BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kalisch-Smith JI, Ved N, Sparrow DB. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb Perspect Biol 2020;12:a037234. [PMID: 31548181 DOI: 10.1101/cshperspect.a037234] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Syed S, O'Sullivan TL, Phillips KP. Extreme Heat and Pregnancy Outcomes: A Scoping Review of the Epidemiological Evidence. Int J Environ Res Public Health 2022;19:2412. [PMID: 35206601 DOI: 10.3390/ijerph19042412] [Reference Citation Analysis]
2 Yang L, Liu X, Chen Y, Shen B. An update on the CHDGKB for the systematic understanding of risk factors associated with non-syndromic congenital heart disease. Comput Struct Biotechnol J 2021;19:5741-51. [PMID: 34765091 DOI: 10.1016/j.csbj.2021.10.017] [Reference Citation Analysis]
3 Kalisch-smith JI, Morris EC, Strevens MAA, Redpath AN, Klaourakis K, Szumska D, Outhwaite JE, Sun X, Vieira JM, Smart N, De Val S, Riley PR, Sparrow DB. Analysis of Placental Arteriovenous Formation Reveals New Insights Into Embryos With Congenital Heart Defects. Front Genet 2022;12:806136. [DOI: 10.3389/fgene.2021.806136] [Reference Citation Analysis]
4 Morton SU, Pereira AC, Quiat D, Richter F, Kitaygorodsky A, Hagen J, Bernstein D, Brueckner M, Goldmuntz E, Kim RW, Lifton RP, Porter GA Jr, Tristani-Firouzi M, Chung WK, Roberts A, Gelb BD, Shen Y, Newburger JW, Seidman JG, Seidman CE. Genome-Wide De Novo Variants in Congenital Heart Disease Are Not Associated With Maternal Diabetes or Obesity. Circ Genom Precis Med 2022;15:e003500. [PMID: 35130025 DOI: 10.1161/CIRCGEN.121.003500] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhang M, Sun Y, Zhao X, Liu R, Yang B, Chen G, Zhang W, Dong G, Yin C, Yue W. How Parental Predictors Jointly Affect the Risk of Offspring Congenital Heart Disease: A Nationwide Multicenter Study Based on the China Birth Cohort. Front Cardiovasc Med 2022;9:860600. [DOI: 10.3389/fcvm.2022.860600] [Reference Citation Analysis]
6 Zhang T, Yuan H, Zhu H, Ying Y, Ding J, Ding H, Shi X, He Y, Pan H, Zhong Y. Fetal Congenital Heart Disease Caused by Compound Heterozygous Mutations in the DNAH9 Gene: A Case Report. Front Genet 2022;12:771756. [DOI: 10.3389/fgene.2021.771756] [Reference Citation Analysis]
7 Wang C, Pi X, Yin S, Liu M, Tian T, Jin L, Liu J, Li Z, Wang L, Yuan Z, Wang Y, Ren A. Maternal exposure to heavy metals and risk for severe congenital heart defects in offspring. Environmental Research 2022;212:113432. [DOI: 10.1016/j.envres.2022.113432] [Reference Citation Analysis]
8 Ahmadi AR, Sabri MR, Navabi ZS, Ghaderian M, Dehghan B, Mahdavi C, Khodarahmi S. Early Results of the Persian Registry of Cardiovascular Disease/Congenital Heart Disease (PROVE/CHD) in Isfahan. J Tehran Heart Cent 2020;15:158-64. [PMID: 34178084 DOI: 10.18502/jthc.v15i4.5941] [Reference Citation Analysis]
9 Diab NS, Barish S, Dong W, Zhao S, Allington G, Yu X, Kahle KT, Brueckner M, Jin SC. Molecular Genetics and Complex Inheritance of Congenital Heart Disease. Genes (Basel) 2021;12:1020. [PMID: 34209044 DOI: 10.3390/genes12071020] [Reference Citation Analysis]
10 Li Y, Diao J, Li J, Luo L, Zhao L, Zhang S, Wang T, Chen L, Yang T, Chen L, Zhu P, Qin J. Association of maternal dietary intakes and CBS gene polymorphisms with congenital heart disease in offspring. Int J Cardiol 2021;322:121-8. [PMID: 32800907 DOI: 10.1016/j.ijcard.2020.08.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Yan R, Ding J, Wei Y, Yang Q, Zhang X, Huang H, Shi Z, Feng Y, Li H, Zhang H, Ding W, An Y. Melatonin Prevents NaAsO2-Induced Developmental Cardiotoxicity in Zebrafish through Regulating Oxidative Stress and Apoptosis. Antioxidants 2022;11:1301. [DOI: 10.3390/antiox11071301] [Reference Citation Analysis]
12 Mitchell LE. Maternal genetic factors in the development of congenital heart defects. Curr Opin Genet Dev 2022;76:101961. [PMID: 35882070 DOI: 10.1016/j.gde.2022.101961] [Reference Citation Analysis]
13 Chen F, Chen J, Wang H, Tang H, Huang L, Wang S, Wang X, Fang X, Liu J, Li L, Ouyang K, Han Z. Histone Lysine Methyltransferase SETD2 Regulates Coronary Vascular Development in Embryonic Mouse Hearts. Front Cell Dev Biol 2021;9:651655. [PMID: 33898448 DOI: 10.3389/fcell.2021.651655] [Reference Citation Analysis]
14 Na L, Q B, Xiumei Z, Lingzi Z, Deqin H, Xuanxuan Z, Huanhuan G, Yuan L, Xiujuan C. Research into the intervention effect of folic acid on arsenic-induced heart abnormalities in fetal rats during the periconception period. BMC Cardiovasc Disord 2020;20:139. [PMID: 32183703 DOI: 10.1186/s12872-020-01418-z] [Reference Citation Analysis]
15 Knutson AK, Williams AL, Boisvert WA, Shohet RV. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J Clin Invest 2021;131:e137557. [PMID: 34623330 DOI: 10.1172/JCI137557] [Reference Citation Analysis]
16 Wu Y, Jin X, Zhang Y, Zheng J, Yang R. Genetic and epigenetic mechanisms in the development of congenital heart diseases. World Jnl Ped Surgery 2021;4:e000196. [DOI: 10.1136/wjps-2020-000196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Mullen M, Zhang A, Lui GK, Romfh AW, Rhee JW, Wu JC. Race and Genetics in Congenital Heart Disease: Application of iPSCs, Omics, and Machine Learning Technologies. Front Cardiovasc Med 2021;8:635280. [PMID: 33681306 DOI: 10.3389/fcvm.2021.635280] [Reference Citation Analysis]
18 Luo M, Wang T, Huang P, Zhang S, Song X, Sun M, Liu Y, Wei J, Shu J, Zhong T, Chen Q, Zhu P, Qin J. Association and Interaction Effect of BHMT Gene Polymorphisms and Maternal Dietary Habits with Ventricular Septal Defect in Offspring. Nutrients 2022;14:3094. [DOI: 10.3390/nu14153094] [Reference Citation Analysis]
19 Parker LE, Landstrom AP. Genetic Etiology of Left-Sided Obstructive Heart Lesions: A Story in Development. J Am Heart Assoc 2021;10:e019006. [PMID: 33432820 DOI: 10.1161/JAHA.120.019006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Choudhury TZ, Majumdar U, Basu M, Garg V. Impact of maternal hyperglycemia on cardiac development: Insights from animal models. Genesis 2021;:e23449. [PMID: 34498806 DOI: 10.1002/dvg.23449] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Wang G, Wang B, Yang P. Epigenetics in Congenital Heart Disease. JAHA. [DOI: 10.1161/jaha.121.025163] [Reference Citation Analysis]
22 Lowry RB, Bedard T, Crawford S, Grevers X, Bernier FP, Thomas MA. Prevalence rates study of selected isolated non-Mendelian congenital anomalies in the Hutterite population of Alberta, 1980-2016. Am J Med Genet A 2020;182:2594-604. [PMID: 32893972 DOI: 10.1002/ajmg.a.61834] [Reference Citation Analysis]
23 Liu Z, Wang M, Tang Q, He F, Li N, Deng Y, Yu P, Zhu J, Li X. Unintended pregnancy-related factors and the occurrence of offspring congenital heart disease: a multi-site case-control study in China. Eur J Contracept Reprod Health Care 2021;26:221-6. [PMID: 33624567 DOI: 10.1080/13625187.2020.1862081] [Reference Citation Analysis]
24 Miyamoto M, Gangrade H, Tampakakis E. Understanding Heart Field Progenitor Cells for Modeling Congenital Heart Diseases. Curr Cardiol Rep 2021;23:38. [PMID: 33694131 DOI: 10.1007/s11886-021-01468-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
25 Toubat O, Kumar SR. Molecular Approaches in Single Ventricle Management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2020;23:77-85. [PMID: 32354551 DOI: 10.1053/j.pcsu.2020.03.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Borjali M, Amini-Rarani M, Nosratabadi M. Nonmedical Determinants of Congenital Heart Diseases in Children from the Perspective of Mothers: A Qualitative Study in Iran. Cardiol Res Pract 2021;2021:6647260. [PMID: 34447593 DOI: 10.1155/2021/6647260] [Reference Citation Analysis]
27 Ashiq S, Ashiq K, Sabar MF. The role of NKX2-5 gene polymorphisms in congenital heart disease (CHD): a systematic review and meta-analysis. Egypt Heart J 2021;73:72. [PMID: 34417931 DOI: 10.1186/s43044-021-00199-w] [Reference Citation Analysis]
28 Wang Z, Qiao X, Xu Y, Liu X, Huang R, Xue S, Qiu H, Yang Y, Aga SS. SMAD1 Loss-of-Function Variant Responsible for Congenital Heart Disease. BioMed Research International 2022;2022:1-8. [DOI: 10.1155/2022/9916325] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Nishimura Y, Kurosawa K. Analysis of Gene-Environment Interactions Related to Developmental Disorders. Front Pharmacol 2022;13:863664. [PMID: 35370658 DOI: 10.3389/fphar.2022.863664] [Reference Citation Analysis]
30 Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Transl Pediatr 2021;10:2366-86. [PMID: 34733677 DOI: 10.21037/tp-21-297] [Reference Citation Analysis]
31 Zhao L, Jiang WF, Yang CX, Qiao Q, Xu YJ, Shi HY, Qiu XB, Wu SH, Yang YQ. SOX17 loss-of-function variation underlying familial congenital heart disease. Eur J Med Genet 2021;64:104211. [PMID: 33794346 DOI: 10.1016/j.ejmg.2021.104211] [Reference Citation Analysis]
32 Ison HE, Griffin EL, Parrott A, Shikany AR, Meyers L, Thomas MJ, Syverson E, Demo EM, Fitzgerald KK, Fitzgerald-Butt S, Ziegler KL, Schartman AF, Stone KM, Helm BM. Genetic counseling for congenital heart disease - Practice resource of the national society of genetic counselors. J Genet Couns 2021. [PMID: 34510635 DOI: 10.1002/jgc4.1498] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Harvey DC, De Zoysa P, Toubat O, Choi J, Kishore J, Tsukamoto H, Kumar SR. Concomitant genetic defects potentiate the adverse impact of prenatal alcohol exposure on cardiac outflow tract maturation. Birth Defects Res 2021. [PMID: 34859965 DOI: 10.1002/bdr2.1968] [Reference Citation Analysis]