BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, Shook B, Cantino M, Schwartz D, Jahnke C, Olbrich H, Werner C, Raidt J, Pennekamp P, Abouhamed M, Hjeij R, Köhler G, Griese M, Li Y, Lemke K, Klena N, Liu X, Gabriel G, Tobita K, Jaspers M, Morgan LC, Shapiro AJ, Letteboer SJ, Mans DA, Carson JL, Leigh MW, Wolf WE, Chen S, Lucas JS, Onoufriadis A, Plagnol V, Schmidts M, Boldt K, Roepman R, Zariwala MA, Lo CW, Mitchison HM, Knowles MR, Burdine RD, Loturco JJ, Omran H; UK10K. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 2013;45:995-1003. [PMID: 23872636 DOI: 10.1038/ng.2707] [Cited by in Crossref: 184] [Cited by in F6Publishing: 160] [Article Influence: 20.4] [Reference Citation Analysis]
Number Citing Articles
1 Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, Dell S, Eber E, Escudier E, Hirst RA, Hogg C, Jorissen M, Latzin P, Legendre M, Leigh MW, Midulla F, Nielsen KG, Omran H, Papon JF, Pohunek P, Redfern B, Rigau D, Rindlisbacher B, Santamaria F, Shoemark A, Snijders D, Tonia T, Titieni A, Walker WT, Werner C, Bush A, Kuehni CE. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017;49:1601090. [PMID: 27836958 DOI: 10.1183/13993003.01090-2016] [Cited by in Crossref: 254] [Cited by in F6Publishing: 214] [Article Influence: 50.8] [Reference Citation Analysis]
2 Ardura-Garcia C, Goutaki M, Carr SB, Crowley S, Halbeisen FS, Nielsen KG, Pennekamp P, Raidt J, Thouvenin G, Yiallouros PK, Omran H, Kuehni CE. Registries and collaborative studies for primary ciliary dyskinesia in Europe. ERJ Open Res 2020;6:00005-2020. [PMID: 32494577 DOI: 10.1183/23120541.00005-2020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
3 Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2021;110:19-33. [PMID: 33279404 DOI: 10.1016/j.semcdb.2020.11.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
4 Song Z, Zhang X, Jia S, Yelick PC, Zhao C. Zebrafish as a Model for Human Ciliopathies. Journal of Genetics and Genomics 2016;43:107-20. [DOI: 10.1016/j.jgg.2016.02.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
5 Brennan SK, Ferkol TW, Davis SD. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia. Int J Mol Sci 2021;22:8272. [PMID: 34361034 DOI: 10.3390/ijms22158272] [Reference Citation Analysis]
6 Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017;18:533-547. [PMID: 28698599 DOI: 10.1038/nrm.2017.60] [Cited by in Crossref: 546] [Cited by in F6Publishing: 459] [Article Influence: 109.2] [Reference Citation Analysis]
7 Guo T, Lu C, Yang D, Lei C, Liu Y, Xu Y, Yang B, Wang R, Luo H. Case Report: DNAAF4 Variants Cause Primary Ciliary Dyskinesia and Infertility in Two Han Chinese Families. Front Genet 2022;13:934920. [DOI: 10.3389/fgene.2022.934920] [Reference Citation Analysis]
8 Knowles MR, Ostrowski LE, Loges NT, Hurd T, Leigh MW, Huang L, Wolf WE, Carson JL, Hazucha MJ, Yin W, Davis SD, Dell SD, Ferkol TW, Sagel SD, Olivier KN, Jahnke C, Olbrich H, Werner C, Raidt J, Wallmeier J, Pennekamp P, Dougherty GW, Hjeij R, Gee HY, Otto EA, Halbritter J, Chaki M, Diaz KA, Braun DA, Porath JD, Schueler M, Baktai G, Griese M, Turner EH, Lewis AP, Bamshad MJ, Nickerson DA, Hildebrandt F, Shendure J, Omran H, Zariwala MA. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet 2013;93:711-20. [PMID: 24055112 DOI: 10.1016/j.ajhg.2013.07.025] [Cited by in Crossref: 110] [Cited by in F6Publishing: 96] [Article Influence: 12.2] [Reference Citation Analysis]
9 Casey JP, McGettigan PA, Healy F, Hogg C, Reynolds A, Kennedy BN, Ennis S, Slattery D, Lynch SA. Unexpected genetic heterogeneity for primary ciliary dyskinesia in the Irish Traveller population. Eur J Hum Genet 2015;23:210-7. [PMID: 24824133 DOI: 10.1038/ejhg.2014.79] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
10 Burgoyne T, Lewis A, Dewar A, Luther P, Hogg C, Shoemark A, Dixon M. Characterizing the ultrastructure of primary ciliary dyskinesia transposition defect using electron tomography: 3D Insight into the Ciliary Transposition Defect. Cytoskeleton 2014;71:294-301. [DOI: 10.1002/cm.21171] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
11 Gialluisi A, Visconti A, Willcutt EG, Smith SD, Pennington BF, Falchi M, DeFries JC, Olson RK, Francks C, Fisher SE. Investigating the effects of copy number variants on reading and language performance. J Neurodev Disord 2016;8:17. [PMID: 27186239 DOI: 10.1186/s11689-016-9147-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
12 Shelton LB, Koren J 3rd, Blair LJ. Imbalances in the Hsp90 Chaperone Machinery: Implications for Tauopathies. Front Neurosci 2017;11:724. [PMID: 29311797 DOI: 10.3389/fnins.2017.00724] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 5.6] [Reference Citation Analysis]
13 Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, Kurkowiak M, Loges NT, Diggle CP, Morante NF, Gabriel GC, Lemke KL, Li Y, Pennekamp P, Menchen T, Konert F, Marthin JK, Mans DA, Letteboer SJ, Werner C, Burgoyne T, Westermann C, Rutman A, Carr IM, O'Callaghan C, Moya E, Chung EM, Sheridan E, Nielsen KG, Roepman R, Bartscherer K, Burdine RD, Lo CW, Omran H, Mitchison HM; UK10K Consortium. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet 2014;95:257-74. [PMID: 25192045 DOI: 10.1016/j.ajhg.2014.08.005] [Cited by in Crossref: 115] [Cited by in F6Publishing: 98] [Article Influence: 14.4] [Reference Citation Analysis]
14 Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020;26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
15 Höben IM, Hjeij R, Olbrich H, Dougherty GW, Nöthe-Menchen T, Aprea I, Frank D, Pennekamp P, Dworniczak B, Wallmeier J, Raidt J, Nielsen KG, Philipsen MC, Santamaria F, Venditto L, Amirav I, Mussaffi H, Prenzel F, Wu K, Bakey Z, Schmidts M, Loges NT, Omran H. Mutations in C11orf70 Cause Primary Ciliary Dyskinesia with Randomization of Left/Right Body Asymmetry Due to Defects of Outer and Inner Dynein Arms. Am J Hum Genet 2018;102:973-84. [PMID: 29727693 DOI: 10.1016/j.ajhg.2018.03.025] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 9.5] [Reference Citation Analysis]
16 Martinez-Garay I, Guidi LG, Holloway ZG, Bailey MA, Lyngholm D, Schneider T, Donnison T, Butt SJ, Monaco AP, Molnár Z, Velayos-Baeza A. Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice. Brain Struct Funct 2017;222:1367-84. [PMID: 27510895 DOI: 10.1007/s00429-016-1282-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
17 Wallmeier J, Nielsen KG, Kuehni CE, Lucas JS, Leigh MW, Zariwala MA, Omran H. Motile ciliopathies. Nat Rev Dis Primers 2020;6:77. [PMID: 32943623 DOI: 10.1038/s41572-020-0209-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 17.5] [Reference Citation Analysis]
18 Jeanson L, Copin B, Papon JF, Dastot-Le Moal F, Duquesnoy P, Montantin G, Cadranel J, Corvol H, Coste A, Désir J, Souayah A, Kott E, Collot N, Tissier S, Louis B, Tamalet A, de Blic J, Clement A, Escudier E, Amselem S, Legendre M. RSPH3 Mutations Cause Primary Ciliary Dyskinesia with Central-Complex Defects and a Near Absence of Radial Spokes. Am J Hum Genet 2015;97:153-62. [PMID: 26073779 DOI: 10.1016/j.ajhg.2015.05.004] [Cited by in Crossref: 51] [Cited by in F6Publishing: 41] [Article Influence: 7.3] [Reference Citation Analysis]
19 Patel-King RS, Sakato-Antoku M, Yankova M, King SM. WDR92 is required for axonemal dynein heavy chain stability in cytoplasm. Mol Biol Cell 2019;30:1834-45. [PMID: 31116681 DOI: 10.1091/mbc.E19-03-0139] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
20 Fillatre J, Fauny JD, Fels JA, Li C, Goll M, Thisse C, Thisse B. TEADs, Yap, Taz, Vgll4s transcription factors control the establishment of Left-Right asymmetry in zebrafish. Elife 2019;8:e45241. [PMID: 31513014 DOI: 10.7554/eLife.45241] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
21 Xu P, Wang X, Ni L, Zhang W, Lu C, Zhao X, Zhao X, Ren J. Genome-wide genotyping uncovers genetic diversity, phylogeny, signatures of selection, and population structure of Chinese Jiangquhai pigs in a global perspective1. J Anim Sci 2019;97:1491-500. [PMID: 30882885 DOI: 10.1093/jas/skz028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
22 Bustamante-Marin XM, Horani A, Stoyanova M, Charng WL, Bottier M, Sears PR, Yin WN, Daniels LA, Bowen H, Conrad DF, Knowles MR, Ostrowski LE, Zariwala MA, Dutcher SK. Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genet 2020;16:e1008691. [PMID: 32764743 DOI: 10.1371/journal.pgen.1008691] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
23 Alves AA, Gabriel HB, Bezerra MJR, de Souza W, Vaughan S, Cunha-E-Silva NL, Sunter JD. Control of assembly of extra-axonemal structures: the paraflagellar rod of trypanosomes. J Cell Sci 2020;133:jcs242271. [PMID: 32295845 DOI: 10.1242/jcs.242271] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Dougherty GW, Mizuno K, Nöthe-Menchen T, Ikawa Y, Boldt K, Ta-Shma A, Aprea I, Minegishi K, Pang YP, Pennekamp P, Loges NT, Raidt J, Hjeij R, Wallmeier J, Mussaffi H, Perles Z, Elpeleg O, Rabert F, Shiratori H, Letteboer SJ, Horn N, Young S, Strünker T, Stumme F, Werner C, Olbrich H, Takaoka K, Ide T, Twan WK, Biebach L, Große-Onnebrink J, Klinkenbusch JA, Praveen K, Bracht DC, Höben IM, Junger K, Gützlaff J, Cindrić S, Aviram M, Kaiser T, Memari Y, Dzeja PP, Dworniczak B, Ueffing M, Roepman R, Bartscherer K, Katsanis N, Davis EE, Amirav I, Hamada H, Omran H. CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module. Nat Commun 2020;11:5520. [PMID: 33139725 DOI: 10.1038/s41467-020-19113-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021;225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Lei H, Yan Z, Sun X, Zhang Y, Wang J, Ma C, Xu Q, Wang R, Jarvis ED, Sun Z. Axon guidance pathways served as common targets for human speech/language evolution and related disorders. Brain Lang 2017;174:1-8. [PMID: 28692932 DOI: 10.1016/j.bandl.2017.06.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
27 Tu C, Wang W, Hu T, Lu G, Lin G, Tan YQ. Genetic underpinnings of asthenozoospermia. Best Pract Res Clin Endocrinol Metab 2020;34:101472. [PMID: 33191078 DOI: 10.1016/j.beem.2020.101472] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Trulioff A, Ermakov A, Malashichev Y. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases. Genes (Basel) 2017;8:E48. [PMID: 28125008 DOI: 10.3390/genes8020048] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 5.6] [Reference Citation Analysis]
29 Tanaka H, Kondo K, Fujita K, Homma H, Tagawa K, Jin X, Jin M, Yoshioka Y, Takayama S, Masuda H, Tokuyama R, Nakazaki Y, Saito T, Saido T, Murayama S, Ikura T, Ito N, Yamamori Y, Tomii K, Bianchi ME, Okazawa H. HMGB1 signaling phosphorylates Ku70 and impairs DNA damage repair in Alzheimer's disease pathology. Commun Biol 2021;4:1175. [PMID: 34635772 DOI: 10.1038/s42003-021-02671-4] [Reference Citation Analysis]
30 Zengin Akkus P, Gharibzadeh Hizal M, Ilter Bahadur E, Ozmert EN, Eryilmaz Polat S, Ozdemir G, Karahan S, Yalcin E, Dogru Ersoz D, Kiper N, Ozcelik U. Developmental and behavioral problems in preschool-aged primary ciliary dyskinesia patients. Eur J Pediatr 2019;178:995-1003. [PMID: 31030258 DOI: 10.1007/s00431-019-03382-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
31 Djakow J, Kramná L, Dušátková L, Uhlík J, Pursiheimo JP, Svobodová T, Pohunek P, Cinek O. An effective combination of sanger and next generation sequencing in diagnostics of primary ciliary dyskinesia. Pediatr Pulmonol 2016;51:498-509. [PMID: 26228299 DOI: 10.1002/ppul.23261] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
32 Diggle CP, Moore DJ, Mali G, zur Lage P, Ait-Lounis A, Schmidts M, Shoemark A, Garcia Munoz A, Halachev MR, Gautier P, Yeyati PL, Bonthron DT, Carr IM, Hayward B, Markham AF, Hope JE, von Kriegsheim A, Mitchison HM, Jackson IJ, Durand B, Reith W, Sheridan E, Jarman AP, Mill P. HEATR2 plays a conserved role in assembly of the ciliary motile apparatus. PLoS Genet 2014;10:e1004577. [PMID: 25232951 DOI: 10.1371/journal.pgen.1004577] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 5.5] [Reference Citation Analysis]
33 Cindrić S, Dougherty GW, Olbrich H, Hjeij R, Loges NT, Amirav I, Philipsen MC, Marthin JK, Nielsen KG, Sutharsan S, Raidt J, Werner C, Pennekamp P, Dworniczak B, Omran H. SPEF2- and HYDIN-Mutant Cilia Lack the Central Pair-associated Protein SPEF2, Aiding Primary Ciliary Dyskinesia Diagnostics. Am J Respir Cell Mol Biol 2020;62:382-96. [PMID: 31545650 DOI: 10.1165/rcmb.2019-0086OC] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
34 Amirav I, Wallmeier J, Loges NT, Menchen T, Pennekamp P, Mussaffi H, Abitbul R, Avital A, Bentur L, Dougherty GW, Nael E, Lavie M, Olbrich H, Werner C, Kintner C, Omran H; Israeli PCD Consortium Investigators. Systematic Analysis of CCNO Variants in a Defined Population: Implications for Clinical Phenotype and Differential Diagnosis. Hum Mutat 2016;37:396-405. [PMID: 26777464 DOI: 10.1002/humu.22957] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
35 Marshall CR, Scherer SW, Zariwala MA, Lau L, Paton TA, Stockley T, Jobling RK, Ray PN, Knowles MR, Hall DA, Dell SD, Kim RH; FORGE Canada Consortium. Whole-Exome Sequencing and Targeted Copy Number Analysis in Primary Ciliary Dyskinesia. G3 (Bethesda) 2015;5:1775-81. [PMID: 26139845 DOI: 10.1534/g3.115.019851] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
36 Ta-Shma A, Hjeij R, Perles Z, Dougherty GW, Abu Zahira I, Letteboer SJF, Antony D, Darwish A, Mans DA, Spittler S, Edelbusch C, Cindrić S, Nöthe-Menchen T, Olbrich H, Stuhlmann F, Aprea I, Pennekamp P, Loges NT, Breuer O, Shaag A, Rein AJJT, Gulec EY, Gezdirici A, Abitbul R, Elias N, Amirav I, Schmidts M, Roepman R, Elpeleg O, Omran H. Homozygous loss-of-function mutations in MNS1 cause laterality defects and likely male infertility. PLoS Genet 2018;14:e1007602. [PMID: 30148830 DOI: 10.1371/journal.pgen.1007602] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
37 Jaffe KM, Grimes DT, Schottenfeld-Roames J, Werner ME, Ku TS, Kim SK, Pelliccia JL, Morante NF, Mitchell BJ, Burdine RD. c21orf59/kurly Controls Both Cilia Motility and Polarization. Cell Rep 2016;14:1841-9. [PMID: 26904945 DOI: 10.1016/j.celrep.2016.01.069] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 9.3] [Reference Citation Analysis]
38 Bieder A, Yoshihara M, Katayama S, Krjutškov K, Falk A, Kere J, Tapia-Páez I. Dyslexia Candidate Gene and Ciliary Gene Expression Dynamics During Human Neuronal Differentiation. Mol Neurobiol 2020;57:2944-58. [PMID: 32445086 DOI: 10.1007/s12035-020-01905-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Falkenberg LG, Beckman SA, Ravisankar P, Dohn TE, Waxman JS. Ccdc103 promotes myeloid cell proliferation and migration independent of motile cilia. Dis Model Mech 2021;14:dmm048439. [PMID: 34028558 DOI: 10.1242/dmm.048439] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Jeanson L, Thomas L, Copin B, Coste A, Sermet-Gaudelus I, Dastot-Le Moal F, Duquesnoy P, Montantin G, Collot N, Tissier S, Papon JF, Clement A, Louis B, Escudier E, Amselem S, Legendre M. Mutations in GAS8, a Gene Encoding a Nexin-Dynein Regulatory Complex Subunit, Cause Primary Ciliary Dyskinesia with Axonemal Disorganization. Hum Mutat 2016;37:776-85. [PMID: 27120127 DOI: 10.1002/humu.23005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
41 Knowles MR, Ostrowski LE, Leigh MW, Sears PR, Davis SD, Wolf WE, Hazucha MJ, Carson JL, Olivier KN, Sagel SD. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med. 2014;189:707-717. [PMID: 24568568 DOI: 10.1164/rccm.201311-2047oc] [Cited by in Crossref: 131] [Cited by in F6Publishing: 69] [Article Influence: 16.4] [Reference Citation Analysis]
42 Mucha SG, Ferrarini MG, Moraga C, Di Genova A, Guyon L, Tardy F, Rome S, Sagot MF, Zaha A. Mycoplasma hyopneumoniae J elicits an antioxidant response and decreases the expression of ciliary genes in infected swine epithelial cells. Sci Rep 2020;10:13707. [PMID: 32792522 DOI: 10.1038/s41598-020-70040-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
43 Yamamoto R, Obbineni JM, Alford LM, Ide T, Owa M, Hwang J, Kon T, Inaba K, James N, King SM, Ishikawa T, Sale WS, Dutcher SK. Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms. PLoS Genet 2017;13:e1006996. [PMID: 28892495 DOI: 10.1371/journal.pgen.1006996] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
44 Fuchs S, Kaiser-labusch P, Bank J, Ammann S, Kolb-kokocinski A, Edelbusch C, Omran H, Ehl S. Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur J Immunol 2016;46:2639-49. [DOI: 10.1002/eji.201646519] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 5.7] [Reference Citation Analysis]
45 Guidi LG, Velayos-Baeza A, Martinez-Garay I, Monaco AP, Paracchini S, Bishop DVM, Molnár Z. The neuronal migration hypothesis of dyslexia: A critical evaluation 30 years on. Eur J Neurosci 2018;48:3212-33. [PMID: 30218584 DOI: 10.1111/ejn.14149] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
46 Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F, Marcotte EM, Brody SL, Wallingford JB. A liquid-like organelle at the root of motile ciliopathy. Elife 2018;7:e38497. [PMID: 30561330 DOI: 10.7554/eLife.38497] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
47 Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022;23:1749. [PMID: 35163666 DOI: 10.3390/ijms23031749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Sahin C, Uygun ZO, Hortu I, Akdemir A, Kocamanoglu M, Ergenoglu AM, Akcay Y. Using dynein heavy chain 5 and creatine kinase levels in cervical fluid and blood for early diagnosing of ectopic pregnancy. J Obstet Gynaecol Res 2021;47:921-7. [PMID: 33336538 DOI: 10.1111/jog.14616] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Lampis V, Ventura R, Di Segni M, Marino C, D'Amato FR, Mascheretti S. Animal models of developmental dyslexia: Where we are and what we are missing. Neurosci Biobehav Rev 2021;131:1180-97. [PMID: 34699847 DOI: 10.1016/j.neubiorev.2021.10.022] [Reference Citation Analysis]
50 Lennon J, Zur Lage P, von Kriegsheim A, Jarman AP. Strongly Truncated Dnaaf4 Plays a Conserved Role in Drosophila Ciliary Dynein Assembly as Part of an R2TP-Like Co-Chaperone Complex With Dnaaf6. Front Genet 2022;13:943197. [PMID: 35873488 DOI: 10.3389/fgene.2022.943197] [Reference Citation Analysis]
51 Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary Respiratory Epithelium Integrity in Molecular Defense and Susceptibility to Pulmonary Viral Infections. Biology (Basel) 2021;10:95. [PMID: 33572760 DOI: 10.3390/biology10020095] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Shapiro AJ, Zariwala MA, Ferkol T, Davis SD, Sagel SD, Dell SD, Rosenfeld M, Olivier KN, Milla C, Daniel SJ, Kimple AJ, Manion M, Knowles MR, Leigh MW; Genetic Disorders of Mucociliary Clearance Consortium. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol 2016;51:115-32. [PMID: 26418604 DOI: 10.1002/ppul.23304] [Cited by in Crossref: 170] [Cited by in F6Publishing: 138] [Article Influence: 24.3] [Reference Citation Analysis]
53 Jordan JT. The rodent hippocampus as a bilateral structure: A review of hemispheric lateralization. Hippocampus 2019;30:278-92. [DOI: 10.1002/hipo.23188] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
54 Yue Y, Huang Q, Zhu P, Zhao P, Tan X, Liu S, Li S, Han X, Cheng L, Li B, Fu Y. Identification of Pathogenic Mutations and Investigation of the NOTCH Pathway Activation in Kartagener Syndrome. Front Genet 2019;10:749. [PMID: 31507630 DOI: 10.3389/fgene.2019.00749] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
55 Burdine RD, Grimes DT. Antagonistic interactions in the zebrafish midline prior to the emergence of asymmetric gene expression are important for left-right patterning. Philos Trans R Soc Lond B Biol Sci 2016;371:20150402. [PMID: 27821532 DOI: 10.1098/rstb.2015.0402] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
56 Viswanadha R, Hunter EL, Yamamoto R, Wirschell M, Alford LM, Dutcher SK, Sale WS. The ciliary inner dynein arm, I1 dynein, is assembled in the cytoplasm and transported by IFT before axonemal docking. Cytoskeleton (Hoboken) 2014;71:573-86. [PMID: 25252184 DOI: 10.1002/cm.21192] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
57 Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019;8:E730. [PMID: 31319499 DOI: 10.3390/cells8070730] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
58 Pal M, Morgan M, Phelps SE, Roe SM, Parry-Morris S, Downs JA, Polier S, Pearl LH, Prodromou C. Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 2014;22:805-18. [PMID: 24794838 DOI: 10.1016/j.str.2014.04.001] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 8.3] [Reference Citation Analysis]
59 Tate G, Tajiri T, Kishimoto K, Mitsuya T. A novel mutation of the axonemal dynein heavy chain gene 5 (DNAH5) in a Japanese neonate with asplenia syndrome. Med Mol Morphol 2015;48:116-22. [PMID: 24912412 DOI: 10.1007/s00795-014-0079-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
60 Onoufriadis A, Shoemark A, Munye MM, James CT, Schmidts M, Patel M, Rosser EM, Bacchelli C, Beales PL, Scambler PJ, Hart SL, Danke-Roelse JE, Sloper JJ, Hull S, Hogg C, Emes RD, Pals G, Moore AT, Chung EM, Mitchison HM; UK10K. Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. J Med Genet 2014;51:61-7. [PMID: 24203976 DOI: 10.1136/jmedgenet-2013-101938] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 6.4] [Reference Citation Analysis]
61 Patel-King RS, King SM. A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia. Mol Biol Cell 2016;27:1204-9. [PMID: 26912790 DOI: 10.1091/mbc.E16-01-0040] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
62 Zur Lage P, Stefanopoulou P, Styczynska-Soczka K, Quinn N, Mali G, von Kriegsheim A, Mill P, Jarman AP. Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. J Cell Biol 2018;217:2583-98. [PMID: 29743191 DOI: 10.1083/jcb.201709026] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
63 Yang X, Zhu D, Zhang H, Jiang Y, Hu X, Geng D, Wang R, Liu R. Associations between DNAH1 gene polymorphisms and male infertility: A retrospective study. Medicine (Baltimore) 2018;97:e13493. [PMID: 30544445 DOI: 10.1097/MD.0000000000013493] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
64 Onoufriadis A, Shoemark A, Schmidts M, Patel M, Jimenez G, Liu H, Thomas B, Dixon M, Hirst RA, Rutman A, Burgoyne T, Williams C, Scully J, Bolard F, Lafitte JJ, Beales PL, Hogg C, Yang P, Chung EM, Emes RD, O'Callaghan C, Bouvagnet P, Mitchison HM; UK10K. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum Mol Genet 2014;23:3362-74. [PMID: 24518672 DOI: 10.1093/hmg/ddu046] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 7.6] [Reference Citation Analysis]
65 Mascheretti S, De Luca A, Trezzi V, Peruzzo D, Nordio A, Marino C, Arrigoni F. Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017;7:e987. [PMID: 28045463 DOI: 10.1038/tp.2016.240] [Cited by in Crossref: 63] [Cited by in F6Publishing: 49] [Article Influence: 12.6] [Reference Citation Analysis]
66 Kurkowiak M, Ziętkiewicz E, Witt M. Recent advances in primary ciliary dyskinesia genetics. J Med Genet 2015;52:1-9. [PMID: 25351953 DOI: 10.1136/jmedgenet-2014-102755] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
67 Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H, Dougherty GW, Raidt J, Werner C, Amirav I, Hevroni A, Abitbul R, Avital A, Soferman R, Wessels M, O’callaghan C, Chung EMK, Rutman A, Hirst RA, Moya E, Mitchison HM, Van Daele S, De Boeck K, Jorissen M, Kintner C, Cuppens H, Omran H. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 2014;5. [DOI: 10.1038/ncomms5418] [Cited by in Crossref: 149] [Cited by in F6Publishing: 132] [Article Influence: 18.6] [Reference Citation Analysis]
68 Horani A, Ustione A, Huang T, Firth AL, Pan J, Gunsten SP, Haspel JA, Piston DW, Brody SL. Establishment of the early cilia preassembly protein complex during motile ciliogenesis. Proc Natl Acad Sci U S A 2018;115:E1221-8. [PMID: 29358401 DOI: 10.1073/pnas.1715915115] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
69 Kurokami T, Koeda T, Migita O, Hata K. Reading disability due to an ocular motor disorder: A case of an adolescent girl with a previous diagnosis of dyslexia. Brain Dev 2019;41:187-90. [PMID: 30266219 DOI: 10.1016/j.braindev.2018.09.003] [Reference Citation Analysis]
70 Chen D, Liang Y, Li J, Zhang X, Zheng R, Wang X, Zhang H, Shen Y. A novel CCDC39 mutation causes multiple morphological abnormalities of the flagella in a primary ciliary dyskinesia patient. Reprod Biomed Online 2021;43:920-30. [PMID: 34674941 DOI: 10.1016/j.rbmo.2021.07.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Johnson JL. Mutations in Hsp90 Cochaperones Result in a Wide Variety of Human Disorders. Front Mol Biosci 2021;8:787260. [PMID: 34957217 DOI: 10.3389/fmolb.2021.787260] [Reference Citation Analysis]
72 Sahu I, Haque AKMA, Weidensee B, Weinmann P, Kormann MSD. Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019;27:803-23. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
73 Karak S, Jacobs JS, Kittelmann M, Spalthoff C, Katana R, Sivan-Loukianova E, Schon MA, Kernan MJ, Eberl DF, Göpfert MC. Diverse Roles of Axonemal Dyneins in Drosophila Auditory Neuron Function and Mechanical Amplification in Hearing. Sci Rep 2015;5:17085. [PMID: 26608786 DOI: 10.1038/srep17085] [Cited by in Crossref: 36] [Cited by in F6Publishing: 22] [Article Influence: 5.1] [Reference Citation Analysis]
74 Milla CE. The evolving spectrum of ciliopathies and respiratory disease. Curr Opin Pediatr 2016;28:339-47. [PMID: 27070443 DOI: 10.1097/MOP.0000000000000358] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
75 Wallmeier J, Shiratori H, Dougherty GW, Edelbusch C, Hjeij R, Loges NT, Menchen T, Olbrich H, Pennekamp P, Raidt J, Werner C, Minegishi K, Shinohara K, Asai Y, Takaoka K, Lee C, Griese M, Memari Y, Durbin R, Kolb-Kokocinski A, Sauer S, Wallingford JB, Hamada H, Omran H. TTC25 Deficiency Results in Defects of the Outer Dynein Arm Docking Machinery and Primary Ciliary Dyskinesia with Left-Right Body Asymmetry Randomization. Am J Hum Genet 2016;99:460-9. [PMID: 27486780 DOI: 10.1016/j.ajhg.2016.06.014] [Cited by in Crossref: 57] [Cited by in F6Publishing: 48] [Article Influence: 9.5] [Reference Citation Analysis]
76 Olbrich H, Cremers C, Loges NT, Werner C, Nielsen KG, Marthin JK, Philipsen M, Wallmeier J, Pennekamp P, Menchen T, Edelbusch C, Dougherty GW, Schwartz O, Thiele H, Altmüller J, Rommelmann F, Omran H. Loss-of-Function GAS8 Mutations Cause Primary Ciliary Dyskinesia and Disrupt the Nexin-Dynein Regulatory Complex. Am J Hum Genet 2015;97:546-54. [PMID: 26387594 DOI: 10.1016/j.ajhg.2015.08.012] [Cited by in Crossref: 82] [Cited by in F6Publishing: 62] [Article Influence: 11.7] [Reference Citation Analysis]
77 Deng S, Wu S, Xia H, Xiong W, Deng X, Liao J, Deng H, Yuan L. Identification of a frame shift mutation in the CCDC151 gene in a Han-Chinese family with Kartagener syndrome. Biosci Rep 2020;40:BSR20192510. [PMID: 32490514 DOI: 10.1042/BSR20192510] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
78 Grimes DT, Boswell CW, Morante NF, Henkelman RM, Burdine RD, Ciruna B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science. 2016;352:1341-1344. [PMID: 27284198 DOI: 10.1126/science.aaf6419] [Cited by in Crossref: 133] [Cited by in F6Publishing: 109] [Article Influence: 22.2] [Reference Citation Analysis]
79 Bustamante-Marin XM, Ostrowski LE. Cilia and Mucociliary Clearance. Cold Spring Harb Perspect Biol. 2017;9. [PMID: 27864314 DOI: 10.1101/cshperspect.a028241] [Cited by in Crossref: 183] [Cited by in F6Publishing: 156] [Article Influence: 36.6] [Reference Citation Analysis]
80 Guo T, Tan ZP, Chen HM, Zheng DY, Liu L, Huang XG, Chen P, Luo H, Yang YF. An effective combination of whole-exome sequencing and runs of homozygosity for the diagnosis of primary ciliary dyskinesia in consanguineous families. Sci Rep 2017;7:7905. [PMID: 28801648 DOI: 10.1038/s41598-017-08510-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
81 Fassad MR, Shoemark A, le Borgne P, Koll F, Patel M, Dixon M, Hayward J, Richardson C, Frost E, Jenkins L, Cullup T, Chung EMK, Lemullois M, Aubusson-Fleury A, Hogg C, Mitchell DR, Tassin AM, Mitchison HM. C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia. Am J Hum Genet 2018;102:956-72. [PMID: 29727692 DOI: 10.1016/j.ajhg.2018.03.024] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
82 Maurizy C, Quinternet M, Abel Y, Verheggen C, Santo PE, Bourguet M, C F Paiva A, Bragantini B, Chagot ME, Robert MC, Abeza C, Fabre P, Fort P, Vandermoere F, M F Sousa P, Rain JC, Charpentier B, Cianférani S, Bandeiras TM, Pradet-Balade B, Manival X, Bertrand E. The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat Commun 2018;9:2093. [PMID: 29844425 DOI: 10.1038/s41467-018-04431-1] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
83 Toriyama M, Lee C, Taylor SP, Duran I, Cohn DH, Bruel AL, Tabler JM, Drew K, Kelly MR, Kim S, Park TJ, Braun DA, Pierquin G, Biver A, Wagner K, Malfroot A, Panigrahi I, Franco B, Al-Lami HA, Yeung Y, Choi YJ, Duffourd Y, Faivre L, Rivière JB, Chen J, Liu KJ, Marcotte EM, Hildebrandt F, Thauvin-Robinet C, Krakow D, Jackson PK, Wallingford JB; University of Washington Center for Mendelian Genomics. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat Genet 2016;48:648-56. [PMID: 27158779 DOI: 10.1038/ng.3558] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 12.0] [Reference Citation Analysis]
84 Hyland RM, Brody SL. Impact of Motile Ciliopathies on Human Development and Clinical Consequences in the Newborn. Cells 2021;11:125. [PMID: 35011687 DOI: 10.3390/cells11010125] [Reference Citation Analysis]
85 Mata M, Milian L, Armengot M, Carda C. Gene mutations in primary ciliary dyskinesia related to otitis media. Curr Allergy Asthma Rep 2014;14:420. [PMID: 24459089 DOI: 10.1007/s11882-014-0420-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
86 Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020;77:2029-48. [PMID: 31781811 DOI: 10.1007/s00018-019-03389-7] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 13.7] [Reference Citation Analysis]
87 Werner C, Onnebrink JG, Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia 2015;4:2. [PMID: 25610612 DOI: 10.1186/s13630-014-0011-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
88 Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 2015;21:455-85. [PMID: 25888788 DOI: 10.1093/humupd/dmv020] [Cited by in Crossref: 140] [Cited by in F6Publishing: 128] [Article Influence: 20.0] [Reference Citation Analysis]
89 Kumar D, Thomason RT, Yankova M, Gitlin JD, Mains RE, Eipper BA, King SM. Microvillar and ciliary defects in zebrafish lacking an actin-binding bioactive peptide amidating enzyme. Sci Rep 2018;8:4547. [PMID: 29540787 DOI: 10.1038/s41598-018-22732-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
90 Lynch SA, Crushell E, Lambert DM, Byrne N, Gorman K, King MD, Green A, O’sullivan S, Browne F, Hughes J, Knerr I, Monavari AA, Cotter M, Mcconnell VPM, Kerr B, Jones SA, Keenan C, Murphy N, Cody D, Ennis S, Turner J, Irvine AD, Casey J. Catalogue of inherited disorders found among the Irish Traveller population. J Med Genet 2018;55:233-9. [DOI: 10.1136/jmedgenet-2017-104974] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
91 Bieder A, Einarsdottir E, Matsson H, Nilsson HE, Eisfeldt J, Dragomir A, Paucar M, Granberg T, Li TQ, Lindstrand A, Kere J, Tapia-Páez I. Rare variants in dynein heavy chain genes in two individuals with situs inversus and developmental dyslexia: a case report. BMC Med Genet 2020;21:87. [PMID: 32357925 DOI: 10.1186/s12881-020-01020-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Horani A, Ferkol TW. Understanding Primary Ciliary Dyskinesia and Other Ciliopathies. J Pediatr 2021;230:15-22.e1. [PMID: 33242470 DOI: 10.1016/j.jpeds.2020.11.040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Frommer A, Hjeij R, Loges NT, Edelbusch C, Jahnke C, Raidt J, Werner C, Wallmeier J, Große-Onnebrink J, Olbrich H, Cindrić S, Jaspers M, Boon M, Memari Y, Durbin R, Kolb-Kokocinski A, Sauer S, Marthin JK, Nielsen KG, Amirav I, Elias N, Kerem E, Shoseyov D, Haeffner K, Omran H. Immunofluorescence Analysis and Diagnosis of Primary Ciliary Dyskinesia with Radial Spoke Defects. Am J Respir Cell Mol Biol 2015;53:563-73. [PMID: 25789548 DOI: 10.1165/rcmb.2014-0483OC] [Cited by in Crossref: 82] [Cited by in F6Publishing: 43] [Article Influence: 11.7] [Reference Citation Analysis]
94 Li Y, Zhao L, Yuan S, Zhang J, Sun Z. Axonemal dynein assembly requires the R2TP complex component Pontin. Development 2017;144:4684-93. [PMID: 29113992 DOI: 10.1242/dev.152314] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
95 Varshney M, Nalvarte I. Genes, Gender, Environment, and Novel Functions of Estrogen Receptor Beta in the Susceptibility to Neurodevelopmental Disorders. Brain Sci 2017;7:E24. [PMID: 28241485 DOI: 10.3390/brainsci7030024] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
96 King SM. Axonemal Dynein Arms. Cold Spring Harb Perspect Biol 2016;8:a028100. [PMID: 27527589 DOI: 10.1101/cshperspect.a028100] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 9.0] [Reference Citation Analysis]
97 Olcese C, Patel MP, Shoemark A, Kiviluoto S, Legendre M, Williams HJ, Vaughan CK, Hayward J, Goldenberg A, Emes RD, Munye MM, Dyer L, Cahill T, Bevillard J, Gehrig C, Guipponi M, Chantot S, Duquesnoy P, Thomas L, Jeanson L, Copin B, Tamalet A, Thauvin-Robinet C, Papon JF, Garin A, Pin I, Vera G, Aurora P, Fassad MR, Jenkins L, Boustred C, Cullup T, Dixon M, Onoufriadis A, Bush A, Chung EM, Antonarakis SE, Loebinger MR, Wilson R, Armengot M, Escudier E, Hogg C, Amselem S, Sun Z, Bartoloni L, Blouin JL, Mitchison HM; UK10K Rare Group. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 2017;8:14279. [PMID: 28176794 DOI: 10.1038/ncomms14279] [Cited by in Crossref: 88] [Cited by in F6Publishing: 77] [Article Influence: 17.6] [Reference Citation Analysis]
98 Lee C, Cox RM, Papoulas O, Horani A, Drew K, Devitt CC, Brody SL, Marcotte EM, Wallingford JB. Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins. Elife 2020;9:e58662. [PMID: 33263282 DOI: 10.7554/eLife.58662] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
99 Landi N, Perdue M. Neuroimaging genetics studies of specific reading disability and developmental language disorder: A review. Lang Linguist Compass 2019;13:e12349. [PMID: 31844423 DOI: 10.1111/lnc3.12349] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
100 Poprzeczko M, Bicka M, Farahat H, Bazan R, Osinka A, Fabczak H, Joachimiak E, Wloga D. Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019;8:E1614. [PMID: 31835861 DOI: 10.3390/cells8121614] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
101 Sengupta P, Barr MM. New insights into an old organelle: meeting report on biology of cilia and flagella. Traffic 2014;15:717-26. [PMID: 24612344 DOI: 10.1111/tra.12166] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
102 Ji ZY, Sha YW, Ding L, Li P. Genetic factors contributing to human primary ciliary dyskinesia and male infertility. Asian J Androl 2017;19:515-20. [PMID: 27270341 DOI: 10.4103/1008-682X.181227] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
103 Rendall AR, Tarkar A, Contreras-Mora HM, LoTurco JJ, Fitch RH. Deficits in learning and memory in mice with a mutation of the candidate dyslexia susceptibility gene Dyx1c1. Brain Lang 2017;172:30-8. [PMID: 25989970 DOI: 10.1016/j.bandl.2015.04.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
104 Aprea I, Raidt J, Höben IM, Loges NT, Nöthe-Menchen T, Pennekamp P, Olbrich H, Kaiser T, Biebach L, Tüttelmann F, Horvath J, Schubert M, Krallmann C, Kliesch S, Omran H. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021;17:e1009306. [PMID: 33635866 DOI: 10.1371/journal.pgen.1009306] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
105 Horani A, Ferkol TW, Dutcher SK, Brody SL. Genetics and biology of primary ciliary dyskinesia. Paediatr Respir Rev 2016;18:18-24. [PMID: 26476603 DOI: 10.1016/j.prrv.2015.09.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 68] [Article Influence: 6.9] [Reference Citation Analysis]
106 von Morgen P, Hořejší Z, Macurek L. Substrate recognition and function of the R2TP complex in response to cellular stress. Front Genet 2015;6:69. [PMID: 25767478 DOI: 10.3389/fgene.2015.00069] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
107 Yoke H, Ueno H, Narita A, Sakai T, Horiuchi K, Shingyoji C, Hamada H, Shinohara K. Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia. PLoS Genet 2020;16:e1008664. [PMID: 32203505 DOI: 10.1371/journal.pgen.1008664] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
108 Carter C. The barrier, airway particle clearance, placental and detoxification functions of autism susceptibility genes. Neurochemistry International 2016;99:42-51. [DOI: 10.1016/j.neuint.2016.06.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
109 D'Andrea G, Schiavulli M, Dimatteo C, Santacroce R, Guerra E, Longo VA, Grandone E, Margaglione M. Homozygosity by descent of a 3Mb chromosome 17 haplotype causes coinheritance of Glanzmann thrombasthenia and primary ciliary dyskinesia. Blood 2013;122:4289-91. [PMID: 24357714 DOI: 10.1182/blood-2013-09-528943] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
110 Fabczak H, Osinka A. Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019;20:E6174. [PMID: 31817850 DOI: 10.3390/ijms20246174] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
111 Mascheretti S, De Luca A, Trezzi V, Peruzzo D, Nordio A, Marino C, Arrigoni F. Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017;7:e987. [PMID: 28045463 DOI: 10.1038/tp.2016.240] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
112 Erbeli F, Rice M, Paracchini S. Insights into Dyslexia Genetics Research from the Last Two Decades. Brain Sciences 2022;12:27. [DOI: 10.3390/brainsci12010027] [Reference Citation Analysis]
113 Inaba Y, Shinohara K, Botilde Y, Nabeshima R, Takaoka K, Ajima R, Lamri L, Takeda H, Saga Y, Nakamura T, Hamada H. Transport of the outer dynein arm complex to cilia requires a cytoplasmic protein Lrrc6. Genes Cells 2016;21:728-39. [PMID: 27353389 DOI: 10.1111/gtc.12380] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
114 Gostic M, Martinelli A, Tucker C, Yang Z, Gasparoli F, Ewart JY, Dholakia K, Sillar KT, Tello JA, Paracchini S. The dyslexia susceptibility KIAA0319 gene shows a specific expression pattern during zebrafish development supporting a role beyond neuronal migration. J Comp Neurol 2019;527:2634-43. [PMID: 30950042 DOI: 10.1002/cne.24696] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
115 Werner C, Onnebrink JG, Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia 2015;4:2. [PMID: 25610612 DOI: 10.1186/s13630-014-0011-8] [Cited by in Crossref: 94] [Cited by in F6Publishing: 74] [Article Influence: 13.4] [Reference Citation Analysis]
116 Desai PB, Freshour JR, Mitchell DR. Chlamydomonas axonemal dynein assembly locus ODA8 encodes a conserved flagellar protein needed for cytoplasmic maturation of outer dynein arm complexes. Cytoskeleton (Hoboken) 2015;72:16-28. [PMID: 25558044 DOI: 10.1002/cm.21206] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
117 Deng H, Xia H, Deng S. Genetic basis of human left-right asymmetry disorders. Expert Rev Mol Med 2015;16:e19. [PMID: 26258520 DOI: 10.1017/erm.2014.22] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
118 Albert JT, Göpfert MC. Hearing in Drosophila. Curr Opin Neurobiol 2015;34:79-85. [PMID: 25710304 DOI: 10.1016/j.conb.2015.02.001] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
119 Lynham J, Houry WA. The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022;12:1045. [DOI: 10.3390/biom12081045] [Reference Citation Analysis]
120 Reula A, Lucas J, Moreno-galdó A, Romero T, Milara X, Carda C, Mata-roig M, Escribano A, Dasi F, Armengot-carceller M. New insights in primary ciliary dyskinesia. Expert Opinion on Orphan Drugs 2017;5:537-48. [DOI: 10.1080/21678707.2017.1324780] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
121 Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med 2020;8:202-16. [PMID: 31624012 DOI: 10.1016/S2213-2600(19)30374-1] [Cited by in Crossref: 45] [Cited by in F6Publishing: 21] [Article Influence: 15.0] [Reference Citation Analysis]
122 King SM, Patel-King RS. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules. J Biol Chem 2015;290:7388-401. [PMID: 25572396 DOI: 10.1074/jbc.M114.616425] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
123 Panigrahy A, Lee V, Ceschin R, Zuccoli G, Beluk N, Khalifa O, Votava-Smith JK, DeBrunner M, Munoz R, Domnina Y, Morell V, Wearden P, Sanchez De Toledo J, Devine W, Zahid M, Lo CW. Brain Dysplasia Associated with Ciliary Dysfunction in Infants with Congenital Heart Disease. J Pediatr 2016;178:141-148.e1. [PMID: 27574995 DOI: 10.1016/j.jpeds.2016.07.041] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
124 Chen XS, Reader RH, Hoischen A, Veltman JA, Simpson NH, Francks C, Newbury DF, Fisher SE. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci Rep 2017;7:46105. [PMID: 28440294 DOI: 10.1038/srep46105] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 7.6] [Reference Citation Analysis]
125 Graham SA, Deriziotis P, Fisher SE. Insights into the genetic foundations of human communication. Neuropsychol Rev 2015;25:3-26. [PMID: 25597031 DOI: 10.1007/s11065-014-9277-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 2.9] [Reference Citation Analysis]
126 Mianné J, Ahmed E, Bourguignon C, Fieldes M, Vachier I, Bourdin A, Assou S, De Vos J. Induced Pluripotent Stem Cells for Primary Ciliary Dyskinesia Modeling and Personalized Medicine. Am J Respir Cell Mol Biol 2018;59:672-83. [PMID: 30230352 DOI: 10.1165/rcmb.2018-0213TR] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
127 Thomas T, Khalaf S, Grigorenko EL. A systematic review and meta-analysis of imaging genetics studies of specific reading disorder. Cogn Neuropsychol 2021;38:179-204. [PMID: 34529546 DOI: 10.1080/02643294.2021.1969900] [Reference Citation Analysis]
128 Geremek M, Ziętkiewicz E, Bruinenberg M, Franke L, Pogorzelski A, Wijmenga C, Witt M. Ciliary genes are down-regulated in bronchial tissue of primary ciliary dyskinesia patients. PLoS One 2014;9:e88216. [PMID: 24516614 DOI: 10.1371/journal.pone.0088216] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
129 Thomas L, Bouhouche K, Whitfield M, Thouvenin G, Coste A, Louis B, Szymanski C, Bequignon E, Papon JF, Castelli M, Lemullois M, Dhalluin X, Drouin-Garraud V, Montantin G, Tissier S, Duquesnoy P, Copin B, Dastot F, Couvet S, Barbotin AL, Faucon C, Honore I, Maitre B, Beydon N, Tamalet A, Rives N, Koll F, Escudier E, Tassin AM, Touré A, Mitchell V, Amselem S, Legendre M. TTC12 Loss-of-Function Mutations Cause Primary Ciliary Dyskinesia and Unveil Distinct Dynein Assembly Mechanisms in Motile Cilia Versus Flagella. Am J Hum Genet 2020;106:153-69. [PMID: 31978331 DOI: 10.1016/j.ajhg.2019.12.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 13.5] [Reference Citation Analysis]
130 Bearce EA, Grimes DT. On being the right shape: Roles for motile cilia and cerebrospinal fluid flow in body and spine morphology. Semin Cell Dev Biol 2021;110:104-12. [PMID: 32693941 DOI: 10.1016/j.semcdb.2020.07.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
131 Kageyama H, Miyajima M, Ogino I, Nakajima M, Shimoji K, Fukai R, Miyake N, Nishiyama K, Matsumoto N, Arai H. Panventriculomegaly with a wide foramen of Magendie and large cisterna magna. J Neurosurg 2016;124:1858-66. [PMID: 26636390 DOI: 10.3171/2015.6.JNS15162] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
132 Wallmeier J, Al-Mutairi DA, Chen CT, Loges NT, Pennekamp P, Menchen T, Ma L, Shamseldin HE, Olbrich H, Dougherty GW, Werner C, Alsabah BH, Köhler G, Jaspers M, Boon M, Griese M, Schmitt-Grohé S, Zimmermann T, Koerner-Rettberg C, Horak E, Kintner C, Alkuraya FS, Omran H. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet 2014;46:646-51. [PMID: 24747639 DOI: 10.1038/ng.2961] [Cited by in Crossref: 153] [Cited by in F6Publishing: 140] [Article Influence: 19.1] [Reference Citation Analysis]
133 Baz-Redón N, Rovira-Amigo S, Fernández-Cancio M, Castillo-Corullón S, Cols M, Caballero-Rabasco MA, Asensio Ó, Martín de Vicente C, Martínez-Colls MDM, Torrent-Vernetta A, de Mir-Messa I, Gartner S, Iglesias-Serrano I, Díez-Izquierdo A, Polverino E, Amengual-Pieras E, Amaro-Rodríguez R, Vendrell M, Mumany M, Pascual-Sánchez MT, Pérez-Dueñas B, Reula A, Escribano A, Dasí F, Armengot-Carceller M, Garrido-Pontnou M, Camats-Tarruella N, Moreno-Galdó A. Immunofluorescence Analysis as a Diagnostic Tool in a Spanish Cohort of Patients with Suspected Primary Ciliary Dyskinesia. J Clin Med 2020;9:E3603. [PMID: 33182294 DOI: 10.3390/jcm9113603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
134 Tammimies K, Bieder A, Lauter G, Sugiaman-Trapman D, Torchet R, Hokkanen ME, Burghoorn J, Castrén E, Kere J, Tapia-Páez I, Swoboda P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs. FASEB J 2016;30:3578-87. [PMID: 27451412 DOI: 10.1096/fj.201500124RR] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
135 Paff T, Loges NT, Aprea I, Wu K, Bakey Z, Haarman EG, Daniels JMA, Sistermans EA, Bogunovic N, Dougherty GW, Höben IM, Große-Onnebrink J, Matter A, Olbrich H, Werner C, Pals G, Schmidts M, Omran H, Micha D. Mutations in PIH1D3 Cause X-Linked Primary Ciliary Dyskinesia with Outer and Inner Dynein Arm Defects. Am J Hum Genet 2017;100:160-8. [PMID: 28041644 DOI: 10.1016/j.ajhg.2016.11.019] [Cited by in Crossref: 101] [Cited by in F6Publishing: 82] [Article Influence: 20.2] [Reference Citation Analysis]
136 Paracchini S, Diaz R, Stein J. Advances in Dyslexia Genetics—New Insights Into the Role of Brain Asymmetries. Elsevier; 2016. pp. 53-97. [DOI: 10.1016/bs.adgen.2016.08.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
137 Lucas JS, Paff T, Goggin P, Haarman E. Diagnostic Methods in Primary Ciliary Dyskinesia. Paediatric Respiratory Reviews 2016;18:8-17. [DOI: 10.1016/j.prrv.2015.07.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
138 Kurkowiak M, Ziętkiewicz E, Witt M. Recent advances in primary ciliary dyskinesia genetics. J Med Genet 2015;52:1-9. [PMID: 25351953 DOI: 10.1136/jmedgenet-2014-102755] [Cited by in Crossref: 63] [Cited by in F6Publishing: 55] [Article Influence: 7.9] [Reference Citation Analysis]
139 [DOI: 10.1101/150193] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
140 Ferkol T, Leigh MW. Primary Ciliary Dyskinesia. Kendig's Disorders of the Respiratory Tract in Children. Elsevier; 2019. pp. 1034-1043.e4. [DOI: 10.1016/b978-0-323-44887-1.00071-7] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
141 Zietkiewicz E, Bukowy-Bieryllo Z, Rabiasz A, Daca-Roszak P, Wojda A, Voelkel K, Rutkiewicz E, Pogorzelski A, Rasteiro M, Witt M. CFAP300: Mutations in Slavic Patients with Primary Ciliary Dyskinesia and a Role in Ciliary Dynein Arms Trafficking. Am J Respir Cell Mol Biol 2019;61:440-9. [PMID: 30916986 DOI: 10.1165/rcmb.2018-0260OC] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
142 Yamaguchi H, Oda T, Kikkawa M, Takeda H. Systematic studies of all PIH proteins in zebrafish reveal their distinct roles in axonemal dynein assembly. Elife 2018;7:e36979. [PMID: 29741156 DOI: 10.7554/eLife.36979] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
143 Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021;15:680762. [PMID: 34539327 DOI: 10.3389/fnins.2021.680762] [Reference Citation Analysis]
144 Brandler WM, Paracchini S. The genetic relationship between handedness and neurodevelopmental disorders. Trends Mol Med 2014;20:83-90. [PMID: 24275328 DOI: 10.1016/j.molmed.2013.10.008] [Cited by in Crossref: 85] [Cited by in F6Publishing: 69] [Article Influence: 9.4] [Reference Citation Analysis]
145 Inaba K, Mizuno K. Sperm dysfunction and ciliopathy. Reprod Med Biol 2016;15:77-94. [PMID: 29259424 DOI: 10.1007/s12522-015-0225-5] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
146 Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol 2021. [PMID: 34862511 DOI: 10.1038/s41569-021-00635-z] [Reference Citation Analysis]
147 Sempou E, Khokha MK. Genes and mechanisms of heterotaxy: patients drive the search. Curr Opin Genet Dev 2019;56:34-40. [PMID: 31234044 DOI: 10.1016/j.gde.2019.05.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
148 Xie G, Myint PK, Voora D, Laskowitz DT, Shi P, Ren F, Wang H, Yang Y, Huo Y, Gao W, Wu Y. Genome-wide association study on progression of carotid artery intima media thickness over 10 years in a Chinese cohort. Atherosclerosis 2015;243:30-7. [PMID: 26343869 DOI: 10.1016/j.atherosclerosis.2015.08.034] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
149 Newbury DF, Monaco AP, Paracchini S. Reading and language disorders: the importance of both quantity and quality. Genes (Basel) 2014;5:285-309. [PMID: 24705331 DOI: 10.3390/genes5020285] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
150 Ide T, Twan WK, Lu H, Ikawa Y, Lim LX, Henninger N, Nishimura H, Takaoka K, Narasimhan V, Yan X, Shiratori H, Roy S, Hamada H. CFAP53 regulates mammalian cilia-type motility patterns through differential localization and recruitment of axonemal dynein components. PLoS Genet 2020;16:e1009232. [PMID: 33347437 DOI: 10.1371/journal.pgen.1009232] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
151 Georgitsi M, Dermitzakis I, Soumelidou E, Bonti E. The Polygenic Nature and Complex Genetic Architecture of Specific Learning Disorder. Brain Sci 2021;11:631. [PMID: 34068951 DOI: 10.3390/brainsci11050631] [Reference Citation Analysis]
152 Raidt J, Wallmeier J, Hjeij R, Onnebrink JG, Pennekamp P, Loges NT, Olbrich H, Häffner K, Dougherty GW, Omran H, Werner C. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur Respir J 2014;44:1579-88. [PMID: 25186273 DOI: 10.1183/09031936.00052014] [Cited by in Crossref: 107] [Cited by in F6Publishing: 89] [Article Influence: 13.4] [Reference Citation Analysis]
153 Liu L, Mamitsuka H, Zhu S. HPODNets: deep graph convolutional networks for predicting human protein-phenotype associations. Bioinformatics 2021:btab729. [PMID: 34672333 DOI: 10.1093/bioinformatics/btab729] [Reference Citation Analysis]
154 Zur Lage P, Xi Z, Lennon J, Hunter I, Chan WK, Bolado Carrancio A, von Kriegsheim A, Jarman AP. The Drosophila orthologue of the primary ciliary dyskinesia-associated gene, DNAAF3, is required for axonemal dynein assembly. Biol Open 2021;10:bio058812. [PMID: 34553759 DOI: 10.1242/bio.058812] [Reference Citation Analysis]
155 Praveen K, Davis EE, Katsanis N. Unique among ciliopathies: primary ciliary dyskinesia, a motile cilia disorder. F1000Prime Rep 2015;7:36. [PMID: 25926987 DOI: 10.12703/P7-36] [Cited by in Crossref: 43] [Cited by in F6Publishing: 29] [Article Influence: 6.1] [Reference Citation Analysis]
156 Gauthier MS, Cloutier P, Coulombe B. Role of the PAQosome in Regulating Arrangement of Protein Quaternary Structure in Health and Disease. Adv Exp Med Biol 2018;1106:25-36. [PMID: 30484151 DOI: 10.1007/978-3-030-00737-9_3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
157 Cheong A, Degani R, Tremblay KD, Mager J. A null allele of Dnaaf2 displays embryonic lethality and mimics human ciliary dyskinesia. Hum Mol Genet 2019;28:2775-84. [PMID: 31107948 DOI: 10.1093/hmg/ddz106] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
158 Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW; American Heart Association Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Genomic and Precision Medicine. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018;138:e653-711. [PMID: 30571578 DOI: 10.1161/CIR.0000000000000606] [Cited by in Crossref: 125] [Cited by in F6Publishing: 60] [Article Influence: 41.7] [Reference Citation Analysis]
159 Kere J. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochem Biophys Res Commun 2014;452:236-43. [PMID: 25078623 DOI: 10.1016/j.bbrc.2014.07.102] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 6.6] [Reference Citation Analysis]
160 Pereira R, Oliveira J, Sousa M. A molecular approach to sperm immotility in humans: A review. Medicina Reproductiva y Embriología Clínica 2014;1:15-25. [DOI: 10.1016/s2340-9320(15)30004-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
161 Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. Transl Sci Rare Dis 2019;4:51-75. [PMID: 31572664 DOI: 10.3233/TRD-190036] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
162 Sigg MA, Menchen T, Lee C, Johnson J, Jungnickel MK, Choksi SP, Garcia G 3rd, Busengdal H, Dougherty GW, Pennekamp P, Werner C, Rentzsch F, Florman HM, Krogan N, Wallingford JB, Omran H, Reiter JF. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Dev Cell 2017;43:744-762.e11. [PMID: 29257953 DOI: 10.1016/j.devcel.2017.11.014] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 13.0] [Reference Citation Analysis]
163 Collins SA, Walker WT, Lucas JS. Genetic Testing in the Diagnosis of Primary Ciliary Dyskinesia: State-of-the-Art and Future Perspectives. J Clin Med 2014;3:491-503. [PMID: 26237387 DOI: 10.3390/jcm3020491] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
164 Carrion-castillo A, Franke B, Fisher SE. Molecular Genetics of Dyslexia: An Overview: Molecular Genetics of Dyslexia: An Overview. Dyslexia 2013;19:214-40. [DOI: 10.1002/dys.1464] [Cited by in Crossref: 89] [Cited by in F6Publishing: 73] [Article Influence: 9.9] [Reference Citation Analysis]
165 Vaughan CK. Hsp90 picks PIKKs via R2TP and Tel2. Structure 2014;22:799-800. [PMID: 24918336 DOI: 10.1016/j.str.2014.05.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
166 Einarsdottir E, Svensson I, Darki F, Peyrard-Janvid M, Lindvall JM, Ameur A, Jacobsson C, Klingberg T, Kere J, Matsson H. Mutation in CEP63 co-segregating with developmental dyslexia in a Swedish family. Hum Genet 2015;134:1239-48. [PMID: 26400686 DOI: 10.1007/s00439-015-1602-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
167 Loges NT, Antony D, Maver A, Deardorff MA, Güleç EY, Gezdirici A, Nöthe-Menchen T, Höben IM, Jelten L, Frank D, Werner C, Tebbe J, Wu K, Goldmuntz E, Čuturilo G, Krock B, Ritter A, Hjeij R, Bakey Z, Pennekamp P, Dworniczak B, Brunner H, Peterlin B, Tanidir C, Olbrich H, Omran H, Schmidts M. Recessive DNAH9 Loss-of-Function Mutations Cause Laterality Defects and Subtle Respiratory Ciliary-Beating Defects. Am J Hum Genet 2018;103:995-1008. [PMID: 30471718 DOI: 10.1016/j.ajhg.2018.10.020] [Cited by in Crossref: 62] [Cited by in F6Publishing: 50] [Article Influence: 15.5] [Reference Citation Analysis]
168 Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2021;78:769-97. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
169 Damseh N, Quercia N, Rumman N, Dell SD, Kim RH. Primary ciliary dyskinesia: mechanisms and management. Appl Clin Genet 2017;10:67-74. [PMID: 29033599 DOI: 10.2147/TACG.S127129] [Cited by in Crossref: 35] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
170 Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, Zur Lage P, Shoemark A, Garcia-Munoz A, Shimada A, Takeda H, Edlich F, Takahashi S, von Kreigsheim A, Jarman AP, Mill P. ZMYND10 functions in a chaperone relay during axonemal dynein assembly. Elife 2018;7:e34389. [PMID: 29916806 DOI: 10.7554/eLife.34389] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
171 Andrés-Benito P, Povedano M, Torres P, Portero-Otín M, Ferrer I. Altered Dynein Axonemal Assembly Factor 1 Expression in C-Boutons in Bulbar and Spinal Cord Motor-Neurons in Sporadic Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2019;78:416-25. [PMID: 30939186 DOI: 10.1093/jnen/nlz019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
172 Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. In: Djouder N, editor. Prefoldins: the new chaperones. Cham: Springer International Publishing; 2018. pp. 37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
173 Cho KJ, Noh SH, Han SM, Choi WI, Kim HY, Yu S, Lee JS, Rim JH, Lee MG, Hildebrandt F, Gee HY. ZMYND10 stabilizes intermediate chain proteins in the cytoplasmic pre-assembly of dynein arms. PLoS Genet 2018;14:e1007316. [PMID: 29601588 DOI: 10.1371/journal.pgen.1007316] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
174 Yamamoto R, Yanagi S, Nagao M, Yamasaki Y, Tanaka Y, Sale WS, Yagi T, Kon T. Mutations in PIH proteins MOT48, TWI1 and PF13 define common and unique steps for preassembly of each, different ciliary dynein. PLoS Genet 2020;16:e1009126. [PMID: 33141819 DOI: 10.1371/journal.pgen.1009126] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
175 Lin H, Dutcher SK. Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii. Methods Cell Biol 2015;127:349-86. [PMID: 25837400 DOI: 10.1016/bs.mcb.2014.12.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
176 Alzaid M, Al-Mobaireek K, Almannai M, Mukhtar G, Eltahir S, Zafar A, Zada AP, Alotaibi W. Clinical and molecular characteristics of primary ciliary dyskinesia: A tertiary care centre experience. Int J Pediatr Adolesc Med 2021;8:258-63. [PMID: 34401452 DOI: 10.1016/j.ijpam.2021.03.002] [Reference Citation Analysis]