, Matzdorf SS, Endres JL, Windham IH, Bayles KW, Rice KC. Examination of the Staphylococcus aureus nitric oxide reductase (saNOR) reveals its contribution to modulating intracellular NO levels and cellular respiration. Mol Microbiol 2015;96:651-69. [PMID: 25651868 DOI: 10.1111/mmi.12962] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
23 Carpenter JM, Zhong F, Ragusa MJ, Louro RO, Hogan DA, Pletneva EV. Structure and redox properties of the diheme electron carrier cytochrome c4 from Pseudomonas aeruginosa. J Inorg Biochem 2020;203:110889. [PMID: 31707335 DOI: 10.1016/j.jinorgbio.2019.110889] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Marteyn BS, Burgel PR, Meijer L, Witko-Sarsat V. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by Pseudomonas aeruginosa: Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis. Front Cell Infect Microbiol 2017;7:243. [PMID: 28713772 DOI: 10.3389/fcimb.2017.00243] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
25 Oberhardt MA, Puchałka J, Fryer KE, Martins dos Santos VA, Papin JA. Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 2008;190:2790-803. [PMID: 18192387 DOI: 10.1128/JB.01583-07] [Cited by in Crossref: 193] [Cited by in F6Publishing: 110] [Article Influence: 13.8] [Reference Citation Analysis]
26 Qiao J, Purro M, Liu Z, Xiong MP. Terpyridine-Micelles for Inhibiting Bacterial Biofilm Development. ACS Infect Dis 2018;4:1346-54. [PMID: 29974746 DOI: 10.1021/acsinfecdis.8b00091] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
27 Basta DW, Bergkessel M, Newman DK. Identification of Fitness Determinants during Energy-Limited Growth Arrest in Pseudomonas aeruginosa. mBio 2017;8:e01170-17. [PMID: 29184024 DOI: 10.1128/mBio.01170-17] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 4.4] [Reference Citation Analysis]
28 Döring G, Meisner C, Stern M. A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc Natl Acad Sci USA. 2007;104:11020-11025. [PMID: 17585011 DOI: 10.1073/pnas.0702403104] [Cited by in Crossref: 125] [Cited by in F6Publishing: 110] [Article Influence: 8.3] [Reference Citation Analysis]
29 Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2013;41:1-20. [PMID: 23143271 DOI: 10.1093/nar/gks1039] [Cited by in Crossref: 314] [Cited by in F6Publishing: 203] [Article Influence: 31.4] [Reference Citation Analysis]
30 Zhao J, Yu W. Interaction between Pseudomonas aeruginosa and Aspergillus fumigatus in cystic fibrosis. PeerJ 2018;6:e5931. [PMID: 30430043 DOI: 10.7717/peerj.5931] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
31 Harrison F, Muruli A, Higgins S, Diggle SP. Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa. Infect Immun 2014;82:3312-23. [PMID: 24866798 DOI: 10.1128/IAI.01554-14] [Cited by in Crossref: 48] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
32 Nielsen BU, Kolpen M, Jensen PØ, Katzenstein T, Pressler T, Ritz C, Mathiesen IHM, Faurholt-Jepsen D. Neutrophil count in sputum is associated with increased sputum glucose and sputum L-lactate in cystic fibrosis. PLoS One 2020;15:e0238524. [PMID: 32915806 DOI: 10.1371/journal.pone.0238524] [Reference Citation Analysis]
33 Olszak T, Danis-Wlodarczyk K, Arabski M, Gula G, Maciejewska B, Wasik S, Lood C, Higgins G, Harvey BJ, Lavigne R, Drulis-Kawa Z. Pseudomonas aeruginosa PA5oct Jumbo Phage Impacts Planktonic and Biofilm Population and Reduces Its Host Virulence. Viruses 2019;11:E1089. [PMID: 31771160 DOI: 10.3390/v11121089] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
34 Zhang B, Qi S, Yue Y, Shen J, Li C, Qian W, Wu J. Particle Disposition in the Realistic Airway Tree Models of Subjects with Tracheal Bronchus and COPD. Biomed Res Int 2018;2018:7428609. [PMID: 30155481 DOI: 10.1155/2018/7428609] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
35 Vallet-Gely I, Sharp JS, Dove SL. Local and global regulators linking anaerobiosis to cupA fimbrial gene expression in Pseudomonas aeruginosa. J Bacteriol 2007;189:8667-76. [PMID: 17890313 DOI: 10.1128/JB.01344-07] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
36 Schreiber K, Boes N, Eschbach M, Jaensch L, Wehland J, Bjarnsholt T, Givskov M, Hentzer M, Schobert M. Anaerobic survival of Pseudomonas aeruginosa by pyruvate fermentation requires an Usp-type stress protein. J Bacteriol 2006;188:659-68. [PMID: 16385055 DOI: 10.1128/JB.188.2.659-668.2006] [Cited by in Crossref: 87] [Cited by in F6Publishing: 51] [Article Influence: 5.4] [Reference Citation Analysis]
37 Filiatrault MJ, Wagner VE, Bushnell D, Haidaris CG, Iglewski BH, Passador L. Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa. Infect Immun 2005;73:3764-72. [PMID: 15908409 DOI: 10.1128/IAI.73.6.3764-3772.2005] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 2.9] [Reference Citation Analysis]
38 Schaible B, McClean S, Selfridge A, Broquet A, Asehnoune K, Taylor CT, Schaffer K. Hypoxia modulates infection of epithelial cells by Pseudomonas aeruginosa. PLoS One 2013;8:e56491. [PMID: 23418576 DOI: 10.1371/journal.pone.0056491] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
39 Reighard KP, Schoenfisch MH. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions. Antimicrob Agents Chemother 2015;59:6506-13. [PMID: 26239983 DOI: 10.1128/AAC.01208-15] [Cited by in Crossref: 33] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
40 Rogers GB, Carroll MP, Hoffman LR, Walker AW, Fine DA, Bruce KD. Comparing the microbiota of the cystic fibrosis lung and human gut. Gut Microbes 2010;1:85-93. [PMID: 21326915 DOI: 10.4161/gmic.1.2.11350] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
41 Young HW, Williams OW, Chandra D, Bellinghausen LK, Pérez G, Suárez A, Tuvim MJ, Roy MG, Alexander SN, Moghaddam SJ, Adachi R, Blackburn MR, Dickey BF, Evans CM. Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5' elements. Am J Respir Cell Mol Biol 2007;37:273-90. [PMID: 17463395 DOI: 10.1165/rcmb.2005-0460OC] [Cited by in Crossref: 118] [Cited by in F6Publishing: 87] [Article Influence: 7.9] [Reference Citation Analysis]
42 Kolpen M, Lerche CJ, Kragh KN, Sams T, Koren K, Jensen AS, Line L, Bjarnsholt T, Ciofu O, Moser C, Kühl M, Høiby N, Jensen PØ. Hyperbaric Oxygen Sensitizes Anoxic Pseudomonas aeruginosa Biofilm to Ciprofloxacin. Antimicrob Agents Chemother 2017;61:e01024-17. [PMID: 28874373 DOI: 10.1128/AAC.01024-17] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
43 Butt AT, Thomas MS. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front Cell Infect Microbiol 2017;7:460. [PMID: 29164069 DOI: 10.3389/fcimb.2017.00460] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 6.4] [Reference Citation Analysis]
44 Cheng HJ, Ee R, Cheong YM, Tan WS, Yin WF, Chan KG. Detection of quorum sensing activity in the multidrug-resistant clinical isolate Pseudomonas aeruginosa strain GB11. Sensors (Basel) 2014;14:12511-22. [PMID: 25019635 DOI: 10.3390/s140712511] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
45 Lopes SP, Azevedo NF, Pereira MO. Emergent bacteria in cystic fibrosis: in vitro biofilm formation and resilience under variable oxygen conditions. Biomed Res Int 2014;2014:678301. [PMID: 24868541 DOI: 10.1155/2014/678301] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
46 Filiatrault MJ, Tombline G, Wagner VE, Van Alst N, Rumbaugh K, Sokol P, Schwingel J, Iglewski BH. Pseudomonas aeruginosa PA1006, which plays a role in molybdenum homeostasis, is required for nitrate utilization, biofilm formation, and virulence. PLoS One 2013;8:e55594. [PMID: 23409004 DOI: 10.1371/journal.pone.0055594] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
47 Major TA, Panmanee W, Mortensen JE, Gray LD, Hoglen N, Hassett DJ. Sodium nitrite-mediated killing of the major cystic fibrosis pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia under anaerobic planktonic and biofilm conditions. Antimicrob Agents Chemother 2010;54:4671-7. [PMID: 20696868 DOI: 10.1128/AAC.00379-10] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
48 Schaible B, Taylor CT, Schaffer K. Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob Agents Chemother 2012;56:2114-8. [PMID: 22290986 DOI: 10.1128/AAC.05574-11] [Cited by in Crossref: 68] [Cited by in F6Publishing: 31] [Article Influence: 6.8] [Reference Citation Analysis]
49 Parsek MR, Fuqua C. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 2004;186:4427-40. [PMID: 15231774 DOI: 10.1128/JB.186.14.4427-4440.2004] [Cited by in Crossref: 128] [Cited by in F6Publishing: 40] [Article Influence: 7.1] [Reference Citation Analysis]
50 Duan K, Surette MG. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 2007;189:4827-36. [PMID: 17449617 DOI: 10.1128/JB.00043-07] [Cited by in Crossref: 157] [Cited by in F6Publishing: 82] [Article Influence: 10.5] [Reference Citation Analysis]
51 Livraghi-Butrico A, Kelly EJ, Klem ER, Dang H, Wolfgang MC, Boucher RC, Randell SH, O'Neal WK. Mucus clearance, MyD88-dependent and MyD88-independent immunity modulate lung susceptibility to spontaneous bacterial infection and inflammation. Mucosal Immunol 2012;5:397-408. [PMID: 22419116 DOI: 10.1038/mi.2012.17] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 5.2] [Reference Citation Analysis]
52 Yang L, Rau MH, Yang L, Høiby N, Molin S, Jelsbak L. Bacterial adaptation during chronic infection revealed by independent component analysis of transcriptomic data. BMC Microbiol 2011;11:184. [PMID: 21851621 DOI: 10.1186/1471-2180-11-184] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
53 Guss AM, Roeselers G, Newton IL, Young CR, Klepac-Ceraj V, Lory S, Cavanaugh CM. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J 2011;5:20-9. [PMID: 20631810 DOI: 10.1038/ismej.2010.88] [Cited by in Crossref: 129] [Cited by in F6Publishing: 125] [Article Influence: 10.8] [Reference Citation Analysis]
54 Margaroli C, Tirouvanziam R. Neutrophil plasticity enables the development of pathological microenvironments: implications for cystic fibrosis airway disease. Mol Cell Pediatr 2016;3:38. [PMID: 27868161 DOI: 10.1186/s40348-016-0066-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
55 Ross BS, Lofgren LA, Ashare A, Stajich JE, Cramer RA. Aspergillus fumigatus In-Host HOG Pathway Mutation for Cystic Fibrosis Lung Microenvironment Persistence. mBio 2021;12:e0215321. [PMID: 34465017 DOI: 10.1128/mBio.02153-21] [Reference Citation Analysis]
56 Ulrich M, Worlitzsch D, Viglio S, Siegmann N, Iadarola P, Shute JK, Geiser M, Pier GB, Friedel G, Barr ML, Schuster A, Meyer KC, Ratjen F, Bjarnsholt T, Gulbins E, Döring G. Alveolar inflammation in cystic fibrosis. J Cyst Fibros 2010;9:217-27. [PMID: 20347403 DOI: 10.1016/j.jcf.2010.03.001] [Cited by in Crossref: 78] [Cited by in F6Publishing: 72] [Article Influence: 6.5] [Reference Citation Analysis]
57 Bain WG, Tripathi A, Mandke P, Gans JH, D'Alessio FR, Sidhaye VK, Aggarwal NR. Low-Dose Oxygen Enhances Macrophage-Derived Bacterial Clearance following Cigarette Smoke Exposure. J Immunol Res 2016;2016:1280347. [PMID: 27403445 DOI: 10.1155/2016/1280347] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
58 Precit MR, Wolter DJ, Griffith A, Emerson J, Burns JL, Hoffman LR. Optimized In Vitro Antibiotic Susceptibility Testing Method for Small-Colony Variant Staphylococcus aureus. Antimicrob Agents Chemother 2016;60:1725-35. [PMID: 26729501 DOI: 10.1128/AAC.02330-15] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
59 Aristotelous AC, Klapper I, Grabovsky Y, Pabst B, Pitts B, Stewart PS. Diffusive transport through a model host-biofilm system. Phys Rev E Stat Nonlin Soft Matter Phys 2015;92:022703. [PMID: 26382428 DOI: 10.1103/PhysRevE.92.022703] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
60 Elborn JS. Identification and management of unusual pathogens in cystic fibrosis. J R Soc Med 2008;101 Suppl 1:S2-5. [PMID: 18607011 DOI: 10.1258/jrsm.2008.s18002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
61 Graf AC, Striesow J, Pané-Farré J, Sura T, Wurster M, Lalk M, Pieper DH, Becher D, Kahl BC, Riedel K. An Innovative Protocol for Metaproteomic Analyses of Microbial Pathogens in Cystic Fibrosis Sputum. Front Cell Infect Microbiol 2021;11:724569. [PMID: 34513734 DOI: 10.3389/fcimb.2021.724569] [Reference Citation Analysis]
62 Pessi G, Braunwalder R, Grunau A, Omasits U, Ahrens CH, Eberl L. Response of Burkholderia cenocepacia H111 to micro-oxia. PLoS One 2013;8:e72939. [PMID: 24023794 DOI: 10.1371/journal.pone.0072939] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
63 Hunter RC, Asfour F, Dingemans J, Osuna BL, Samad T, Malfroot A, Cornelis P, Newman DK. Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways. mBio 2013;4:e00557-13. [PMID: 23963183 DOI: 10.1128/mBio.00557-13] [Cited by in Crossref: 100] [Cited by in F6Publishing: 77] [Article Influence: 11.1] [Reference Citation Analysis]
64 Serisier DJ, Tuck A, Matley D, Carroll MP, Jones G. Antimicrobial susceptibility and synergy studies of cystic fibrosis sputum by direct sputum sensitivity testing. Eur J Clin Microbiol Infect Dis 2012;31:3211-6. [PMID: 22790537 DOI: 10.1007/s10096-012-1687-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
65 Moreau-Marquis S, Stanton BA, O'Toole GA. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther 2008;21:595-9. [PMID: 18234534 DOI: 10.1016/j.pupt.2007.12.001] [Cited by in Crossref: 191] [Cited by in F6Publishing: 175] [Article Influence: 13.6] [Reference Citation Analysis]
66 Harrison JJ, Almblad H, Irie Y, Wolter DJ, Eggleston HC, Randall TE, Kitzman JO, Stackhouse B, Emerson JC, Mcnamara S, Larsen TJ, Shendure J, Hoffman LR, Wozniak DJ, Parsek MR. Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections. PLoS Genet 2020;16:e1008848. [PMID: 32530919 DOI: 10.1371/journal.pgen.1008848] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 8.5] [Reference Citation Analysis]
67 Jewell MP, Galyean AA, Kirk Harris J, Zemanick ET, Cash KJ. Luminescent Nanosensors for Ratiometric Monitoring of Three-Dimensional Oxygen Gradients in Laboratory and Clinical Pseudomonas aeruginosa Biofilms. Appl Environ Microbiol 2019;85:e01116-19. [PMID: 31420335 DOI: 10.1128/AEM.01116-19] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
68 Simkins JW, Stewart PS, Codd SL, Seymour JD. Non-invasive imaging of oxygen concentration in a complex in vitro biofilm infection model using 19 F MRI: Persistence of an oxygen sink despite prolonged antibiotic therapy. Magn Reson Med 2019;82:2248-56. [PMID: 31373035 DOI: 10.1002/mrm.27888] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
69 Kraemer R, Baldwin DN, Ammann RA, Frey U, Gallati S. Progression of pulmonary hyperinflation and trapped gas associated with genetic and environmental factors in children with cystic fibrosis. Respir Res 2006;7:138. [PMID: 17137500 DOI: 10.1186/1465-9921-7-138] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 2.4] [Reference Citation Analysis]
70 Pandey S, Delgado C, Kumari H, Florez L, Mathee K. Outer-membrane protein LptD (PA0595) plays a role in the regulation of alginate synthesis in Pseudomonas aeruginosa. J Med Microbiol 2018;67:1139-56. [PMID: 29923820 DOI: 10.1099/jmm.0.000752] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
71 Nazik H, Sass G, Williams P, Déziel E, Stevens DA. Molecular Modifications of the Pseudomonas Quinolone Signal in the Intermicrobial Competition with Aspergillus. J Fungi (Basel) 2021;7:343. [PMID: 33925067 DOI: 10.3390/jof7050343] [Reference Citation Analysis]
72 Sass G, Nazik H, Penner J, Shah H, Ansari SR, Clemons KV, Groleau MC, Dietl AM, Visca P, Haas H, Déziel E, Stevens DA. Studies of Pseudomonas aeruginosa Mutants Indicate Pyoverdine as the Central Factor in Inhibition of Aspergillus fumigatus Biofilm. J Bacteriol 2018;200:e00345-17. [PMID: 29038255 DOI: 10.1128/JB.00345-17] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 9.2] [Reference Citation Analysis]
73 Zemanick ET, Wagner BD, Sagel SD, Stevens MJ, Accurso FJ, Harris JK. Reliability of quantitative real-time PCR for bacterial detection in cystic fibrosis airway specimens. PLoS One 2010;5:e15101. [PMID: 21152087 DOI: 10.1371/journal.pone.0015101] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 4.5] [Reference Citation Analysis]
74 Ratjen F, Bell SC, Rowe SM, Goss CH, Quittner AL, Bush A. Cystic fibrosis. Nat Rev Dis Primers 2015;1:15010. [PMID: 27189798 DOI: 10.1038/nrdp.2015.10] [Cited by in Crossref: 218] [Cited by in F6Publishing: 191] [Article Influence: 31.1] [Reference Citation Analysis]
75 Tsao FH, Xiang Z, Abbasi A, Meyer KC. Neutrophil necrosis and annexin 1 degradation associated with airway inflammation in lung transplant recipients with cystic fibrosis. BMC Pulm Med 2012;12:44. [PMID: 22898134 DOI: 10.1186/1471-2466-12-44] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
76 Tan J, Hammond JH, Hogan DA, Greene CS. ADAGE-Based Integration of Publicly Available Pseudomonas aeruginosa Gene Expression Data with Denoising Autoencoders Illuminates Microbe-Host Interactions. mSystems 2016;1:e00025-15. [PMID: 27822512 DOI: 10.1128/mSystems.00025-15] [Cited by in Crossref: 66] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
77 Boyle KE, Heilmann S, van Ditmarsch D, Xavier JB. Exploiting social evolution in biofilms. Curr Opin Microbiol 2013;16:207-12. [PMID: 23357558 DOI: 10.1016/j.mib.2013.01.003] [Cited by in Crossref: 57] [Cited by in F6Publishing: 41] [Article Influence: 6.3] [Reference Citation Analysis]
78 Beaume M, Köhler T, Fontana T, Tognon M, Renzoni A, van Delden C. Metabolic pathways of Pseudomonas aeruginosa involved in competition with respiratory bacterial pathogens. Front Microbiol 2015;6:321. [PMID: 25954256 DOI: 10.3389/fmicb.2015.00321] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
79 Lee KM, Go J, Yoon MY, Park Y, Kim SC, Yong DE, Yoon SS. Vitamin B12-mediated restoration of defective anaerobic growth leads to reduced biofilm formation in Pseudomonas aeruginosa. Infect Immun 2012;80:1639-49. [PMID: 22371376 DOI: 10.1128/IAI.06161-11] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
80 Wang Y, Wilks JC, Danhorn T, Ramos I, Croal L, Newman DK. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 2011;193:3606-17. [PMID: 21602354 DOI: 10.1128/JB.00396-11] [Cited by in Crossref: 147] [Cited by in F6Publishing: 87] [Article Influence: 13.4] [Reference Citation Analysis]
81 Glasser NR, Kern SE, Newman DK. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol Microbiol 2014;92:399-412. [PMID: 24612454 DOI: 10.1111/mmi.12566] [Cited by in Crossref: 104] [Cited by in F6Publishing: 90] [Article Influence: 13.0] [Reference Citation Analysis]
82 Van Alst NE, Picardo KF, Iglewski BH, Haidaris CG. Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun 2007;75:3780-90. [PMID: 17526746 DOI: 10.1128/IAI.00201-07] [Cited by in Crossref: 88] [Cited by in F6Publishing: 53] [Article Influence: 5.9] [Reference Citation Analysis]
83 Tan Q, Ai Q, Xu Q, Li F, Yu J. Polymorphonuclear Leukocytes or Hydrogen Peroxide Enhance Biofilm Development of Mucoid Pseudomonas aeruginosa. Mediators Inflamm 2018;2018:8151362. [PMID: 30116152 DOI: 10.1155/2018/8151362] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
84 Beswick E, Amich J, Gago S. Factoring in the Complexity of the Cystic Fibrosis Lung to Understand Aspergillus fumigatus and Pseudomonas aeruginosa Interactions. Pathogens 2020;9:E639. [PMID: 32781694 DOI: 10.3390/pathogens9080639] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
85 La Rosa R, Johansen HK, Molin S. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa. mBio 2018;9:e00269-18. [PMID: 29636437 DOI: 10.1128/mBio.00269-18] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
86 Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 2002;109:571-7. [PMID: 11877463 DOI: 10.1172/JCI15217] [Cited by in Crossref: 28] [Cited by in F6Publishing: 384] [Article Influence: 1.4] [Reference Citation Analysis]
87 Sousa AM, Pereira MO. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs-A Review. Pathogens 2014;3:680-703. [PMID: 25438018 DOI: 10.3390/pathogens3030680] [Cited by in Crossref: 130] [Cited by in F6Publishing: 124] [Article Influence: 16.3] [Reference Citation Analysis]
88 Zhuo C, Zhao QY, Xiao SN. The impact of spgM, rpfF, rmlA gene distribution on biofilm formation in Stenotrophomonas maltophilia. PLoS One 2014;9:e108409. [PMID: 25285537 DOI: 10.1371/journal.pone.0108409] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
89 Mauch RM, Rossi CL, Nolasco da Silva MT, Bianchi Aiello T, Ribeiro JD, Ribeiro AF, Høiby N, Levy CE. Secretory IgA-mediated immune response in saliva and early detection of Pseudomonas aeruginosa in the lower airways of pediatric cystic fibrosis patients. Med Microbiol Immunol 2019;208:205-13. [PMID: 30706137 DOI: 10.1007/s00430-019-00578-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
90 Barakat R, Goubet I, Manon S, Berges T, Rosenfeld E. Unsuspected pyocyanin effect in yeast under anaerobiosis. Microbiologyopen 2014;3:1-14. [PMID: 24307284 DOI: 10.1002/mbo3.142] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
91 Gruber JD, Chen W, Parnham S, Beauchesne K, Moeller P, Flume PA, Zhang YM. The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity. PeerJ 2016;4:e1495. [PMID: 26788419 DOI: 10.7717/peerj.1495] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
92 Skolimowski M, Weiss Nielsen M, Abeille F, Skafte-Pedersen P, Sabourin D, Fercher A, Papkovsky D, Molin S, Taboryski R, Sternberg C, Dufva M, Geschke O, Emnéus J. Modular microfluidic system as a model of cystic fibrosis airways. Biomicrofluidics 2012;6:34109. [PMID: 23908680 DOI: 10.1063/1.4742911] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
93 Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, Roslani AC, Wick EC, Mongodin EF, Loke MF, Thulasi K, Gan HM, Goh KL, Chong HY, Kumar S, Wanyiri JW, Sears CL. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 2017;3:34. [PMID: 29214046 DOI: 10.1038/s41522-017-0040-3] [Cited by in Crossref: 123] [Cited by in F6Publishing: 106] [Article Influence: 24.6] [Reference Citation Analysis]
94 Del Mar Cendra M, Torrents E. Differential adaptability between reference strains and clinical isolates of Pseudomonas aeruginosa into the lung epithelium intracellular lifestyle. Virulence 2020;11:862-76. [PMID: 32697923 DOI: 10.1080/21505594.2020.1787034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
95 Button B, Cai LH, Ehre C, Kesimer M, Hill DB, Sheehan JK, Boucher RC, Rubinstein M. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 2012;337:937-41. [PMID: 22923574 DOI: 10.1126/science.1223012] [Cited by in Crossref: 452] [Cited by in F6Publishing: 390] [Article Influence: 45.2] [Reference Citation Analysis]
96 Di Bonaventura G, Stepanović S, Picciani C, Pompilio A, Piccolomini R. Effect of environmental factors on biofilm formation by clinical Stenotrophomonas maltophilia isolates. Folia Microbiol (Praha) 2007;52:86-90. [PMID: 17571802 DOI: 10.1007/BF02932144] [Cited by in Crossref: 36] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
97 Lewis BW, Choudhary I, Paudel K, Mao Y, Sharma R, Wang Y, Deshane JS, Boucher RC, Patial S, Saini Y. The Innate Lymphoid System Is a Critical Player in the Manifestation of Mucoinflammatory Airway Disease in Mice. J Immunol 2020;205:1695-708. [PMID: 32817334 DOI: 10.4049/jimmunol.2000530] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
98 Yoon SS, Karabulut AC, Lipscomb JD, Hennigan RF, Lymar SV, Groce SL, Herr AB, Howell ML, Kiley PJ, Schurr MJ, Gaston B, Choi KH, Schweizer HP, Hassett DJ. Two-pronged survival strategy for the major cystic fibrosis pathogen, Pseudomonas aeruginosa, lacking the capacity to degrade nitric oxide during anaerobic respiration. EMBO J 2007;26:3662-72. [PMID: 17627281 DOI: 10.1038/sj.emboj.7601787] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 3.5] [Reference Citation Analysis]
99 Lee B, Haagensen JA, Ciofu O, Andersen JB, Høiby N, Molin S. Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 2005;43:5247-55. [PMID: 16207991 DOI: 10.1128/JCM.43.10.5247-5255.2005] [Cited by in Crossref: 108] [Cited by in F6Publishing: 51] [Article Influence: 6.4] [Reference Citation Analysis]
100 Wolfgang MC, Jyot J, Goodman AL, Ramphal R, Lory S. Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. Proc Natl Acad Sci U S A 2004;101:6664-8. [PMID: 15084751 DOI: 10.1073/pnas.0307553101] [Cited by in Crossref: 106] [Cited by in F6Publishing: 105] [Article Influence: 5.9] [Reference Citation Analysis]
101 Huse HK, Kwon T, Zlosnik JE, Speert DP, Marcotte EM, Whiteley M. Parallel evolution in Pseudomonas aeruginosa over 39,000 generations in vivo. mBio 2010;1:e00199-10. [PMID: 20856824 DOI: 10.1128/mBio.00199-10] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 6.3] [Reference Citation Analysis]
102 Panmanee W, Gomez F, Witte D, Pancholi V, Britigan BE, Hassett DJ. The peptidoglycan-associated lipoprotein OprL helps protect a Pseudomonas aeruginosa mutant devoid of the transactivator OxyR from hydrogen peroxide-mediated killing during planktonic and biofilm culture. J Bacteriol 2008;190:3658-69. [PMID: 18310335 DOI: 10.1128/JB.00022-08] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
103 Schwarzer C, Illek B, Suh JH, Remington SJ, Fischer H, Machen TE. Organelle redox of CF and CFTR-corrected airway epithelia. Free Radic Biol Med 2007;43:300-16. [PMID: 17603939 DOI: 10.1016/j.freeradbiomed.2007.04.015] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 2.1] [Reference Citation Analysis]
104 Dauletbaev N, Das M, Cammisano M, Chen H, Singh S, Kooi C, Leigh R, Beaudoin T, Rousseau S, Lands LC. Rhinovirus Load Is High despite Preserved Interferon-β Response in Cystic Fibrosis Bronchial Epithelial Cells. PLoS One 2015;10:e0143129. [PMID: 26599098 DOI: 10.1371/journal.pone.0143129] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
105 Ma KC, Mortimer TD, Hicks AL, Wheeler NE, Sánchez-Busó L, Golparian D, Taiaroa G, Rubin DHF, Wang Y, Williamson DA, Unemo M, Harris SR, Grad YH. Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nat Commun 2020;11:4126. [PMID: 32807804 DOI: 10.1038/s41467-020-17980-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
106 Thibault D, Jensen PA, Wood S, Qabar C, Clark S, Shainheit MG, Isberg RR, van Opijnen T. Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes. Nat Commun 2019;10:5729. [PMID: 31844066 DOI: 10.1038/s41467-019-13719-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
107 Sousa SA, Seixas AMM, Mandal M, Rodríguez-Ortega MJ, Leitão JH. Characterization of the Burkholderia cenocepacia J2315 Surface-Exposed Immunoproteome. Vaccines (Basel) 2020;8:E509. [PMID: 32899969 DOI: 10.3390/vaccines8030509] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
108 Bragonzi A, Paroni M, Pirone L, Coladarci I, Ascenzioni F, Bevivino A. Environmental Burkholderia cenocepacia Strain Enhances Fitness by Serial Passages during Long-Term Chronic Airways Infection in Mice. Int J Mol Sci 2017;18:E2417. [PMID: 29135920 DOI: 10.3390/ijms18112417] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
109 Crabbé A, Ledesma MA, Nickerson CA. Mimicking the host and its microenvironment in vitro for studying mucosal infections by Pseudomonas aeruginosa. Pathog Dis 2014;71:1-19. [PMID: 24737619 DOI: 10.1111/2049-632X.12180] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 4.1] [Reference Citation Analysis]
110 Tarran R, Redinbo MR. Mammalian short palate lung and nasal epithelial clone 1 (SPLUNC1) in pH-dependent airway hydration. Int J Biochem Cell Biol 2014;52:130-5. [PMID: 24631954 DOI: 10.1016/j.biocel.2014.03.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
111 Sousa SA, Seixas AMM, Marques JMM, Leitão JH. Immunization and Immunotherapy Approaches against Pseudomonas aeruginosa and Burkholderia cepacia Complex Infections. Vaccines (Basel) 2021;9:670. [PMID: 34207253 DOI: 10.3390/vaccines9060670] [Reference Citation Analysis]
112 Wang Y, Newman DK. Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ Sci Technol 2008;42:2380-6. [PMID: 18504969 DOI: 10.1021/es702290a] [Cited by in Crossref: 166] [Cited by in F6Publishing: 139] [Article Influence: 11.9] [Reference Citation Analysis]
113 Crawford MA, Tapscott T, Fitzsimmons LF, Liu L, Reyes AM, Libby SJ, Trujillo M, Fang FC, Radi R, Vázquez-Torres A. Redox-Active Sensing by Bacterial DksA Transcription Factors Is Determined by Cysteine and Zinc Content. mBio 2016;7:e02161-15. [PMID: 27094335 DOI: 10.1128/mBio.02161-15] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
114 Huffnagle GB, Dickson RP. The bacterial microbiota in inflammatory lung diseases. Clin Immunol 2015;159:177-82. [PMID: 26122174 DOI: 10.1016/j.clim.2015.05.022] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
115 Bräuer L, Schicht M, Worlitzsch D, Bensel T, Sawers RG, Paulsen F. Staphylococcus aureus and Pseudomonas aeruginosa express and secrete human surfactant proteins. PLoS One 2013;8:e53705. [PMID: 23349731 DOI: 10.1371/journal.pone.0053705] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
116 McPhee JB, Bains M, Winsor G, Lewenza S, Kwasnicka A, Brazas MD, Brinkman FS, Hancock RE. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol 2006;188:3995-4006. [PMID: 16707691 DOI: 10.1128/JB.00053-06] [Cited by in Crossref: 138] [Cited by in F6Publishing: 83] [Article Influence: 8.6] [Reference Citation Analysis]
117 Staudinger BJ, Muller JF, Halldórsson S, Boles B, Angermeyer A, Nguyen D, Rosen H, Baldursson O, Gottfreðsson M, Guðmundsson GH, Singh PK. Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2014;189:812-24. [PMID: 24467627 DOI: 10.1164/rccm.201312-2142OC] [Cited by in Crossref: 80] [Cited by in F6Publishing: 54] [Article Influence: 10.0] [Reference Citation Analysis]
118 Scott JE, O'Toole GA. The Yin and Yang of Streptococcus Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions. J Bacteriol 2019;201:e00115-19. [PMID: 30885933 DOI: 10.1128/JB.00115-19] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
119 McManus HR, Dove SL. The CgrA and CgrC proteins form a complex that positively regulates cupA fimbrial gene expression in Pseudomonas aeruginosa. J Bacteriol 2011;193:6152-61. [PMID: 21926232 DOI: 10.1128/JB.05904-11] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
120 Cody WL, Pritchett CL, Jones AK, Carterson AJ, Jackson D, Frisk A, Wolfgang MC, Schurr MJ. Pseudomonas aeruginosa AlgR controls cyanide production in an AlgZ-dependent manner. J Bacteriol 2009;191:2993-3002. [PMID: 19270096 DOI: 10.1128/JB.01156-08] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
121 Gil-Marqués ML, Pachón-Ibáñez ME, Pachón J, Smani Y. Effect of Hypoxia on the Pathogenesis of Acinetobacter baumannii and Pseudomonas aeruginosa In Vitro and in Murine Experimental Models of Infection. Infect Immun 2018;86:e00543-18. [PMID: 30082478 DOI: 10.1128/IAI.00543-18] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
122 Pusic P, Tata M, Wolfinger MT, Sonnleitner E, Häussler S, Bläsi U. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa. Sci Rep 2016;6:39621. [PMID: 28000785 DOI: 10.1038/srep39621] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
123 Xu X, Zhang H, Song Y, Lynch SV, Lowell CA, Wiener-Kronish JP, Caughey GH. Strain-dependent induction of neutrophil histamine production and cell death by Pseudomonas aeruginosa. J Leukoc Biol 2012;91:275-84. [PMID: 22075928 DOI: 10.1189/jlb.0711356] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
124 Pustelny C, Komor U, Pawar V, Lorenz A, Bielecka A, Moter A, Gocht B, Eckweiler D, Müsken M, Grothe C, Lünsdorf H, Weiss S, Häussler S. Contribution of Veillonella parvula to Pseudomonas aeruginosa-mediated pathogenicity in a murine tumor model system. Infect Immun 2015;83:417-29. [PMID: 25385800 DOI: 10.1128/IAI.02234-14] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
125 Theilacker C, Coleman FT, Mueschenborn S, Llosa N, Grout M, Pier GB. Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. Infect Immun 2003;71:3875-84. [PMID: 12819072 DOI: 10.1128/IAI.71.7.3875-3884.2003] [Cited by in Crossref: 60] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
126 Henson MA, Orazi G, Phalak P, O'Toole GA. Metabolic Modeling of Cystic Fibrosis Airway Communities Predicts Mechanisms of Pathogen Dominance. mSystems 2019;4:e00026-19. [PMID: 31020043 DOI: 10.1128/mSystems.00026-19] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
127 Alvarez-Ortega C, Harwood CS. Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 2007;65:153-65. [PMID: 17581126 DOI: 10.1111/j.1365-2958.2007.05772.x] [Cited by in Crossref: 201] [Cited by in F6Publishing: 187] [Article Influence: 13.4] [Reference Citation Analysis]
128 Romeo T. When the party is over: a signal for dispersal of Pseudomonas aeruginosa biofilms. J Bacteriol 2006;188:7325-7. [PMID: 17050919 DOI: 10.1128/JB.01317-06] [Cited by in Crossref: 24] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
129 Lieberman TD, Michel JB, Aingaran M, Potter-Bynoe G, Roux D, Davis MR Jr, Skurnik D, Leiby N, LiPuma JJ, Goldberg JB, McAdam AJ, Priebe GP, Kishony R. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 2011;43:1275-80. [PMID: 22081229 DOI: 10.1038/ng.997] [Cited by in Crossref: 257] [Cited by in F6Publishing: 232] [Article Influence: 23.4] [Reference Citation Analysis]
130 Moore MP, Lamont IL, Williams D, Paterson S, Kukavica-Ibrulj I, Tucker NP, Kenna DTD, Turton JF, Jeukens J, Freschi L, Wee BA, Loman NJ, Holden S, Manzoor S, Hawkey P, Southern KW, Walshaw MJ, Levesque RC, Fothergill JL, Winstanley C. Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microb Genom 2021;7. [PMID: 33720817 DOI: 10.1099/mgen.0.000511] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
131 Jung YG, Choi J, Kim SK, Lee JH, Kwon S. Embedded biofilm, a new biofilm model based on the embedded growth of bacteria. Appl Environ Microbiol 2015;81:211-9. [PMID: 25326307 DOI: 10.1128/AEM.02311-14] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
132 Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, Macleod C, Aaron SD, Harbour C. Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 2005;43:5085-90. [PMID: 16207967 DOI: 10.1128/JCM.43.10.5085-5090.2005] [Cited by in Crossref: 147] [Cited by in F6Publishing: 68] [Article Influence: 8.6] [Reference Citation Analysis]
133 Vo CD, Michaud J, Elsen S, Faivre B, Bouveret E, Barras F, Fontecave M, Pierrel F, Lombard M, Pelosi L. The O2-independent pathway of ubiquinone biosynthesis is essential for denitrification in Pseudomonas aeruginosa. J Biol Chem 2020;295:9021-32. [PMID: 32409583 DOI: 10.1074/jbc.RA120.013748] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
134 Wine JJ. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system. Auton Neurosci 2007;133:35-54. [PMID: 17350348 DOI: 10.1016/j.autneu.2007.01.008] [Cited by in Crossref: 78] [Cited by in F6Publishing: 66] [Article Influence: 5.2] [Reference Citation Analysis]
135 Gi M, Lee KM, Kim SC, Yoon JH, Yoon SS, Choi JY. A novel siderophore system is essential for the growth of Pseudomonas aeruginosa in airway mucus. Sci Rep 2015;5:14644. [PMID: 26446565 DOI: 10.1038/srep14644] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 7.1] [Reference Citation Analysis]
136 Layeghifard M, Li H, Wang PW, Donaldson SL, Coburn B, Clark ST, Caballero JD, Zhang Y, Tullis DE, Yau YCW, Waters V, Hwang DM, Guttman DS. Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations. NPJ Biofilms Microbiomes 2019;5:4. [PMID: 30675371 DOI: 10.1038/s41522-018-0077-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
137 Wargo MJ. Is the Potable Water System an Advantageous Preinfection Niche for Bacteria Colonizing the Cystic Fibrosis Lung? mBio 2019;10:e00883-19. [PMID: 31164466 DOI: 10.1128/mBio.00883-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
138 Scales BS, Dickson RP, Huffnagle GB. A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J Leukoc Biol 2016;100:943-50. [PMID: 27365534 DOI: 10.1189/jlb.3MR0316-106R] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 7.2] [Reference Citation Analysis]
139 Oglesby-Sherrouse AG, Djapgne L, Nguyen AT, Vasil AI, Vasil ML. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa. Pathog Dis 2014;70:307-20. [PMID: 24436170 DOI: 10.1111/2049-632X.12132] [Cited by in Crossref: 52] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
140 Rubenstein RC. Targeted therapy for cystic fibrosis: cystic fibrosis transmembrane conductance regulator mutation-specific pharmacologic strategies. Mol Diagn Ther 2006;10:293-301. [PMID: 17022692 DOI: 10.1007/BF03256204] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
141 Ambrose M, Malley RC, Warren SJ, Beggs SA, Swallow OF, McEwan B, Stock D, Roddam LF. Pandoraea pnomenusa Isolated from an Australian Patient with Cystic Fibrosis. Front Microbiol 2016;7:692. [PMID: 27242717 DOI: 10.3389/fmicb.2016.00692] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
142 Hagins JM, Locy R, Silo-Suh L. Isocitrate lyase supplies precursors for hydrogen cyanide production in a cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol 2009;191:6335-9. [PMID: 19700524 DOI: 10.1128/JB.00692-09] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
143 Kirchhoff L, Weisner AK, Schrepffer M, Hain A, Scharmann U, Buer J, Rath PM, Steinmann J. Phenotypical Characteristics of the Black Yeast Exophiala dermatitidis Are Affected by Pseudomonas aeruginosa in an Artificial Sputum Medium Mimicking Cystic Fibrosis-Like Conditions. Front Microbiol 2020;11:471. [PMID: 32265891 DOI: 10.3389/fmicb.2020.00471] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
144 Rakhimova E, Munder A, Wiehlmann L, Bredenbruch F, Tümmler B. Fitness of isogenic colony morphology variants of Pseudomonas aeruginosa in murine airway infection. PLoS One 2008;3:e1685. [PMID: 18301762 DOI: 10.1371/journal.pone.0001685] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 1.8] [Reference Citation Analysis]
145 Tré-Hardy M, Nagant C, El Manssouri N, Vanderbist F, Traore H, Vaneechoutte M, Dehaye JP. Efficacy of the combination of tobramycin and a macrolide in an in vitro Pseudomonas aeruginosa mature biofilm model. Antimicrob Agents Chemother 2010;54:4409-15. [PMID: 20696878 DOI: 10.1128/AAC.00372-10] [Cited by in Crossref: 36] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
146 Bastonero S, Le Priol Y, Armand M, Bernard CS, Reynaud-Gaubert M, Olive D, Parzy D, de Bentzmann S, Capo C, Mege JL. New microbicidal functions of tracheal glands: defective anti-infectious response to Pseudomonas aeruginosa in cystic fibrosis. PLoS One 2009;4:e5357. [PMID: 19399182 DOI: 10.1371/journal.pone.0005357] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.5] [Reference Citation Analysis]
147 Li X, Vogt FG, Hayes D Jr, Mansour HM. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers. J Aerosol Med Pulm Drug Deliv 2014;27:81-93. [PMID: 24502451 DOI: 10.1089/jamp.2013.1078] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
148 Bukhari SI, Aleanizy FS. Association of OprF mutant and disturbance of biofilm and pyocyanin virulence in pseudomonas aeruginosa. Saudi Pharm J 2020;28:196-200. [PMID: 32042258 DOI: 10.1016/j.jsps.2019.11.021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
149 Sessa R, Hata A. Role of microRNAs in lung development and pulmonary diseases. Pulm Circ. 2013;3:315-328. [PMID: 24015331 DOI: 10.4103/2045-8932.114758] [Cited by in Crossref: 103] [Cited by in F6Publishing: 96] [Article Influence: 12.9] [Reference Citation Analysis]
150 Heinzinger LR, Johnson A, Wurster JI, Nilson R, Penumutchu S, Belenky P. Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut. iScience 2020;23:101875. [PMID: 33354661 DOI: 10.1016/j.isci.2020.101875] [Reference Citation Analysis]
151 Sturm R. An advanced stochastic model for mucociliary particle clearance in cystic fibrosis lungs. J Thorac Dis 2012;4:48-57. [PMID: 22295167 DOI: 10.3978/j.issn.2072-1439.2011.09.09] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
152 Sommer LM, Johansen HK, Molin S. Antibiotic resistance in Pseudomonas aeruginosa and adaptation to complex dynamic environments. Microb Genom 2020;6. [PMID: 32375975 DOI: 10.1099/mgen.0.000370] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
153 Alhede M, Alhede M, Qvortrup K, Kragh KN, Jensen PØ, Stewart PS, Bjarnsholt T. The origin of extracellular DNA in bacterial biofilm infections in vivo. Pathog Dis 2020;78:ftaa018. [PMID: 32196074 DOI: 10.1093/femspd/ftaa018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
154 Garnett JP, Kalsi KK, Sobotta M, Bearham J, Carr G, Powell J, Brodlie M, Ward C, Tarran R, Baines DL. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H+ secretion. Sci Rep 2016;6:37955. [PMID: 27897253 DOI: 10.1038/srep37955] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
155 Bernier SP, Ha DG, Khan W, Merritt JH, O'Toole GA. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res Microbiol 2011;162:680-8. [PMID: 21554951 DOI: 10.1016/j.resmic.2011.04.014] [Cited by in Crossref: 78] [Cited by in F6Publishing: 71] [Article Influence: 7.1] [Reference Citation Analysis]
156 Borriello G, Richards L, Ehrlich GD, Stewart PS. Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 2006;50:382-4. [PMID: 16377718 DOI: 10.1128/AAC.50.1.382-384.2006] [Cited by in Crossref: 70] [Cited by in F6Publishing: 41] [Article Influence: 4.4] [Reference Citation Analysis]
157 Hirakawa H, Kurabayashi K, Tanimoto K, Tomita H. Oxygen Limitation Enhances the Antimicrobial Activity of Fosfomycin in Pseudomonas aeruginosa Following Overexpression of glpT Which Encodes Glycerol-3-Phosphate/Fosfomycin Symporter. Front Microbiol 2018;9:1950. [PMID: 30186264 DOI: 10.3389/fmicb.2018.01950] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
158 Busse WW, Wanner A, Adams K, Reynolds HY, Castro M, Chowdhury B, Kraft M, Levine RJ, Peters SP, Sullivan EJ. Investigative bronchoprovocation and bronchoscopy in airway diseases. Am J Respir Crit Care Med 2005;172:807-16. [PMID: 16020805 DOI: 10.1164/rccm.200407-966WS] [Cited by in Crossref: 63] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
159 Legendre C, Reen FJ, Mooij MJ, McGlacken GP, Adams C, O'Gara F. Pseudomonas aeruginosa Alkyl quinolones repress hypoxia-inducible factor 1 (HIF-1) signaling through HIF-1α degradation. Infect Immun 2012;80:3985-92. [PMID: 22949552 DOI: 10.1128/IAI.00554-12] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
160 Singh G, Wu B, Baek MS, Camargo A, Nguyen A, Slusher NA, Srinivasan R, Wiener-Kronish JP, Lynch SV. Secretion of Pseudomonas aeruginosa type III cytotoxins is dependent on pseudomonas quinolone signal concentration. Microb Pathog 2010;49:196-203. [PMID: 20570614 DOI: 10.1016/j.micpath.2010.05.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
161 Påhlman LI, Jögi A, Gram M, Mori M, Egesten A. Hypoxia down-regulates expression of secretory leukocyte protease inhibitor in bronchial epithelial cells via TGF-β1. BMC Pulm Med 2015;15:19. [PMID: 25851169 DOI: 10.1186/s12890-015-0016-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
162 Vandeplassche E, Coenye T, Crabbé A. Developing selective media for quantification of multispecies biofilms following antibiotic treatment. PLoS One 2017;12:e0187540. [PMID: 29121069 DOI: 10.1371/journal.pone.0187540] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
163 Nakashige TG, Nolan EM. Human calprotectin affects the redox speciation of iron. Metallomics 2017;9:1086-95. [PMID: 28561859 DOI: 10.1039/c7mt00044h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
164 Schwartbeck B, Birtel J, Treffon J, Langhanki L, Mellmann A, Kale D, Kahl J, Hirschhausen N, Neumann C, Lee JC, Götz F, Rohde H, Henke H, Küster P, Peters G, Kahl BC. Dynamic in vivo mutations within the ica operon during persistence of Staphylococcus aureus in the airways of cystic fibrosis patients. PLoS Pathog 2016;12:e1006024. [PMID: 27902784 DOI: 10.1371/journal.ppat.1006024] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
165 Jones CJ, Newsom D, Kelly B, Irie Y, Jennings LK, Xu B, Limoli DH, Harrison JJ, Parsek MR, White P, Wozniak DJ. ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa. PLoS Pathog 2014;10:e1003984. [PMID: 24603766 DOI: 10.1371/journal.ppat.1003984] [Cited by in Crossref: 93] [Cited by in F6Publishing: 85] [Article Influence: 11.6] [Reference Citation Analysis]
166 Waite RD, Paccanaro A, Papakonstantinopoulou A, Hurst JM, Saqi M, Littler E, Curtis MA. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 2006;7:162. [PMID: 16800888 DOI: 10.1186/1471-2164-7-162] [Cited by in Crossref: 103] [Cited by in F6Publishing: 98] [Article Influence: 6.4] [Reference Citation Analysis]
167 Whiley RA, Fleming EV, Makhija R, Waite RD. Environment and colonisation sequence are key parameters driving cooperation and competition between Pseudomonas aeruginosa cystic fibrosis strains and oral commensal streptococci. PLoS One 2015;10:e0115513. [PMID: 25710466 DOI: 10.1371/journal.pone.0115513] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
168 McDaniel C, Su S, Panmanee W, Lau GW, Browne T, Cox K, Paul AT, Ko SH, Mortensen JE, Lam JS, Muruve DA, Hassett DJ. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions. Front Microbiol 2016;7:291. [PMID: 27064218 DOI: 10.3389/fmicb.2016.00291] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
169 Peabody JE, Shei RJ, Bermingham BM, Phillips SE, Turner B, Rowe SM, Solomon GM. Seeing cilia: imaging modalities for ciliary motion and clinical connections. Am J Physiol Lung Cell Mol Physiol 2018;314:L909-21. [PMID: 29493257 DOI: 10.1152/ajplung.00556.2017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
170 Stick SM, Schultz A. CrossTalk opposing view: mucosal acidification does not drive early progressive lung disease in cystic fibrosis. J Physiol 2018;596:3439-41. [PMID: 30014600 DOI: 10.1113/JP275426] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
171 Wong A, Rodrigue N, Kassen R. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Genet 2012;8:e1002928. [PMID: 23028345 DOI: 10.1371/journal.pgen.1002928] [Cited by in Crossref: 106] [Cited by in F6Publishing: 90] [Article Influence: 10.6] [Reference Citation Analysis]
172 Quinn RA, Lim YW, Maughan H, Conrad D, Rohwer F, Whiteson KL. Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. mBio 2014;5:e00956-13. [PMID: 24643867 DOI: 10.1128/mBio.00956-13] [Cited by in Crossref: 76] [Cited by in F6Publishing: 57] [Article Influence: 9.5] [Reference Citation Analysis]
173 Boes N, Schreiber K, Schobert M. SpoT-triggered stringent response controls usp gene expression in Pseudomonas aeruginosa. J Bacteriol 2008;190:7189-99. [PMID: 18776018 DOI: 10.1128/JB.00600-08] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
174 Yoon SS, Coakley R, Lau GW, Lymar SV, Gaston B, Karabulut AC, Hennigan RF, Hwang SH, Buettner G, Schurr MJ, Mortensen JE, Burns JL, Speert D, Boucher RC, Hassett DJ. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J Clin Invest 2006;116:436-46. [PMID: 16440061 DOI: 10.1172/JCI24684] [Cited by in Crossref: 160] [Cited by in F6Publishing: 79] [Article Influence: 10.0] [Reference Citation Analysis]
175 Choi JY, Joo NS, Krouse ME, Wu JV, Robbins RC, Ianowski JP, Hanrahan JW, Wine JJ. Synergistic airway gland mucus secretion in response to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis. J Clin Invest 2007;117:3118-27. [PMID: 17853942 DOI: 10.1172/JCI31992] [Cited by in Crossref: 70] [Cited by in F6Publishing: 43] [Article Influence: 4.7] [Reference Citation Analysis]
176 Furiga A, Lajoie B, El Hage S, Baziard G, Roques C. Impairment of Pseudomonas aeruginosa Biofilm Resistance to Antibiotics by Combining the Drugs with a New Quorum-Sensing Inhibitor. Antimicrob Agents Chemother 2015;60:1676-86. [PMID: 26711774 DOI: 10.1128/AAC.02533-15] [Cited by in Crossref: 48] [Cited by in F6Publishing: 21] [Article Influence: 6.9] [Reference Citation Analysis]
177 Ribeiro CM, Boucher RC. Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses. Proc Am Thorac Soc 2010;7:387-94. [PMID: 21030518 DOI: 10.1513/pats.201001-017AW] [Cited by in Crossref: 46] [Cited by in F6Publishing: 27] [Article Influence: 4.2] [Reference Citation Analysis]
178 Dickinson RS, Murphy F, Doherty C, Williams S, Mirchandani A, Willson J, Scotti JS, Preston G, Schofield CJ, Whyte MKB, Walmsley SR. Pseudomonas expression of an oxygen sensing prolyl hydroxylase homologue regulates neutrophil host responses in vitro and in vivo. Wellcome Open Res 2017;2:104. [PMID: 29387803 DOI: 10.12688/wellcomeopenres.12871.1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
179 Pragman AA, Berger JP, Williams BJ. Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms. Clin Pulm Med 2016;23:57-66. [PMID: 27004018 DOI: 10.1097/CPM.0000000000000108] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
180 Campodónico VL, Gadjeva M, Paradis-Bleau C, Uluer A, Pier GB. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol Med 2008;14:120-33. [PMID: 18262467 DOI: 10.1016/j.molmed.2008.01.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 68] [Article Influence: 5.4] [Reference Citation Analysis]
181 Moskowitz SM, Gibson RL, Effmann EL. Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment. Pediatr Radiol 2005;35:739-57. [PMID: 15868140 DOI: 10.1007/s00247-005-1445-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
182 Fernández-Barat L, Ben-Aicha S, Motos A, Vila J, Marco F, Rigol M, Muñoz L, Li Bassi G, Ferrer M, Torres A. Assessment of in vivo versus in vitro biofilm formation of clinical methicillin-resistant Staphylococcus aureus isolates from endotracheal tubes. Sci Rep 2018;8:11906. [PMID: 30093624 DOI: 10.1038/s41598-018-30494-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
183 Sousa SA, Morad M, Feliciano JR, Pita T, Nady S, El-Hennamy RE, Abdel-Rahman M, Cavaco J, Pereira L, Barreto C, Leitão JH. The Burkholderia cenocepacia OmpA-like protein BCAL2958: identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected Cystic Fibrosis patients. AMB Express 2016;6:41. [PMID: 27325348 DOI: 10.1186/s13568-016-0212-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
184 Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, Price-Whelan A, Dietrich LE. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A 2012;109:19420-5. [PMID: 23129634 DOI: 10.1073/pnas.1213901109] [Cited by in Crossref: 111] [Cited by in F6Publishing: 92] [Article Influence: 11.1] [Reference Citation Analysis]
185 Conrad D, Haynes M, Salamon P, Rainey PB, Youle M, Rohwer F. Cystic fibrosis therapy: a community ecology perspective. Am J Respir Cell Mol Biol 2013;48:150-6. [PMID: 23103995 DOI: 10.1165/rcmb.2012-0059PS] [Cited by in Crossref: 63] [Cited by in F6Publishing: 44] [Article Influence: 6.3] [Reference Citation Analysis]
186 Moreau-Marquis S, Bomberger JM, Anderson GG, Swiatecka-Urban A, Ye S, O'Toole GA, Stanton BA. The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. Am J Physiol Lung Cell Mol Physiol 2008;295:L25-37. [PMID: 18359885 DOI: 10.1152/ajplung.00391.2007] [Cited by in Crossref: 121] [Cited by in F6Publishing: 119] [Article Influence: 8.6] [Reference Citation Analysis]
187 Jackson AA, Gross MJ, Daniels EF, Hampton TH, Hammond JH, Vallet-Gely I, Dove SL, Stanton BA, Hogan DA. Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence. J Bacteriol 2013;195:3093-104. [PMID: 23667230 DOI: 10.1128/JB.02169-12] [Cited by in Crossref: 40] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
188 Zygiel EM, Nolan EM. Exploring Iron Withholding by the Innate Immune Protein Human Calprotectin. Acc Chem Res 2019;52:2301-8. [PMID: 31381301 DOI: 10.1021/acs.accounts.9b00250] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
189 Kolpen M, Jensen PØ, Qvist T, Kragh KN, Ravnholt C, Fritz BG, Johansen UR, Bjarnsholt T, Høiby N. Biofilms of Mycobacterium abscessus Complex Can Be Sensitized to Antibiotics by Disaggregation and Oxygenation. Antimicrob Agents Chemother 2020;64:e01212-19. [PMID: 31740557 DOI: 10.1128/AAC.01212-19] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
190 Miller MB, Gilligan PH. Laboratory aspects of management of chronic pulmonary infections in patients with cystic fibrosis. J Clin Microbiol 2003;41:4009-15. [PMID: 12958218 DOI: 10.1128/JCM.41.9.4009-4015.2003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
191 Abdelhamed H, Nho SW, Karsi A, Lawrence ML. The role of denitrification genes in anaerobic growth and virulence of Flavobacterium columnare. J Appl Microbiol 2021;130:1062-74. [PMID: 32955778 DOI: 10.1111/jam.14855] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
192 Chmiel JF, Davis PB. State of the art: why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection? Respir Res 2003;4:8. [PMID: 14511398 DOI: 10.1186/1465-9921-4-8] [Cited by in Crossref: 144] [Cited by in F6Publishing: 135] [Article Influence: 7.6] [Reference Citation Analysis]
193 Pompilio A, Crocetta V, Scocchi M, Pomponio S, Di Vincenzo V, Mardirossian M, Gherardi G, Fiscarelli E, Dicuonzo G, Gennaro R, Di Bonaventura G. Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiol 2012;12:145. [PMID: 22823964 DOI: 10.1186/1471-2180-12-145] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 5.1] [Reference Citation Analysis]
194 Manos J. Current and Emerging Therapies to Combat Cystic Fibrosis Lung Infections. Microorganisms 2021;9:1874. [PMID: 34576767 DOI: 10.3390/microorganisms9091874] [Reference Citation Analysis]
195 Ghimire N, Pettygrove BA, Pallister KB, Stangeland J, Stanhope S, Klapper I, Voyich JM, Stewart PS. Direct Microscopic Observation of Human Neutrophil-Staphylococcus aureus Interaction In Vitro Suggests a Potential Mechanism for Initiation of Biofilm Infection on an Implanted Medical Device. Infect Immun 2019;87:e00745-19. [PMID: 31548325 DOI: 10.1128/IAI.00745-19] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
196 Müsken M, Di Fiore S, Römling U, Häussler S. A 96-well-plate-based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nat Protoc 2010;5:1460-9. [PMID: 20671729 DOI: 10.1038/nprot.2010.110] [Cited by in Crossref: 74] [Cited by in F6Publishing: 73] [Article Influence: 6.2] [Reference Citation Analysis]
197 La Rosa R, Johansen HK, Molin S. Adapting to the Airways: Metabolic Requirements of Pseudomonas aeruginosa during the Infection of Cystic Fibrosis Patients. Metabolites 2019;9:E234. [PMID: 31623245 DOI: 10.3390/metabo9100234] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
198 Williamson KS, Richards LA, Perez-Osorio AC, Pitts B, McInnerney K, Stewart PS, Franklin MJ. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol 2012;194:2062-73. [PMID: 22343293 DOI: 10.1128/JB.00022-12] [Cited by in Crossref: 146] [Cited by in F6Publishing: 83] [Article Influence: 14.6] [Reference Citation Analysis]
199 Hassett DJ, Kovall RA, Schurr MJ, Kotagiri N, Kumari H, Satish L. The Bactericidal Tandem Drug, AB569: How to Eradicate Antibiotic-Resistant Biofilm Pseudomonas aeruginosa in Multiple Disease Settings Including Cystic Fibrosis, Burns/Wounds and Urinary Tract Infections. Front Microbiol 2021;12:639362. [PMID: 34220733 DOI: 10.3389/fmicb.2021.639362] [Reference Citation Analysis]
200 Su S, Panmanee W, Wilson JJ, Mahtani HK, Li Q, Vanderwielen BD, Makris TM, Rogers M, McDaniel C, Lipscomb JD, Irvin RT, Schurr MJ, Lancaster JR Jr, Kovall RA, Hassett DJ. Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa. PLoS One 2014;9:e91813. [PMID: 24663218 DOI: 10.1371/journal.pone.0091813] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
201 Young RL, Malcolm KC, Kret JE, Caceres SM, Poch KR, Nichols DP, Taylor-Cousar JL, Saavedra MT, Randell SH, Vasil ML. Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR. PLoS One. 2011;6:e23637. [PMID: 21909403 DOI: 10.1371/journal.pone.0023637] [Cited by in Crossref: 138] [Cited by in F6Publishing: 135] [Article Influence: 12.5] [Reference Citation Analysis]
202 Zemanick ET, Hoffman LR. Cystic Fibrosis: Microbiology and Host Response. Pediatr Clin North Am 2016;63:617-36. [PMID: 27469179 DOI: 10.1016/j.pcl.2016.04.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
203 Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol 2021;12:625597. [PMID: 33692800 DOI: 10.3389/fimmu.2021.625597] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
204 Kreamer NN, Costa F, Newman DK. The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance. mBio 2015;6:e02549. [PMID: 25714721 DOI: 10.1128/mBio.02549-14] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
205 Ferrara S, Carrubba R, Santoro S, Bertoni G. The Small RNA ErsA Impacts the Anaerobic Metabolism of Pseudomonas aeruginosa Through Post-Transcriptional Modulation of the Master Regulator Anr. Front Microbiol 2021;12:691608. [PMID: 34759894 DOI: 10.3389/fmicb.2021.691608] [Reference Citation Analysis]
206 Rejman J, Colombo C, Conese M. Engraftment of bone marrow-derived stem cells to the lung in a model of acute respiratory infection by Pseudomonas aeruginosa. Mol Ther 2009;17:1257-65. [PMID: 19417738 DOI: 10.1038/mt.2009.96] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
207 Hirai T, Osamura T, Ishii M, Arai H. Expression of multiple cbb3 cytochrome c oxidase isoforms by combinations of multiple isosubunits in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2016;113:12815-9. [PMID: 27791152 DOI: 10.1073/pnas.1613308113] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
208 Toyofuku M, Nomura N, Kuno E, Tashiro Y, Nakajima T, Uchiyama H. Influence of the Pseudomonas quinolone signal on denitrification in Pseudomonas aeruginosa. J Bacteriol 2008;190:7947-56. [PMID: 18931133 DOI: 10.1128/JB.00968-08] [Cited by in Crossref: 82] [Cited by in F6Publishing: 36] [Article Influence: 5.9] [Reference Citation Analysis]
209 Ruffin M, Bilodeau C, Maillé É, LaFayette SL, McKay GA, Trinh NT, Beaudoin T, Desrosiers MY, Rousseau S, Nguyen D, Brochiero E. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair. FASEB J 2016;30:3011-25. [PMID: 27178322 DOI: 10.1096/fj.201500166R] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
210 Balasubramanian D, Mathee K. Comparative transcriptome analyses of Pseudomonas aeruginosa. Hum Genomics 2009;3:349-61. [PMID: 19706365 DOI: 10.1186/1479-7364-3-4-361] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
211 Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front Immunol 2021;12:653969. [PMID: 33868294 DOI: 10.3389/fimmu.2021.653969] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
212 Lichtenberg M, Line L, Schrameyer V, Jakobsen TH, Rybtke ML, Toyofuku M, Nomura N, Kolpen M, Tolker-Nielsen T, Kühl M, Bjarnsholt T, Jensen PØ. Nitric-oxide-driven oxygen release in anoxic Pseudomonas aeruginosa. iScience 2021;24:103404. [PMID: 34849468 DOI: 10.1016/j.isci.2021.103404] [Reference Citation Analysis]
213 Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002;109:571-577. [PMID: 11877463 DOI: 10.1172/JCI0215217] [Cited by in Crossref: 714] [Cited by in F6Publishing: 2] [Article Influence: 35.7] [Reference Citation Analysis]
214 Folsom JP, Richards L, Pitts B, Roe F, Ehrlich GD, Parker A, Mazurie A, Stewart PS. Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis. BMC Microbiol 2010;10:294. [PMID: 21083928 DOI: 10.1186/1471-2180-10-294] [Cited by in Crossref: 85] [Cited by in F6Publishing: 82] [Article Influence: 7.1] [Reference Citation Analysis]
215 Basta DW, Angeles-Albores D, Spero MA, Ciemniecki JA, Newman DK. Heat-shock proteases promote survival of Pseudomonas aeruginosa during growth arrest. Proc Natl Acad Sci U S A 2020;117:4358-67. [PMID: 32029587 DOI: 10.1073/pnas.1912082117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
216 Line L, Alhede M, Kolpen M, Kühl M, Ciofu O, Bjarnsholt T, Moser C, Toyofuku M, Nomura N, Høiby N, Jensen PØ. Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum. Front Microbiol 2014;5:554. [PMID: 25386171 DOI: 10.3389/fmicb.2014.00554] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
217 Guimbellot JS, Fortenberry JA, Siegal GP, Moore B, Wen H, Venglarik C, Chen YF, Oparil S, Sorscher EJ, Hong JS. Role of oxygen availability in CFTR expression and function. Am J Respir Cell Mol Biol 2008;39:514-21. [PMID: 18474670 DOI: 10.1165/rcmb.2007-0452OC] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
218 Terryah ST, Fellner RC, Ahmad S, Moore PJ, Reidel B, Sesma JI, Kim CS, Garland AL, Scott DW, Sabater JR, Carpenter J, Randell SH, Kesimer M, Abraham WM, Arendshorst WJ, Tarran R. Evaluation of a SPLUNC1-derived peptide for the treatment of cystic fibrosis lung disease. Am J Physiol Lung Cell Mol Physiol 2018;314:L192-205. [PMID: 28982737 DOI: 10.1152/ajplung.00546.2016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
219 Lewis KA, Baker AE, Chen AI, Harty CE, Kuchma SL, O'Toole GA, Hogan DA. Ethanol Decreases Pseudomonas aeruginosa Flagellar Motility through the Regulation of Flagellar Stators. J Bacteriol 2019;201:e00285-19. [PMID: 31109994 DOI: 10.1128/JB.00285-19] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
220 Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 2004;48:2659-64. [PMID: 15215123 DOI: 10.1128/AAC.48.7.2659-2664.2004] [Cited by in Crossref: 292] [Cited by in F6Publishing: 145] [Article Influence: 16.2] [Reference Citation Analysis]
221 Waite RD, Qureshi MR, Whiley RA. Modulation of behaviour and virulence of a high alginate expressing Pseudomonas aeruginosa strain from cystic fibrosis by oral commensal bacterium Streptococcus anginosus. PLoS One 2017;12:e0173741. [PMID: 28301571 DOI: 10.1371/journal.pone.0173741] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
222 Filiatrault MJ, Picardo KF, Ngai H, Passador L, Iglewski BH. Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth. Infect Immun 2006;74:4237-45. [PMID: 16790798 DOI: 10.1128/IAI.02014-05] [Cited by in Crossref: 88] [Cited by in F6Publishing: 48] [Article Influence: 5.5] [Reference Citation Analysis]
223 Ryall B, Carrara M, Zlosnik JE, Behrends V, Lee X, Wong Z, Lougheed KE, Williams HD. The mucoid switch in Pseudomonas aeruginosa represses quorum sensing systems and leads to complex changes to stationary phase virulence factor regulation. PLoS One 2014;9:e96166. [PMID: 24852379 DOI: 10.1371/journal.pone.0096166] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
224 Thornton CS, Surette MG. Potential Contributions of Anaerobes in Cystic Fibrosis Airways. J Clin Microbiol 2021;59:e01813-19. [PMID: 33115848 DOI: 10.1128/JCM.01813-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
225 Whiteson KL, Meinardi S, Lim YW, Schmieder R, Maughan H, Quinn R, Blake DR, Conrad D, Rohwer F. Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation. ISME J 2014;8:1247-58. [PMID: 24401860 DOI: 10.1038/ismej.2013.229] [Cited by in Crossref: 88] [Cited by in F6Publishing: 78] [Article Influence: 11.0] [Reference Citation Analysis]
226 Tielen P, Kuhn H, Rosenau F, Jaeger KE, Flemming HC, Wingender J. Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa. BMC Microbiol 2013;13:159. [PMID: 23848942 DOI: 10.1186/1471-2180-13-159] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 5.6] [Reference Citation Analysis]
227 Proctor LL, Ward WL, Roggy CS, Koontz AG, Clark KM, Quinn AP, Schroeder M, Brooks AE, Small JM, Towne FD, Brooks BD. Potential Therapeutic Targets for Combination Antibody Therapy against Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2021;10:1530. [PMID: 34943742 DOI: 10.3390/antibiotics10121530] [Reference Citation Analysis]
228 Pallett R, Leslie LJ, Lambert PA, Milic I, Devitt A, Marshall LJ. Anaerobiosis influences virulence properties of Pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. Sci Rep 2019;9:6748. [PMID: 31043640 DOI: 10.1038/s41598-019-42952-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
229 Masamba P, Kappo AP. Parasite Survival and Disease Persistence in Cystic Fibrosis, Schistosomiasis and Pathogenic Bacterial Diseases: A Role for Universal Stress Proteins? Int J Mol Sci 2021;22:10878. [PMID: 34639223 DOI: 10.3390/ijms221910878] [Reference Citation Analysis]
230 Tan S, Tompkins LS, Amieva MR. Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche. PLoS Pathog 2009;5:e1000407. [PMID: 19412339 DOI: 10.1371/journal.ppat.1000407] [Cited by in Crossref: 101] [Cited by in F6Publishing: 106] [Article Influence: 7.8] [Reference Citation Analysis]
231 Bianconi I, Milani A, Cigana C, Paroni M, Levesque RC, Bertoni G, Bragonzi A. Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection. PLoS Pathog 2011;7:e1001270. [PMID: 21304889 DOI: 10.1371/journal.ppat.1001270] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 4.4] [Reference Citation Analysis]
232 Ciofu O, Tolker-Nielsen T. Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents-How P. aeruginosa Can Escape Antibiotics. Front Microbiol 2019;10:913. [PMID: 31130925 DOI: 10.3389/fmicb.2019.00913] [Cited by in Crossref: 142] [Cited by in F6Publishing: 121] [Article Influence: 47.3] [Reference Citation Analysis]
233 Cai YM, Zhang YD, Yang L. NO donors and NO delivery methods for controlling biofilms in chronic lung infections. Appl Microbiol Biotechnol 2021;105:3931-54. [PMID: 33937932 DOI: 10.1007/s00253-021-11274-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
234 MacEachran DP, Ye S, Bomberger JM, Hogan DA, Swiatecka-Urban A, Stanton BA, O'Toole GA. The Pseudomonas aeruginosa secreted protein PA2934 decreases apical membrane expression of the cystic fibrosis transmembrane conductance regulator. Infect Immun 2007;75:3902-12. [PMID: 17502391 DOI: 10.1128/IAI.00338-07] [Cited by in Crossref: 86] [Cited by in F6Publishing: 69] [Article Influence: 5.7] [Reference Citation Analysis]
235 Espinosa-Riquer ZP, Segura-Villalobos D, Ramírez-Moreno IG, Pérez Rodríguez MJ, Lamas M, Gonzalez-Espinosa C. Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells 2020;9:E2411. [PMID: 33158024 DOI: 10.3390/cells9112411] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
236 Limoli DH, Rockel AB, Host KM, Jha A, Kopp BT, Hollis T, Wozniak DJ. Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections. PLoS Pathog 2014;10:e1004083. [PMID: 24763694 DOI: 10.1371/journal.ppat.1004083] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 6.3] [Reference Citation Analysis]
237 Toyofuku M, Uchiyama H, Nomura N. Social Behaviours under Anaerobic Conditions in Pseudomonas aeruginosa. Int J Microbiol 2012;2012:405191. [PMID: 22518142 DOI: 10.1155/2012/405191] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
238 Pompilio A, Pomponio S, Crocetta V, Gherardi G, Verginelli F, Fiscarelli E, Dicuonzo G, Savini V, D'Antonio D, Di Bonaventura G. Phenotypic and genotypic characterization of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis: genome diversity, biofilm formation, and virulence. BMC Microbiol 2011;11:159. [PMID: 21729271 DOI: 10.1186/1471-2180-11-159] [Cited by in Crossref: 81] [Cited by in F6Publishing: 78] [Article Influence: 7.4] [Reference Citation Analysis]
239 Fenker DE, McDaniel CT, Panmanee W, Panos RJ, Sorscher EJ, Sabusap C, Clancy JP, Hassett DJ. A Comparison between Two Pathophysiologically Different yet Microbiologically Similar Lung Diseases: Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. Int J Respir Pulm Med 2018;5:098. [PMID: 30627668 DOI: 10.23937/2378-3516/1410098] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
240 Brewer LK, Huang W, Hackert BJ, Kane MA, Oglesby AG. Static Growth Promotes PrrF and 2-Alkyl-4(1H)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa. J Bacteriol 2020;202:e00416-20. [PMID: 33020221 DOI: 10.1128/JB.00416-20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
241 Loo CY, Lee WH, Lauretani G, Scalia S, Cipolla D, Traini D, Young P, Ong HX. Sweetening Inhaled Antibiotic Treatment for Eradication of Chronic Respiratory Biofilm Infection. Pharm Res 2018;35:50. [PMID: 29417313 DOI: 10.1007/s11095-018-2350-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
242 Lipuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 2010;23:299-323. [PMID: 20375354 DOI: 10.1128/CMR.00068-09] [Cited by in Crossref: 533] [Cited by in F6Publishing: 302] [Article Influence: 44.4] [Reference Citation Analysis]
243 Wijers CD, Chmiel JF, Gaston BM. Bacterial infections in patients with primary ciliary dyskinesia: Comparison with cystic fibrosis. Chron Respir Dis 2017;14:392-406. [PMID: 29081265 DOI: 10.1177/1479972317694621] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 4.6] [Reference Citation Analysis]
244 Hoffmann N, Rasmussen TB, Jensen PØ, Stub C, Hentzer M, Molin S, Ciofu O, Givskov M, Johansen HK, Høiby N. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun 2005;73:2504-14. [PMID: 15784597 DOI: 10.1128/IAI.73.4.2504-2514.2005] [Cited by in Crossref: 135] [Cited by in F6Publishing: 69] [Article Influence: 7.9] [Reference Citation Analysis]
245 Lee KM, Yoon MY, Park Y, Lee JH, Yoon SS. Anaerobiosis-induced loss of cytotoxicity is due to inactivation of quorum sensing in Pseudomonas aeruginosa. Infect Immun 2011;79:2792-800. [PMID: 21555402 DOI: 10.1128/IAI.01361-10] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
246 Upritchard HG, Cordwell SJ, Lamont IL. Immunoproteomics to examine cystic fibrosis host interactions with extracellular Pseudomonas aeruginosa proteins. Infect Immun 2008;76:4624-32. [PMID: 18663005 DOI: 10.1128/IAI.01707-07] [Cited by in Crossref: 37] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
247 Koehler T, Ackermann I, Brecht D, Uteschil F, Wingender J, Telgheder U, Schmitz OJ. Analysis of volatile metabolites from in vitro biofilms of Pseudomonas aeruginosa with thin-film microextraction by thermal desorption gas chromatography-mass spectrometry. Anal Bioanal Chem 2020;412:2881-92. [PMID: 32198528 DOI: 10.1007/s00216-020-02529-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
248 Noriega C, Hassett DJ, Rowe JJ. The mobA gene is required for assimilatory and respiratory nitrate reduction but not xanthine dehydrogenase activity in Pseudomonas aeruginosa. Curr Microbiol 2005;51:419-24. [PMID: 16235022 DOI: 10.1007/s00284-005-0125-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
249 Bjarnsholt T, Givskov M. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci. 2007;362:1213-1222. [PMID: 17360273 DOI: 10.1098/rstb.2007.2046] [Cited by in Crossref: 127] [Cited by in F6Publishing: 116] [Article Influence: 8.5] [Reference Citation Analysis]
250 Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013;3:75. [PMID: 24294593 DOI: 10.3389/fcimb.2013.00075] [Cited by in Crossref: 165] [Cited by in F6Publishing: 159] [Article Influence: 18.3] [Reference Citation Analysis]
251 Dickson RP. The microbiome and critical illness. Lancet Respir Med 2016;4:59-72. [PMID: 26700442 DOI: 10.1016/S2213-2600(15)00427-0] [Cited by in Crossref: 164] [Cited by in F6Publishing: 98] [Article Influence: 23.4] [Reference Citation Analysis]
252 Silva IN, Ramires MJ, Azevedo LA, Guerreiro AR, Tavares AC, Becker JD, Moreira LM. Regulator LdhR and d-Lactate Dehydrogenase LdhA of Burkholderia multivorans Play Roles in Carbon Overflow and in Planktonic Cellular Aggregate Formation. Appl Environ Microbiol 2017;83:e01343-17. [PMID: 28733286 DOI: 10.1128/AEM.01343-17] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.6] [Reference Citation Analysis]
253 Ghosh A, Boucher RC, Tarran R. Airway hydration and COPD. Cell Mol Life Sci 2015;72:3637-52. [PMID: 26068443 DOI: 10.1007/s00018-015-1946-7] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 6.1] [Reference Citation Analysis]
254 Carterson AJ, Morici LA, Jackson DW, Frisk A, Lizewski SE, Jupiter R, Simpson K, Kunz DA, Davis SH, Schurr JR, Hassett DJ, Schurr MJ. The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J Bacteriol 2004;186:6837-44. [PMID: 15466037 DOI: 10.1128/JB.186.20.6837-6844.2004] [Cited by in Crossref: 58] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
255 Kolpen M, Appeldorff CF, Brandt S, Mousavi N, Kragh KN, Aydogan S, Uppal HA, Bjarnsholt T, Ciofu O, Høiby N, Jensen PØ. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions. Pathog Dis 2016;74:ftv086. [PMID: 26458402 DOI: 10.1093/femspd/ftv086] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
256 Moskowitz SM, Foster JM, Emerson J, Burns JL. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 2004;42:1915-22. [PMID: 15131149 DOI: 10.1128/JCM.42.5.1915-1922.2004] [Cited by in Crossref: 276] [Cited by in F6Publishing: 114] [Article Influence: 15.3] [Reference Citation Analysis]
257 Wessel AK, Arshad TA, Fitzpatrick M, Connell JL, Bonnecaze RT, Shear JB, Whiteley M. Oxygen limitation within a bacterial aggregate. mBio 2014;5:e00992. [PMID: 24736225 DOI: 10.1128/mBio.00992-14] [Cited by in Crossref: 85] [Cited by in F6Publishing: 50] [Article Influence: 10.6] [Reference Citation Analysis]
258 Zygiel EM, Obisesan AO, Nelson CE, Oglesby AG, Nolan EM. Heme protects Pseudomonas aeruginosa and Staphylococcus aureus from calprotectin-induced iron starvation. J Biol Chem 2021;296:100160. [PMID: 33273016 DOI: 10.1074/jbc.RA120.015975] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
259 Tan S. Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infect Immun 2021;89:e00641-20. [PMID: 33526568 DOI: 10.1128/IAI.00641-20] [Reference Citation Analysis]
260 Panmanee W, Su S, Schurr MJ, Lau GW, Zhu X, Ren Z, McDaniel CT, Lu LJ, Ohman DE, Muruve DA, Panos RJ, Yu HD, Thompson TB, Tseng BS, Hassett DJ. The anti-sigma factor MucA of Pseudomonas aeruginosa: Dramatic differences of a mucA22 vs. a ΔmucA mutant in anaerobic acidified nitrite sensitivity of planktonic and biofilm bacteria in vitro and during chronic murine lung infection. PLoS One 2019;14:e0216401. [PMID: 31158231 DOI: 10.1371/journal.pone.0216401] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
261 Mall MA, Danahay H, Boucher RC. Emerging Concepts and Therapies for Mucoobstructive Lung Disease. Ann Am Thorac Soc 2018;15:S216-26. [PMID: 30431343 DOI: 10.1513/AnnalsATS.201806-368AW] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
262 Ahmed MN, Porse A, Abdelsamad A, Sommer M, Høiby N, Ciofu O. Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms. Antimicrob Agents Chemother 2019;63:e00766-19. [PMID: 31307984 DOI: 10.1128/AAC.00766-19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
263 Stewart PS, White B, Boegli L, Hamerly T, Williamson KS, Franklin MJ, Bothner B, James GA, Fisher S, Vital-Lopez FG, Wallqvist A. Conceptual Model of Biofilm Antibiotic Tolerance That Integrates Phenomena of Diffusion, Metabolism, Gene Expression, and Physiology. J Bacteriol 2019;201:e00307-19. [PMID: 31501280 DOI: 10.1128/JB.00307-19] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 5.7] [Reference Citation Analysis]
264 Kozlowska J, Rivett DW, Vermeer LS, Carroll MP, Bruce KD, Mason AJ, Rogers GB. A relationship between Pseudomonal growth behaviour and cystic fibrosis patient lung function identified in a metabolomic investigation. Metabolomics 2013;9. [PMID: 24367285 DOI: 10.1007/s11306-013-0538-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
265 Silva E, Monteiro R, Grainha T, Alves D, Pereira MO, Sousa AM. Fostering Innovation in the Treatment of Chronic Polymicrobial Cystic Fibrosis-Associated Infections Exploring Aspartic Acid and Succinic Acid as Ciprofloxacin Adjuvants. Front Cell Infect Microbiol 2020;10:441. [PMID: 32974221 DOI: 10.3389/fcimb.2020.00441] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
266 Sousa SA, Feliciano JR, Pita T, Guerreiro SI, Leitão JH. Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review. Genes (Basel) 2017;8:E43. [PMID: 28106859 DOI: 10.3390/genes8010043] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
267 Filkins LM, O'Toole GA. Cystic Fibrosis Lung Infections: Polymicrobial, Complex, and Hard to Treat. PLoS Pathog 2015;11:e1005258. [PMID: 26719892 DOI: 10.1371/journal.ppat.1005258] [Cited by in Crossref: 104] [Cited by in F6Publishing: 83] [Article Influence: 14.9] [Reference Citation Analysis]
268 Hassett DJ, Borchers MT, Panos RJ. Chronic obstructive pulmonary disease (COPD): evaluation from clinical, immunological and bacterial pathogenesis perspectives. J Microbiol 2014;52:211-26. [PMID: 24585052 DOI: 10.1007/s12275-014-4068-2] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
269 Bragonzi A, Worlitzsch D, Pier GB, Timpert P, Ulrich M, Hentzer M, Andersen JB, Givskov M, Conese M, Doring G. Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J Infect Dis 2005;192:410-9. [PMID: 15995954 DOI: 10.1086/431516] [Cited by in Crossref: 108] [Cited by in F6Publishing: 102] [Article Influence: 6.4] [Reference Citation Analysis]
270 Schwab U, Leigh M, Ribeiro C, Yankaskas J, Burns K, Gilligan P, Sokol P, Boucher R. Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well-differentiated human airway epithelia. Infect Immun 2002;70:4547-55. [PMID: 12117967 DOI: 10.1128/IAI.70.8.4547-4555.2002] [Cited by in Crossref: 65] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
271 Bondí R, Messina M, De Fino I, Bragonzi A, Rampioni G, Leoni L. Affecting Pseudomonas aeruginosa phenotypic plasticity by quorum sensing dysregulation hampers pathogenicity in murine chronic lung infection. PLoS One 2014;9:e112105. [PMID: 25420086 DOI: 10.1371/journal.pone.0112105] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
272 Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection. Am J Respir Crit Care Med 2018;197:708-27. [PMID: 29087211 DOI: 10.1164/rccm.201705-1043SO] [Cited by in Crossref: 50] [Cited by in F6Publishing: 28] [Article Influence: 16.7] [Reference Citation Analysis]
273 Castillo T, Galindo E, Peña CF. The acetylation degree of alginates in Azotobacter vinelandii ATCC9046 is determined by dissolved oxygen and specific growth rate: studies in glucose-limited chemostat cultivations. J Ind Microbiol Biotechnol 2013;40:715-23. [PMID: 23640429 DOI: 10.1007/s10295-013-1274-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
274 Woods DF, Flynn S, Caparrós-Martín JA, Stick SM, Reen FJ, O'Gara F. Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung. Antibiotics (Basel) 2021;10:766. [PMID: 34202495 DOI: 10.3390/antibiotics10070766] [Reference Citation Analysis]
275 Colgan SP, Furuta GT, Taylor CT. Hypoxia and Innate Immunity: Keeping Up with the HIFsters. Annu Rev Immunol 2020;38:341-63. [PMID: 31961750 DOI: 10.1146/annurev-immunol-100819-121537] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 14.0] [Reference Citation Analysis]
276 Kennedy MS, Chang EB. The microbiome: Composition and locations. Prog Mol Biol Transl Sci 2020;176:1-42. [PMID: 33814111 DOI: 10.1016/bs.pmbts.2020.08.013] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
277 Cigana C, Bernardini F, Facchini M, Alcalá-Franco B, Riva C, De Fino I, Rossi A, Ranucci S, Misson P, Chevalier E, Brodmann M, Schmitt M, Wach A, Dale GE, Obrecht D, Bragonzi A. Efficacy of the Novel Antibiotic POL7001 in Preclinical Models of Pseudomonas aeruginosa Pneumonia. Antimicrob Agents Chemother 2016;60:4991-5000. [PMID: 27297477 DOI: 10.1128/AAC.00390-16] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
278 Nguyen AT, O'Neill MJ, Watts AM, Robson CL, Lamont IL, Wilks A, Oglesby-Sherrouse AG. Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 2014;196:2265-76. [PMID: 24727222 DOI: 10.1128/JB.01491-14] [Cited by in Crossref: 85] [Cited by in F6Publishing: 53] [Article Influence: 10.6] [Reference Citation Analysis]
279 Palmer KL, Brown SA, Whiteley M. Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis sputum. J Bacteriol 2007;189:4449-55. [PMID: 17400735 DOI: 10.1128/JB.00162-07] [Cited by in Crossref: 91] [Cited by in F6Publishing: 62] [Article Influence: 6.1] [Reference Citation Analysis]
280 Paulsson M, Su YC, Ringwood T, Uddén F, Riesbeck K. Pseudomonas aeruginosa uses multiple receptors for adherence to laminin during infection of the respiratory tract and skin wounds. Sci Rep 2019;9:18168. [PMID: 31796854 DOI: 10.1038/s41598-019-54622-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
281 Langhanki L, Berger P, Treffon J, Catania F, Kahl BC, Mellmann A. In vivo competition and horizontal gene transfer among distinct Staphylococcus aureus lineages as major drivers for adaptational changes during long-term persistence in humans. BMC Microbiol 2018;18:152. [PMID: 30348081 DOI: 10.1186/s12866-018-1308-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
282 Frenkel ES, Ribbeck K. Salivary mucins promote the coexistence of competing oral bacterial species. ISME J 2017;11:1286-90. [PMID: 28117832 DOI: 10.1038/ismej.2016.200] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
283 Cowley ES, Kopf SH, LaRiviere A, Ziebis W, Newman DK. Pediatric Cystic Fibrosis Sputum Can Be Chemically Dynamic, Anoxic, and Extremely Reduced Due to Hydrogen Sulfide Formation. mBio 2015;6:e00767. [PMID: 26220964 DOI: 10.1128/mBio.00767-15] [Cited by in Crossref: 103] [Cited by in F6Publishing: 73] [Article Influence: 14.7] [Reference Citation Analysis]
284 Schertzer JW, Brown SA, Whiteley M. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol 2010;77:1527-38. [PMID: 20662781 DOI: 10.1111/j.1365-2958.2010.07303.x] [Cited by in Crossref: 111] [Cited by in F6Publishing: 102] [Article Influence: 9.3] [Reference Citation Analysis]
285 Tribelli PM, Hay AG, López NI. The global anaerobic regulator Anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis. PLoS One 2013;8:e76685. [PMID: 24146909 DOI: 10.1371/journal.pone.0076685] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
286 Kopf SH, Sessions AL, Cowley ES, Reyes C, Van Sambeek L, Hu Y, Orphan VJ, Kato R, Newman DK. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc Natl Acad Sci U S A 2016;113:E110-6. [PMID: 26715741 DOI: 10.1073/pnas.1512057112] [Cited by in Crossref: 78] [Cited by in F6Publishing: 57] [Article Influence: 11.1] [Reference Citation Analysis]
287 Kempes CP, Okegbe C, Mears-Clarke Z, Follows MJ, Dietrich LE. Morphological optimization for access to dual oxidants in biofilms. Proc Natl Acad Sci U S A 2014;111:208-13. [PMID: 24335705 DOI: 10.1073/pnas.1315521110] [Cited by in Crossref: 61] [Cited by in F6Publishing: 49] [Article Influence: 6.8] [Reference Citation Analysis]
288 Randell SH, Boucher RC; University of North Carolina Virtual Lung Group. Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol 2006;35:20-8. [PMID: 16528010 DOI: 10.1165/rcmb.2006-0082SF] [Cited by in Crossref: 193] [Cited by in F6Publishing: 103] [Article Influence: 12.1] [Reference Citation Analysis]
289 Vaitekenas A, Tai AS, Ramsay JP, Stick SM, Kicic A. Pseudomonas aeruginosa Resistance to Bacteriophages and Its Prevention by Strategic Therapeutic Cocktail Formulation. Antibiotics (Basel) 2021;10:145. [PMID: 33540528 DOI: 10.3390/antibiotics10020145] [Reference Citation Analysis]
290 Deschaght P, Schelstraete P, Van Simaey L, Vanderkercken M, Raman A, Mahieu L, Van Daele S, De Baets F, Vaneechoutte M. Is the improvement of CF patients, hospitalized for pulmonary exacerbation, correlated to a decrease in bacterial load? PLoS One 2013;8:e79010. [PMID: 24312174 DOI: 10.1371/journal.pone.0079010] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
291 Hickey C, Schaible B, Nguyen S, Hurley D, Srikumar S, Fanning S, Brown E, Crifo B, Matallanas D, McClean S, Taylor CT, Schaffer K. Increased Virulence of Bloodstream Over Peripheral Isolates of P. aeruginosa Identified Through Post-transcriptional Regulation of Virulence Factors. Front Cell Infect Microbiol 2018;8:357. [PMID: 30416988 DOI: 10.3389/fcimb.2018.00357] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
292 Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol 2017;7:39. [PMID: 28261568 DOI: 10.3389/fcimb.2017.00039] [Cited by in Crossref: 384] [Cited by in F6Publishing: 347] [Article Influence: 76.8] [Reference Citation Analysis]
293 Higgins G, Ringholz F, Buchanan P, McNally P, Urbach V. Physiological impact of abnormal lipoxin A₄ production on cystic fibrosis airway epithelium and therapeutic potential. Biomed Res Int 2015;2015:781087. [PMID: 25866809 DOI: 10.1155/2015/781087] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
294 Dietrich LE, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol 2013;195:1371-80. [PMID: 23292774 DOI: 10.1128/JB.02273-12] [Cited by in Crossref: 191] [Cited by in F6Publishing: 111] [Article Influence: 21.2] [Reference Citation Analysis]
295 Sörensen M, Kantorek J, Byrnes L, Boutin S, Mall MA, Lasitschka F, Zabeck H, Nguyen D, Dalpke AH. Pseudomonas aeruginosa Modulates the Antiviral Response of Bronchial Epithelial Cells. Front Immunol 2020;11:96. [PMID: 32117250 DOI: 10.3389/fimmu.2020.00096] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
296 Sabino R, Carolino E, Moss RB, Banaei N, Verissimo C, Stevens DA. Susceptibility of Candida albicans from Cystic Fibrosis Patients. Mycopathologia 2017;182:863-7. [PMID: 28421452 DOI: 10.1007/s11046-017-0133-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
297 Chmiel JF, Aksamit TR, Chotirmall SH, Dasenbrook EC, Elborn JS, LiPuma JJ, Ranganathan SC, Waters VJ, Ratjen FA. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi. Ann Am Thorac Soc 2014;11:1298-306. [PMID: 25167882 DOI: 10.1513/AnnalsATS.201405-203AS] [Cited by in Crossref: 56] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
298 Furukawa S, Kuchma SL, O'Toole GA. Keeping their options open: acute versus persistent infections. J Bacteriol 2006;188:1211-7. [PMID: 16452401 DOI: 10.1128/JB.188.4.1211-1217.2006] [Cited by in Crossref: 127] [Cited by in F6Publishing: 70] [Article Influence: 7.9] [Reference Citation Analysis]
299 Jorth P, Spero MA, Livingston J, Newman DK. Quantitative Visualization of Gene Expression in Mucoid and Nonmucoid Pseudomonas aeruginosa Aggregates Reveals Localized Peak Expression of Alginate in the Hypoxic Zone. mBio 2019;10:e02622-19. [PMID: 31848278 DOI: 10.1128/mBio.02622-19] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
300 Coutinho CP, Dos Santos SC, Madeira A, Mira NP, Moreira AS, Sá-Correia I. Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations. Front Cell Infect Microbiol 2011;1:12. [PMID: 22919578 DOI: 10.3389/fcimb.2011.00012] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 3.5] [Reference Citation Analysis]
301 Magallón M, Carrión AE, Bañuls L, Pellicer D, Castillo S, Bondía S, Navarro-García MM, González C, Dasí F. Oxidative Stress and Endoplasmic Reticulum Stress in Rare Respiratory Diseases. J Clin Med 2021;10:1268. [PMID: 33803835 DOI: 10.3390/jcm10061268] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
302 Haley CL, Colmer-Hamood JA, Hamood AN. Characterization of biofilm-like structures formed by Pseudomonas aeruginosa in a synthetic mucus medium. BMC Microbiol 2012;12:181. [PMID: 22900764 DOI: 10.1186/1471-2180-12-181] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
303 Kolpen M, Kühl M, Bjarnsholt T, Moser C, Hansen CR, Liengaard L, Kharazmi A, Pressler T, Høiby N, Jensen PØ. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. PLoS One 2014;9:e84353. [PMID: 24465406 DOI: 10.1371/journal.pone.0084353] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 7.1] [Reference Citation Analysis]
304 Christophersen LJ, Trøstrup H, Malling Damlund DS, Bjarnsholt T, Thomsen K, Jensen PØ, Hougen HP, Høiby N, Moser C. Bead-size directed distribution of Pseudomonas aeruginosa results in distinct inflammatory response in a mouse model of chronic lung infection. Clin Exp Immunol 2012;170:222-30. [PMID: 23039893 DOI: 10.1111/j.1365-2249.2012.04652.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
305 Ramphal R, Arora SK. Recognition of mucin components by Pseudomonas aeruginosa. Glycoconj J 2001;18:709-13. [PMID: 12386456 DOI: 10.1023/a:1020823406840] [Cited by in Crossref: 38] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
306 Waite RD, Curtis MA. Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms. J Bacteriol 2009;191:1349-54. [PMID: 19060137 DOI: 10.1128/JB.01458-08] [Cited by in Crossref: 43] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
307 Rodríguez-Rojas A, Makarova O, Müller U, Rolff J. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria. PLoS Genet 2015;11:e1005546. [PMID: 26430769 DOI: 10.1371/journal.pgen.1005546] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
308 Dale TP, Borg D'anastasi E, Haris M, Forsyth NR. Rock Inhibitor Y-27632 Enables Feeder-Free, Unlimited Expansion of Sus scrofa domesticus Swine Airway Stem Cells to Facilitate Respiratory Research. Stem Cells Int 2019;2019:3010656. [PMID: 31871466 DOI: 10.1155/2019/3010656] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
309 Arias SL, Brito IL. Biophysical determinants of biofilm formation in the gut. Curr Opin Biomed Eng 2021;18:100275. [PMID: 34504987 DOI: 10.1016/j.cobme.2021.100275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
310 Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet. 2014;384:691-702. [PMID: 25152271 DOI: 10.1016/s0140-6736(14)61136-3] [Cited by in Crossref: 221] [Cited by in F6Publishing: 159] [Article Influence: 27.6] [Reference Citation Analysis]
311 Zheng H, Kim J, Liew M, Yan JK, Herrera O, Bok JW, Kelleher NL, Keller NP, Wang Y. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. Curr Biol 2015;25:29-37. [PMID: 25532893 DOI: 10.1016/j.cub.2014.11.018] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 4.9] [Reference Citation Analysis]
312 Wu ML, Aziz DB, Dartois V, Dick T. NTM drug discovery: status, gaps and the way forward. Drug Discov Today 2018;23:1502-19. [PMID: 29635026 DOI: 10.1016/j.drudis.2018.04.001] [Cited by in Crossref: 89] [Cited by in F6Publishing: 77] [Article Influence: 22.3] [Reference Citation Analysis]
313 Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel) 2020;9:E59. [PMID: 32028684 DOI: 10.3390/antibiotics9020059] [Cited by in Crossref: 81] [Cited by in F6Publishing: 55] [Article Influence: 40.5] [Reference Citation Analysis]
314 Munder A, Wölbeling F, Kerber-Momot T, Wedekind D, Baumann U, Gulbins E, Tümmler B. Acute intratracheal Pseudomonas aeruginosa infection in cystic fibrosis mice is age-independent. Respir Res 2011;12:148. [PMID: 22059807 DOI: 10.1186/1465-9921-12-148] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
315 Sønderholm M, Kragh KN, Koren K, Jakobsen TH, Darch SE, Alhede M, Jensen PØ, Whiteley M, Kühl M, Bjarnsholt T. Pseudomonas aeruginosa Aggregate Formation in an Alginate Bead Model System Exhibits In Vivo-Like Characteristics. Appl Environ Microbiol 2017;83:e00113-17. [PMID: 28258141 DOI: 10.1128/AEM.00113-17] [Cited by in Crossref: 61] [Cited by in F6Publishing: 37] [Article Influence: 12.2] [Reference Citation Analysis]
316 Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R, Reid DW, Lamont IL. Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 2013;81:2697-704. [PMID: 23690396 DOI: 10.1128/IAI.00418-13] [Cited by in Crossref: 72] [Cited by in F6Publishing: 52] [Article Influence: 8.0] [Reference Citation Analysis]
317 Ciemniecki JA, Newman DK. The Potential for Redox-Active Metabolites To Enhance or Unlock Anaerobic Survival Metabolisms in Aerobes. J Bacteriol 2020;202:e00797-19. [PMID: 32071098 DOI: 10.1128/JB.00797-19] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
318 Kvich L, Fritz B, Crone S, Kragh KN, Kolpen M, Sønderholm M, Andersson M, Koch A, Jensen PØ, Bjarnsholt T. Oxygen Restriction Generates Difficult-to-Culture P. aeruginosa. Front Microbiol 2019;10:1992. [PMID: 31555231 DOI: 10.3389/fmicb.2019.01992] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
319 Park JS, Choi HY, Kim WG. The Nitrite Transporter Facilitates Biofilm Formation via Suppression of Nitrite Reductase and Is a New Antibiofilm Target in Pseudomonas aeruginosa. mBio 2020;11:e00878-20. [PMID: 32636243 DOI: 10.1128/mBio.00878-20] [Reference Citation Analysis]
320 Yin N, Santos TM, Auer GK, Crooks JA, Oliver PM, Weibel DB. Bacterial cellulose as a substrate for microbial cell culture. Appl Environ Microbiol 2014;80:1926-32. [PMID: 24441155 DOI: 10.1128/AEM.03452-13] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
321 Moser C, Van Gennip M, Bjarnsholt T, Jensen PØ, Lee B, Hougen HP, Calum H, Ciofu O, Givskov M, Molin S, Høiby N. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 2009;117:95-107. [PMID: 19239431 DOI: 10.1111/j.1600-0463.2008.00018.x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 2.8] [Reference Citation Analysis]
322 Kolpen M, Bjarnsholt T, Moser C, Hansen CR, Rickelt LF, Kühl M, Hempel C, Pressler T, Høiby N, Jensen PØ. Nitric oxide production by polymorphonuclear leucocytes in infected cystic fibrosis sputum consumes oxygen. Clin Exp Immunol 2014;177:310-9. [PMID: 24611476 DOI: 10.1111/cei.12318] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
323 Kowalski MP, Dubouix-Bourandy A, Bajmoczi M, Golan DE, Zaidi T, Coutinho-Sledge YS, Gygi MP, Gygi SP, Wiemer EA, Pier GB. Host resistance to lung infection mediated by major vault protein in epithelial cells. Science 2007;317:130-2. [PMID: 17615361 DOI: 10.1126/science.1142311] [Cited by in Crossref: 84] [Cited by in F6Publishing: 76] [Article Influence: 5.6] [Reference Citation Analysis]
324 Farias R, Rousseau S. The TAK1→IKKβ→TPL2→MKK1/MKK2 Signaling Cascade Regulates IL-33 Expression in Cystic Fibrosis Airway Epithelial Cells Following Infection by Pseudomonas aeruginosa. Front Cell Dev Biol 2015;3:87. [PMID: 26793709 DOI: 10.3389/fcell.2015.00087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
325 Pritchard MF, Powell LC, Jack AA, Powell K, Beck K, Florance H, Forton J, Rye PD, Dessen A, Hill KE, Thomas DW. A Low-Molecular-Weight Alginate Oligosaccharide Disrupts Pseudomonal Microcolony Formation and Enhances Antibiotic Effectiveness. Antimicrob Agents Chemother 2017;61:e00762-17. [PMID: 28630204 DOI: 10.1128/AAC.00762-17] [Cited by in Crossref: 34] [Cited by in F6Publishing: 16] [Article Influence: 6.8] [Reference Citation Analysis]
326 Fang FC, Frawley ER, Tapscott T, Vázquez-Torres A. Bacterial Stress Responses during Host Infection. Cell Host Microbe 2016;20:133-43. [PMID: 27512901 DOI: 10.1016/j.chom.2016.07.009] [Cited by in Crossref: 123] [Cited by in F6Publishing: 100] [Article Influence: 24.6] [Reference Citation Analysis]
327 Fernández-Barat L, Motos A, Ranzani OT, Bassi GL, Aguilera Xiol E, Senussi T, Travierso C, Chiurazzi C, Idone F, Muñoz L, Vila J, Ferrer M, Pelosi P, Blasi F, Antonelli M, Torres A. Diagnostic Value of Endotracheal Aspirates Sonication on Ventilator-Associated Pneumonia Microbiologic Diagnosis. Microorganisms 2017;5:E62. [PMID: 28930178 DOI: 10.3390/microorganisms5030062] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
328 Kahl BC, Becker K, Löffler B. Clinical Significance and Pathogenesis of Staphylococcal Small Colony Variants in Persistent Infections. Clin Microbiol Rev 2016;29:401-27. [PMID: 26960941 DOI: 10.1128/CMR.00069-15] [Cited by in Crossref: 150] [Cited by in F6Publishing: 86] [Article Influence: 25.0] [Reference Citation Analysis]
329 Hsu J, Avila PC, Kern RC, Hayes MG, Schleimer RP, Pinto JM. Genetics of chronic rhinosinusitis: state of the field and directions forward. J Allergy Clin Immunol 2013;131:977-93, 993.e1-5. [PMID: 23540616 DOI: 10.1016/j.jaci.2013.01.028] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 6.9] [Reference Citation Analysis]
330 Sassano MF, Davis ES, Keating JE, Zorn BT, Kochar TK, Wolfgang MC, Glish GL, Tarran R. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biol 2018;16:e2003904. [PMID: 29584716 DOI: 10.1371/journal.pbio.2003904] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 16.5] [Reference Citation Analysis]
331 Payet LA, Kadri L, Giraud S, Norez C, Berjeaud JM, Jayle C, Mirval S, Becq F, Vandebrouck C, Ferreira T. Cystic fibrosis bronchial epithelial cells are lipointoxicated by membrane palmitate accumulation. PLoS One 2014;9:e89044. [PMID: 24586495 DOI: 10.1371/journal.pone.0089044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
332 Rogers GB, Daniels TW, Tuck A, Carroll MP, Connett GJ, David GJ, Bruce KD. Studying bacteria in respiratory specimens by using conventional and molecular microbiological approaches. BMC Pulm Med 2009;9:14. [PMID: 19368727 DOI: 10.1186/1471-2466-9-14] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
333 Parameswaran GI, Murphy TF. Infections in chronic lung diseases. Infect Dis Clin North Am 2007;21:673-95, viii. [PMID: 17826618 DOI: 10.1016/j.idc.2007.06.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
334 Zamorano L, Moyà B, Juan C, Mulet X, Blázquez J, Oliver A. The Pseudomonas aeruginosa CreBC two-component system plays a major role in the response to β-lactams, fitness, biofilm growth, and global regulation. Antimicrob Agents Chemother 2014;58:5084-95. [PMID: 24936599 DOI: 10.1128/AAC.02556-14] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
335 Hay ID, Remminghorst U, Rehm BH. MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 2009;75:1110-20. [PMID: 19088322 DOI: 10.1128/AEM.02416-08] [Cited by in Crossref: 94] [Cited by in F6Publishing: 43] [Article Influence: 6.7] [Reference Citation Analysis]
336 Cai YM, Chatelet DS, Howlin RP, Wang ZZ, Webb JS. A novel application of Gini coefficient for the quantitative measurement of bacterial aggregation. Sci Rep 2019;9:19002. [PMID: 31831832 DOI: 10.1038/s41598-019-55567-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
337 Nielsen SM, Meyer RL, Nørskov-Lauritsen N. Differences in Gene Expression Profiles between Early and Late Isolates in Monospecies Achromobacter Biofilm. Pathogens 2017;6:E20. [PMID: 28534862 DOI: 10.3390/pathogens6020020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
338 Priebe GP, Dean CR, Zaidi T, Meluleni GJ, Coleman FT, Coutinho YS, Noto MJ, Urban TA, Pier GB, Goldberg JB. The galU Gene of Pseudomonas aeruginosa is required for corneal infection and efficient systemic spread following pneumonia but not for infection confined to the lung. Infect Immun 2004;72:4224-32. [PMID: 15213167 DOI: 10.1128/IAI.72.7.4224-4232.2004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
339 Hoffman LR, Richardson AR, Houston LS, Kulasekara HD, Martens-Habbena W, Klausen M, Burns JL, Stahl DA, Hassett DJ, Fang FC, Miller SI. Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog 2010;6:e1000712. [PMID: 20072604 DOI: 10.1371/journal.ppat.1000712] [Cited by in Crossref: 92] [Cited by in F6Publishing: 84] [Article Influence: 7.7] [Reference Citation Analysis]
340 Woodworth BA. Resveratrol ameliorates abnormalities of fluid and electrolyte secretion in a hypoxia-Induced model of acquired CFTR deficiency. Laryngoscope 2015;125 Suppl 7:S1-S13. [PMID: 25946147 DOI: 10.1002/lary.25335] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
341 Díez-Aguilar M, Morosini MI, Tedim AP, Rodríguez I, Aktaş Z, Cantón R. Antimicrobial Activity of Fosfomycin-Tobramycin Combination against Pseudomonas aeruginosa Isolates Assessed by Time-Kill Assays and Mutant Prevention Concentrations. Antimicrob Agents Chemother 2015;59:6039-45. [PMID: 26195514 DOI: 10.1128/AAC.00822-15] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
342 Secor PR, Michaels LA, Ratjen A, Jennings LK, Singh PK. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2018;115:10780-5. [PMID: 30275316 DOI: 10.1073/pnas.1806005115] [Cited by in Crossref: 59] [Cited by in F6Publishing: 42] [Article Influence: 14.8] [Reference Citation Analysis]
343 Périnet S, Jeukens J, Kukavica-Ibrulj I, Ouellet MM, Charette SJ, Levesque RC. Molybdate transporter ModABC is important for Pseudomonas aeruginosa chronic lung infection. BMC Res Notes 2016;9:23. [PMID: 26758577 DOI: 10.1186/s13104-016-1840-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
344 Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 2017;17:774-85. [PMID: 28972206 DOI: 10.1038/nri.2017.103] [Cited by in Crossref: 201] [Cited by in F6Publishing: 193] [Article Influence: 40.2] [Reference Citation Analysis]
345 Oberhardt MA, Goldberg JB, Hogardt M, Papin JA. Metabolic network analysis of Pseudomonas aeruginosa during chronic cystic fibrosis lung infection. J Bacteriol 2010;192:5534-48. [PMID: 20709898 DOI: 10.1128/JB.00900-10] [Cited by in Crossref: 75] [Cited by in F6Publishing: 48] [Article Influence: 6.3] [Reference Citation Analysis]
346 Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021;24:102443. [PMID: 34013169 DOI: 10.1016/j.isci.2021.102443] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
347 Sønderholm M, Koren K, Wangpraseurt D, Jensen PØ, Kolpen M, Kragh KN, Bjarnsholt T, Kühl M. Tools for studying growth patterns and chemical dynamics of aggregated Pseudomonas aeruginosa exposed to different electron acceptors in an alginate bead model. NPJ Biofilms Microbiomes 2018;4:3. [PMID: 29479470 DOI: 10.1038/s41522-018-0047-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
348 Quinn RA, Whiteson K, Lim YW, Salamon P, Bailey B, Mienardi S, Sanchez SE, Blake D, Conrad D, Rohwer F. A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation. ISME J 2015;9:1024-38. [PMID: 25514533 DOI: 10.1038/ismej.2014.234] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
349 Khanolkar RA, Clark ST, Wang PW, Hwang DM, Yau YCW, Waters VJ, Guttman DS. Ecological Succession of Polymicrobial Communities in the Cystic Fibrosis Airways. mSystems 2020;5:e00809-20. [PMID: 33262240 DOI: 10.1128/mSystems.00809-20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
350 Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. Mol Ther Nucleic Acids 2019;18:413-31. [PMID: 31655261 DOI: 10.1016/j.omtn.2019.09.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
351 Klare W, Das T, Ibugo A, Buckle E, Manefield M, Manos J. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome. Antimicrob Agents Chemother 2016;60:4539-51. [PMID: 27161630 DOI: 10.1128/AAC.02919-15] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
352 Klockgether J, Tümmler B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Res 2017;6:1261. [PMID: 28794863 DOI: 10.12688/f1000research.10506.1] [Cited by in Crossref: 77] [Cited by in F6Publishing: 64] [Article Influence: 15.4] [Reference Citation Analysis]
353 Finelli A, Gallant CV, Jarvi K, Burrows LL. Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J Bacteriol 2003;185:2700-10. [PMID: 12700249 DOI: 10.1128/JB.185.9.2700-2710.2003] [Cited by in Crossref: 51] [Cited by in F6Publishing: 22] [Article Influence: 2.7] [Reference Citation Analysis]
354 Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, Shanahan F, Coffey A, Ross RP, Hill C. Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. mBio 2012;3:e00029-12. [PMID: 22396480 DOI: 10.1128/mBio.00029-12] [Cited by in Crossref: 148] [Cited by in F6Publishing: 96] [Article Influence: 14.8] [Reference Citation Analysis]
355 Margaroli C, Moncada-Giraldo D, Gulick DA, Dobosh B, Giacalone VD, Forrest OA, Sun F, Gu C, Gaggar A, Kissick H, Wu R, Gibson G, Tirouvanziam R. Transcriptional firing represses bactericidal activity in cystic fibrosis airway neutrophils. Cell Rep Med 2021;2:100239. [PMID: 33948572 DOI: 10.1016/j.xcrm.2021.100239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
356 Bauman SJ, Kuehn MJ. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol 2009;9:26. [PMID: 19192306 DOI: 10.1186/1471-2180-9-26] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 5.3] [Reference Citation Analysis]
357 Cabeen MT. Stationary phase-specific virulence factor overproduction by a lasR mutant of Pseudomonas aeruginosa. PLoS One. 2014;9:e88743. [PMID: 24533146 DOI: 10.1371/journal.pone.0088743] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
358 Cendra MDM, Blanco-Cabra N, Pedraz L, Torrents E. Optimal environmental and culture conditions allow the in vitro coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in stable biofilms. Sci Rep 2019;9:16284. [PMID: 31705015 DOI: 10.1038/s41598-019-52726-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
359 Okkotsu Y, Little AS, Schurr MJ. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 2014;4:82. [PMID: 24999454 DOI: 10.3389/fcimb.2014.00082] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 4.8] [Reference Citation Analysis]
360 Ha DG, Merritt JH, Hampton TH, Hodgkinson JT, Janecek M, Spring DR, Welch M, O'Toole GA. 2-Heptyl-4-quinolone, a precursor of the Pseudomonas quinolone signal molecule, modulates swarming motility in Pseudomonas aeruginosa. J Bacteriol 2011;193:6770-80. [PMID: 21965567 DOI: 10.1128/JB.05929-11] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
361 Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The Microbiome and the Respiratory Tract. Annu Rev Physiol 2016;78:481-504. [PMID: 26527186 DOI: 10.1146/annurev-physiol-021115-105238] [Cited by in Crossref: 317] [Cited by in F6Publishing: 290] [Article Influence: 45.3] [Reference Citation Analysis]
362 von Götz F, Häussler S, Jordan D, Saravanamuthu SS, Wehmhöner D, Strüssmann A, Lauber J, Attree I, Buer J, Tümmler B, Steinmetz I. Expression analysis of a highly adherent and cytotoxic small colony variant of Pseudomonas aeruginosa isolated from a lung of a patient with cystic fibrosis. J Bacteriol 2004;186:3837-47. [PMID: 15175297 DOI: 10.1128/JB.186.12.3837-3847.2004] [Cited by in Crossref: 77] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
363 Fritzsching B, Zhou-Suckow Z, Trojanek JB, Schubert SC, Schatterny J, Hirtz S, Agrawal R, Muley T, Kahn N, Sticht C, Gunkel N, Welte T, Randell SH, Länger F, Schnabel P, Herth FJ, Mall MA. Hypoxic epithelial necrosis triggers neutrophilic inflammation via IL-1 receptor signaling in cystic fibrosis lung disease. Am J Respir Crit Care Med 2015;191:902-13. [PMID: 25607238 DOI: 10.1164/rccm.201409-1610OC] [Cited by in Crossref: 55] [Cited by in F6Publishing: 36] [Article Influence: 7.9] [Reference Citation Analysis]
364 Vandeplassche E, Sass A, Ostyn L, Burmølle M, Kragh KN, Bjarnsholt T, Coenye T, Crabbé A. Antibiotic susceptibility of cystic fibrosis lung microbiome members in a multispecies biofilm. Biofilm 2020;2:100031. [PMID: 33447816 DOI: 10.1016/j.bioflm.2020.100031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
365 Boes N, Schreiber K, Härtig E, Jaensch L, Schobert M. The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress. J Bacteriol 2006;188:6529-38. [PMID: 16952944 DOI: 10.1128/JB.00308-06] [Cited by in Crossref: 39] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
366 Gallagher T, Phan J, Whiteson K. Getting Our Fingers on the Pulse of Slow-Growing Bacteria in Hard-To-Reach Places. J Bacteriol 2018;200:e00540-18. [PMID: 30249702 DOI: 10.1128/JB.00540-18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
367 Bonnomet A, Luczka E, Coraux C, de Gabory L. Non-diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline. Int Forum Allergy Rhinol 2016;6:1062-8. [PMID: 27101776 DOI: 10.1002/alr.21782] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
368 Jeukens J, Boyle B, Bianconi I, Kukavica-Ibrulj I, Tümmler B, Bragonzi A, Levesque RC. Complete Genome Sequence of Persistent Cystic Fibrosis Isolate Pseudomonas aeruginosa Strain RP73. Genome Announc 2013;1:e00568-13. [PMID: 23908295 DOI: 10.1128/genomeA.00568-13] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
369 Mettrick K, Hassan K, Lamont I, Reid D. The Iron-chelator, N,N'-bis (2-hydroxybenzyl) Ethylenediamine-N,N'-Diacetic acid is an Effective Colistin Adjunct against Clinical Strains of Biofilm-Dwelling Pseudomonas aeruginosa. Antibiotics (Basel) 2020;9:E144. [PMID: 32230813 DOI: 10.3390/antibiotics9040144] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
370 Gade PAV, Olsen TB, Jensen PØ, Kolpen M, Høiby N, Henneberg KÅ, Sams T. Modelling of ciprofloxacin killing enhanced by hyperbaric oxygen treatment in Pseudomonas aeruginosa PAO1 biofilms. PLoS One 2018;13:e0198909. [PMID: 29902223 DOI: 10.1371/journal.pone.0198909] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
371 Kreamer NN, Wilks JC, Marlow JJ, Coleman ML, Newman DK. BqsR/BqsS constitute a two-component system that senses extracellular Fe(II) in Pseudomonas aeruginosa. J Bacteriol 2012;194:1195-204. [PMID: 22194456 DOI: 10.1128/JB.05634-11] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
372 Schwab U, Abdullah LH, Perlmutt OS, Albert D, Davis CW, Arnold RR, Yankaskas JR, Gilligan P, Neubauer H, Randell SH, Boucher RC. Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxic mucus. Infect Immun 2014;82:4729-45. [PMID: 25156735 DOI: 10.1128/IAI.01876-14] [Cited by in Crossref: 70] [Cited by in F6Publishing: 47] [Article Influence: 8.8] [Reference Citation Analysis]
373 Walker TS, Tomlin KL, Worthen GS, Poch KR, Lieber JG, Saavedra MT, Fessler MB, Malcolm KC, Vasil ML, Nick JA. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 2005;73:3693-701. [PMID: 15908399 DOI: 10.1128/IAI.73.6.3693-3701.2005] [Cited by in Crossref: 169] [Cited by in F6Publishing: 95] [Article Influence: 9.9] [Reference Citation Analysis]
374 Pabst B, Pitts B, Lauchnor E, Stewart PS. Gel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates, Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression. Antimicrob Agents Chemother 2016;60:6294-301. [PMID: 27503656 DOI: 10.1128/AAC.01336-16] [Cited by in Crossref: 42] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
375 Wu M, Guina T, Brittnacher M, Nguyen H, Eng J, Miller SI. The Pseudomonas aeruginosa proteome during anaerobic growth. J Bacteriol 2005;187:8185-90. [PMID: 16291692 DOI: 10.1128/JB.187.23.8185-8190.2005] [Cited by in Crossref: 50] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
376 Stewart PS, Zhang T, Xu R, Pitts B, Walters MC, Roe F, Kikhney J, Moter A. Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. NPJ Biofilms Microbiomes 2016;2:16012. [PMID: 28721248 DOI: 10.1038/npjbiofilms.2016.12] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]
377 Wilder CN, Allada G, Schuster M. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun. 2009;77:5631-5639. [PMID: 19805523 DOI: 10.1128/iai.00755-09] [Cited by in Crossref: 95] [Cited by in F6Publishing: 62] [Article Influence: 7.3] [Reference Citation Analysis]
378 Gerovac BJ, Valencia M, Baumlin N, Salathe M, Conner GE, Fregien NL. Submersion and hypoxia inhibit ciliated cell differentiation in a notch-dependent manner. Am J Respir Cell Mol Biol 2014;51:516-25. [PMID: 24754775 DOI: 10.1165/rcmb.2013-0237OC] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
379 Lopes-Pacheco M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front Pharmacol 2016;7:275. [PMID: 27656143 DOI: 10.3389/fphar.2016.00275] [Cited by in Crossref: 71] [Cited by in F6Publishing: 59] [Article Influence: 11.8] [Reference Citation Analysis]
380 Phan J, Gallagher T, Oliver A, England WE, Whiteson K. Fermentation products in the cystic fibrosis airways induce aggregation and dormancy-associated expression profiles in a CF clinical isolate of Pseudomonas aeruginosa. FEMS Microbiol Lett 2018;365. [PMID: 29617986 DOI: 10.1093/femsle/fny082] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
381 Tipirneni KE, Grayson JW, Zhang S, Cho DY, Skinner DF, Lim DJ, Mackey C, Tearney GJ, Rowe SM, Woodworth BA. Assessment of acquired mucociliary clearance defects using micro-optical coherence tomography. Int Forum Allergy Rhinol 2017;7:920-5. [PMID: 28658531 DOI: 10.1002/alr.21975] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
382 Cross AR, Csatary EE, Raghuram V, Diggle FL, Whiteley M, Wuest WM, Goldberg JB. The histone-like protein AlgP regulon is distinct in mucoid and nonmucoid Pseudomonas aeruginosa and does not include alginate biosynthesis genes. Microbiology (Reading) 2020;166:861-6. [PMID: 32634088 DOI: 10.1099/mic.0.000923] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
383 Bajmoczi M, Gadjeva M, Alper SL, Pier GB, Golan DE. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa. Am J Physiol Cell Physiol 2009;297:C263-77. [PMID: 19386787 DOI: 10.1152/ajpcell.00527.2008] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 3.3] [Reference Citation Analysis]
384 Wu Y, Klapper I, Stewart PS. Hypoxia arising from concerted oxygen consumption by neutrophils and microorganisms in biofilms. Pathog Dis 2018;76. [PMID: 29688319 DOI: 10.1093/femspd/fty043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
385 Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, Tunney MM, Wolfgang MC. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One 2012;7:e45001. [PMID: 23049765 DOI: 10.1371/journal.pone.0045001] [Cited by in Crossref: 249] [Cited by in F6Publishing: 227] [Article Influence: 24.9] [Reference Citation Analysis]
386 Borrero-de Acuña JM, Rohde M, Wissing J, Jänsch L, Schobert M, Molinari G, Timmis KN, Jahn M, Jahn D. Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus. J Bacteriol 2016;198:1401-13. [PMID: 26903416 DOI: 10.1128/JB.00055-16] [Cited by in Crossref: 43] [Cited by in F6Publishing: 16] [Article Influence: 7.2] [Reference Citation Analysis]
387 Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp 2012;:e3857. [PMID: 22711026 DOI: 10.3791/3857] [Cited by in Crossref: 43] [Cited by in F6Publishing: 56] [Article Influence: 4.3] [Reference Citation Analysis]
388 Schaible B, Crifo B, Schaffer K, Taylor CT. The putative bacterial oxygen sensor Pseudomonas prolyl hydroxylase (PPHD) suppresses antibiotic resistance and pathogenicity in Pseudomonas aeruginosa. J Biol Chem 2020;295:1195-201. [PMID: 31826919 DOI: 10.1074/jbc.RA119.010033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
389 Qiu D, Eisinger VM, Head NE, Pier GB, Yu HD. ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology (Reading) 2008;154:2119-30. [PMID: 18599839 DOI: 10.1099/mic.0.2008/017368-0] [Cited by in Crossref: 72] [Cited by in F6Publishing: 70] [Article Influence: 5.1] [Reference Citation Analysis]
390 Yang L, Haagensen JA, Jelsbak L, Johansen HK, Sternberg C, Høiby N, Molin S. In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J Bacteriol. 2008;190:2767-2776. [PMID: 18156255 DOI: 10.1128/jb.01581-07] [Cited by in Crossref: 150] [Cited by in F6Publishing: 70] [Article Influence: 10.0] [Reference Citation Analysis]
391 Dolan SK, Kohlstedt M, Trigg S, Vallejo Ramirez P, Kaminski CF, Wittmann C, Welch M. Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources. mBio 2020;11:e02684-19. [PMID: 32184246 DOI: 10.1128/mBio.02684-19] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
392 Blount A, Zhang S, Chestnut M, Hixon B, Skinner D, Sorscher EJ, Woodworth BA. Transepithelial ion transport is suppressed in hypoxic sinonasal epithelium. Laryngoscope 2011;121:1929-34. [PMID: 22024847 DOI: 10.1002/lary.21921] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.0] [Reference Citation Analysis]
393 Baynham PJ, Ramsey DM, Gvozdyev BV, Cordonnier EM, Wozniak DJ. The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J Bacteriol 2006;188:132-40. [PMID: 16352829 DOI: 10.1128/JB.188.1.132-140.2006] [Cited by in Crossref: 78] [Cited by in F6Publishing: 56] [Article Influence: 4.9] [Reference Citation Analysis]
394 Kragh KN, Alhede M, Jensen PØ, Moser C, Scheike T, Jacobsen CS, Seier Poulsen S, Eickhardt-Sørensen SR, Trøstrup H, Christoffersen L, Hougen HP, Rickelt LF, Kühl M, Høiby N, Bjarnsholt T. Polymorphonuclear leukocytes restrict growth of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Infect Immun 2014;82:4477-86. [PMID: 25114118 DOI: 10.1128/IAI.01969-14] [Cited by in Crossref: 95] [Cited by in F6Publishing: 62] [Article Influence: 11.9] [Reference Citation Analysis]
395 de Buhr N, Martens A, Meurer M, Bonilla MC, Söbbeler F, Twele L, Neudeck S, Wendt M, Beineke A, Kästner S, von Köckritz-Blickwede M. In vivo oxygen measurement in cerebrospinal fluid of pigs to determine physiologic and pathophysiologic oxygen values during CNS infections. BMC Neurosci 2021;22:45. [PMID: 34182939 DOI: 10.1186/s12868-021-00648-x] [Reference Citation Analysis]
396 Tielen P, Rosin N, Meyer AK, Dohnt K, Haddad I, Jänsch L, Klein J, Narten M, Pommerenke C, Scheer M, Schobert M, Schomburg D, Thielen B, Jahn D. Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions. PLoS One 2013;8:e71845. [PMID: 23967252 DOI: 10.1371/journal.pone.0071845] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
397 Jensen PØ, Møller SA, Lerche CJ, Moser C, Bjarnsholt T, Ciofu O, Faurholt-Jepsen D, Høiby N, Kolpen M. Improving antibiotic treatment of bacterial biofilm by hyperbaric oxygen therapy: Not just hot air. Biofilm 2019;1:100008. [PMID: 33447795 DOI: 10.1016/j.bioflm.2019.100008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
398 Matsui H, Wagner VE, Hill DB, Schwab UE, Rogers TD, Button B, Taylor RM 2nd, Superfine R, Rubinstein M, Iglewski BH, Boucher RC. A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 2006;103:18131-6. [PMID: 17116883 DOI: 10.1073/pnas.0606428103] [Cited by in Crossref: 153] [Cited by in F6Publishing: 133] [Article Influence: 9.6] [Reference Citation Analysis]
399 McCaughey G, Diamond P, Elborn JS, McKevitt M, Tunney MM. Resistance development of cystic fibrosis respiratory pathogens when exposed to fosfomycin and tobramycin alone and in combination under aerobic and anaerobic conditions. PLoS One 2013;8:e69763. [PMID: 23936095 DOI: 10.1371/journal.pone.0069763] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
400 Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 2022. [PMID: 35149841 DOI: 10.1038/s41579-022-00692-2] [Reference Citation Analysis]
401 Seixas AMM, Sousa SA, Feliciano JR, Gomes SC, Ferreira MR, Moreira LM, Leitão JH. A Polyclonal Antibody Raised against the Burkholderia cenocepacia OmpA-like Protein BCAL2645 Impairs the Bacterium Adhesion and Invasion of Human Epithelial Cells In Vitro. Biomedicines 2021;9:1788. [PMID: 34944603 DOI: 10.3390/biomedicines9121788] [Reference Citation Analysis]
402 O'Brien TJ, Welch M. A Continuous-Flow Model for in vitro Cultivation of Mixed Microbial Populations Associated With Cystic Fibrosis Airway Infections. Front Microbiol 2019;10:2713. [PMID: 31824471 DOI: 10.3389/fmicb.2019.02713] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
403 Ottolenghi S, Zulueta A, Caretti A. Iron and Sphingolipids as Common Players of (Mal)Adaptation to Hypoxia in Pulmonary Diseases. Int J Mol Sci 2020;21:E307. [PMID: 31906427 DOI: 10.3390/ijms21010307] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
404 Kindrachuk KN, Fernández L, Bains M, Hancock RE. Involvement of an ATP-dependent protease, PA0779/AsrA, in inducing heat shock in response to tobramycin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2011;55:1874-82. [PMID: 21357290 DOI: 10.1128/AAC.00935-10] [Cited by in Crossref: 43] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
405 Othman DS, Schirra H, McEwan AG, Kappler U. Metabolic versatility in Haemophilus influenzae: a metabolomic and genomic analysis. Front Microbiol 2014;5:69. [PMID: 24624122 DOI: 10.3389/fmicb.2014.00069] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
406 Popova TG, Millis B, Chung MC, Bailey C, Popov SG. Anthrolysin O and fermentation products mediate the toxicity of Bacillus anthracis to lung epithelial cells under microaerobic conditions. FEMS Immunol Med Microbiol 2011;61:15-27. [PMID: 20946354 DOI: 10.1111/j.1574-695X.2010.00740.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
407 Tipirneni KE, Zhang S, Cho DY, Grayson J, Skinner DF, Mackey C, Moore L, Cole D, Banks CG, Woodworth BA. Submucosal gland mucus strand velocity is decreased in chronic rhinosinusitis. Int Forum Allergy Rhinol 2018;8:509-12. [PMID: 29319936 DOI: 10.1002/alr.22065] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
408 Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol 2022. [PMID: 35115704 DOI: 10.1038/s41579-022-00682-4] [Reference Citation Analysis]
409 Bhagirath AY, Li Y, Somayajula D, Dadashi M, Badr S, Duan K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med. 2016;16:174. [PMID: 27919253 DOI: 10.1186/s12890-016-0339-5] [Cited by in Crossref: 161] [Cited by in F6Publishing: 142] [Article Influence: 26.8] [Reference Citation Analysis]
410 Cigana C, Lorè NI, Bernardini ML, Bragonzi A. Dampening Host Sensing and Avoiding Recognition in Pseudomonas aeruginosa Pneumonia. J Biomed Biotechnol 2011;2011:852513. [PMID: 21785567 DOI: 10.1155/2011/852513] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
411 Yoon MY, Lee KM, Park Y, Yoon SS. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS One 2011;6:e16105. [PMID: 21267455 DOI: 10.1371/journal.pone.0016105] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 5.9] [Reference Citation Analysis]
412 Vogne C, Aires JR, Bailly C, Hocquet D, Plésiat P. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 2004;48:1676-80. [PMID: 15105120 DOI: 10.1128/AAC.48.5.1676-1680.2004] [Cited by in Crossref: 104] [Cited by in F6Publishing: 56] [Article Influence: 5.8] [Reference Citation Analysis]
413 Limoli DH, Whitfield GB, Kitao T, Ivey ML, Davis MR Jr, Grahl N, Hogan DA, Rahme LG, Howell PL, O'Toole GA, Goldberg JB. Pseudomonas aeruginosa Alginate Overproduction Promotes Coexistence with Staphylococcus aureus in a Model of Cystic Fibrosis Respiratory Infection. mBio 2017;8:e00186-17. [PMID: 28325763 DOI: 10.1128/mBio.00186-17] [Cited by in Crossref: 68] [Cited by in F6Publishing: 45] [Article Influence: 13.6] [Reference Citation Analysis]
414 McNamara PJ, Proctor RA. Bacterial interactions and the microevolution of cytochrome bd: implications for pathogenesis. J Bacteriol 2006;188:7997-8. [PMID: 17108290 DOI: 10.1128/JB.01364-06] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
415 Minandri F, Imperi F, Frangipani E, Bonchi C, Visaggio D, Facchini M, Pasquali P, Bragonzi A, Visca P. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection. Infect Immun 2016;84:2324-35. [PMID: 27271740 DOI: 10.1128/IAI.00098-16] [Cited by in Crossref: 109] [Cited by in F6Publishing: 79] [Article Influence: 18.2] [Reference Citation Analysis]
416 Ostrowski LE, Stewart D, Hazucha M. Interferon γ stimulates accumulation of gas phase nitric oxide in differentiated cultures of normal and cystic fibrosis airway epithelial cells. Lung 2012;190:563-71. [PMID: 22729230 DOI: 10.1007/s00408-012-9395-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
417 Bingula R, Filaire M, Radosevic-Robin N, Bey M, Berthon JY, Bernalier-Donadille A, Vasson MP, Filaire E. Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer. J Oncol 2017;2017:5035371. [PMID: 29075294 DOI: 10.1155/2017/5035371] [Cited by in Crossref: 69] [Cited by in F6Publishing: 64] [Article Influence: 13.8] [Reference Citation Analysis]
418 Cattoir V, Narasimhan G, Skurnik D, Aschard H, Roux D, Ramphal R, Jyot J, Lory S. Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus. mBio 2013;3:e00410-12. [PMID: 23143799 DOI: 10.1128/mBio.00410-12] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
419 Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin Microbiol Rev 2018;31:e00019-18. [PMID: 30158299 DOI: 10.1128/CMR.00019-18] [Cited by in Crossref: 82] [Cited by in F6Publishing: 45] [Article Influence: 20.5] [Reference Citation Analysis]
420 Bos AC, van Holsbeke C, de Backer JW, van Westreenen M, Janssens HM, Vos WG, Tiddens HA. Patient-specific modeling of regional antibiotic concentration levels in airways of patients with cystic fibrosis: are we dosing high enough? PLoS One 2015;10:e0118454. [PMID: 25734630 DOI: 10.1371/journal.pone.0118454] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
421 Platt MD, Schurr MJ, Sauer K, Vazquez G, Kukavica-Ibrulj I, Potvin E, Levesque RC, Fedynak A, Brinkman FS, Schurr J, Hwang SH, Lau GW, Limbach PA, Rowe JJ, Lieberman MA, Barraud N, Webb J, Kjelleberg S, Hunt DF, Hassett DJ. Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. J Bacteriol 2008;190:2739-58. [PMID: 18203836 DOI: 10.1128/JB.01683-07] [Cited by in Crossref: 70] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
422 Warren AE, Boulianne-Larsen CM, Chandler CB, Chiotti K, Kroll E, Miller SR, Taddei F, Sermet-Gaudelus I, Ferroni A, McInnerney K, Franklin MJ, Rosenzweig F. Genotypic and phenotypic variation in Pseudomonas aeruginosa reveals signatures of secondary infection and mutator activity in certain cystic fibrosis patients with chronic lung infections. Infect Immun 2011;79:4802-18. [PMID: 21930755 DOI: 10.1128/IAI.05282-11] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
423 Moreau-Marquis S, Coutermarsh B, Stanton BA. Combination of hypothiocyanite and lactoferrin (ALX-109) enhances the ability of tobramycin and aztreonam to eliminate Pseudomonas aeruginosa biofilms growing on cystic fibrosis airway epithelial cells. J Antimicrob Chemother 2015;70:160-6. [PMID: 25213272 DOI: 10.1093/jac/dku357] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]
424 Urquhart DS, Montgomery H, Jaffé A. Assessment of hypoxia in children with cystic fibrosis. Arch Dis Child 2005;90:1138-43. [PMID: 16243867 DOI: 10.1136/adc.2005.071795] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 1.6] [Reference Citation Analysis]
425 Muhlebach MS, Hatch JE, Einarsson GG, McGrath SJ, Gilipin DF, Lavelle G, Mirkovic B, Murray MA, McNally P, Gotman N, Davis Thomas S, Wolfgang MC, Gilligan PH, McElvaney NG, Elborn JS, Boucher RC, Tunney MM. Anaerobic bacteria cultured from cystic fibrosis airways correlate to milder disease: a multisite study. Eur Respir J 2018;52:1800242. [PMID: 29946004 DOI: 10.1183/13993003.00242-2018] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
426 Palmer KL, Aye LM, Whiteley M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol. 2007;189:8079-8087. [PMID: 17873029 DOI: 10.1128/jb.01138-07] [Cited by in Crossref: 353] [Cited by in F6Publishing: 240] [Article Influence: 23.5] [Reference Citation Analysis]
427 Jakobsen TH, Hansen MA, Jensen PØ, Hansen L, Riber L, Cockburn A, Kolpen M, Rønne Hansen C, Ridderberg W, Eickhardt S. Complete genome sequence of the cystic fibrosis pathogen Achromobacter xylosoxidans NH44784-1996 complies with important pathogenic phenotypes. PLoS One. 2013;8:e68484. [PMID: 23894309 DOI: 10.1371/journal.pone.0068484] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 6.4] [Reference Citation Analysis]
428 Tribelli PM, Lujan AM, Pardo A, Ibarra JG, Fernández Do Porto D, Smania A, López NI. Core regulon of the global anaerobic regulator Anr targets central metabolism functions in Pseudomonas species. Sci Rep 2019;9:9065. [PMID: 31227753 DOI: 10.1038/s41598-019-45541-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
429 Hammond JH, Dolben EF, Smith TJ, Bhuju S, Hogan DA. Links between Anr and Quorum Sensing in Pseudomonas aeruginosa Biofilms. J Bacteriol 2015;197:2810-20. [PMID: 26078448 DOI: 10.1128/JB.00182-15] [Cited by in Crossref: 39] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
430 Ridley C, Thornton DJ. Mucins: the frontline defence of the lung. Biochem Soc Trans 2018;46:1099-106. [PMID: 30154090 DOI: 10.1042/BST20170402] [Cited by in Crossref: 60] [Cited by in F6Publishing: 40] [Article Influence: 15.0] [Reference Citation Analysis]
431 Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O'Toole GA, Stanton BA. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 2009;5:e1000382. [PMID: 19360133 DOI: 10.1371/journal.ppat.1000382] [Cited by in Crossref: 321] [Cited by in F6Publishing: 299] [Article Influence: 24.7] [Reference Citation Analysis]
432 Cai YM. Non-surface Attached Bacterial Aggregates: A Ubiquitous Third Lifestyle. Front Microbiol 2020;11:557035. [PMID: 33343514 DOI: 10.3389/fmicb.2020.557035] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
433 Jackson AA, Daniels EF, Hammond JH, Willger SD, Hogan DA. Global regulator Anr represses PlcH phospholipase activity in Pseudomonas aeruginosa when oxygen is limiting. Microbiology (Reading) 2014;160:2215-25. [PMID: 25073853 DOI: 10.1099/mic.0.081158-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
434 Hobbs CA, Da Tan C, Tarran R. Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease? J Physiol 2013;591:4377-87. [PMID: 23878362 DOI: 10.1113/jphysiol.2012.240861] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 6.9] [Reference Citation Analysis]
435 Kloth C, Schirmer B, Munder A, Stelzer T, Rothschuh J, Seifert R. The Role of Pseudomonas aeruginosa ExoY in an Acute Mouse Lung Infection Model. Toxins (Basel) 2018;10:E185. [PMID: 29734720 DOI: 10.3390/toxins10050185] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
436 Chung IY, Kim BO, Jang HJ, Cho YH. Dual promoters of the major catalase (KatA) govern distinct survival strategies of Pseudomonas aeruginosa. Sci Rep 2016;6:31185. [PMID: 27491679 DOI: 10.1038/srep31185] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]