BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H, Dougherty GW, Raidt J, Werner C, Amirav I, Hevroni A, Abitbul R, Avital A, Soferman R, Wessels M, O’callaghan C, Chung EMK, Rutman A, Hirst RA, Moya E, Mitchison HM, Van Daele S, De Boeck K, Jorissen M, Kintner C, Cuppens H, Omran H. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 2014;5. [DOI: 10.1038/ncomms5418] [Cited by in Crossref: 149] [Cited by in F6Publishing: 137] [Article Influence: 18.6] [Reference Citation Analysis]
Number Citing Articles
1 Chau JFT, Lee M, Chui MMC, Yu MHC, Fung JLF, Mak CCY, Chau CS, Siu KK, Hung J, Yeung KS, Kwong AKY, O'callaghan C, Lau YL, Lee CD, Chung BH, Lee S. Functional Evaluation and Genetic Landscape of Children and Young Adults Referred for Assessment of Bronchiectasis. Front Genet 2022;13:933381. [DOI: 10.3389/fgene.2022.933381] [Reference Citation Analysis]
2 Wildung M, Herr C, Riedel D, Wiedwald C, Moiseenko A, Ramírez F, Tasena H, Heimerl M, Alevra M, Movsisyan N, Schuldt M, Volceanov-hahn L, Provoost S, Nöthe-menchen T, Urrego D, Freytag B, Wallmeier J, Beisswenger C, Bals R, van den Berge M, Timens W, Hiemstra PS, Brandsma C, Maes T, Andreas S, Heijink IH, Pardo LA, Lizé M. miR449 Protects Airway Regeneration by Controlling AURKA/HDAC6-Mediated Ciliary Disassembly. IJMS 2022;23:7749. [DOI: 10.3390/ijms23147749] [Reference Citation Analysis]
3 Hasanain AA, Soliman MAR, Elwy R, Ezzat AAM, Abdel-Bari SH, Marx S, Jenkins A, El Refaee E, Zohdi A. An eye on the future for defeating hydrocephalus, ciliary dyskinesia-related hydrocephalus: review article. Br J Neurosurg 2022;:1-11. [PMID: 35579079 DOI: 10.1080/02688697.2022.2074373] [Reference Citation Analysis]
4 Antony D, Gulec Yilmaz E, Gezdirici A, Slagter L, Bakey Z, Bornaun H, Tanidir IC, Van Dinh T, Brunner HG, Walentek P, Arnold SJ, Backofen R, Schmidts M. Spectrum of Genetic Variants in a Cohort of 37 Laterality Defect Cases. Front Genet 2022;13:861236. [DOI: 10.3389/fgene.2022.861236] [Reference Citation Analysis]
5 Xue Y, Gursky Z, Monte B, Koundal S, Liu X, Lee H, Michurina TV, Mellanson KA, Zhao L, Nemajerova A, Kahle KT, Takemaru K, Enikolopov G, Peunova NI, Benveniste H. Sustained glymphatic transport and impaired drainage to the nasal cavity observed in multiciliated cell ciliopathies with hydrocephalus. Fluids Barriers CNS 2022;19. [DOI: 10.1186/s12987-022-00319-x] [Reference Citation Analysis]
6 Hyland RM, Brody SL. Impact of Motile Ciliopathies on Human Development and Clinical Consequences in the Newborn. Cells 2021;11:125. [PMID: 35011687 DOI: 10.3390/cells11010125] [Reference Citation Analysis]
7 D'Gama PP, Qiu T, Cosacak MI, Rayamajhi D, Konac A, Hansen JN, Ringers C, Acuña-Hinrichsen F, Hui SP, Olstad EW, Chong YL, Lim CKA, Gupta A, Ng CP, Nilges BS, Kashikar ND, Wachten D, Liebl D, Kikuchi K, Kizil C, Yaksi E, Roy S, Jurisch-Yaksi N. Diversity and function of motile ciliated cell types within ependymal lineages of the zebrafish brain. Cell Rep 2021;37:109775. [PMID: 34610312 DOI: 10.1016/j.celrep.2021.109775] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ma C, Wu H, Zhu D, Wang Y, Shen Q, Cheng H, Zhang J, Geng H, Liu Y, He X, Tao F, Cao Y, Xu X. Bi-allelic mutations in MCIDAS and CCNO cause human infertility associated with abnormal gamete transport. Clin Genet 2021;100:731-42. [PMID: 34569065 DOI: 10.1111/cge.14067] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Defosset A, Merlat D, Poidevin L, Nevers Y, Kress A, Poch O, Lecompte O. Novel Approach Combining Transcriptional and Evolutionary Signatures to Identify New Multiciliation Genes. Genes (Basel) 2021;12:1452. [PMID: 34573434 DOI: 10.3390/genes12091452] [Reference Citation Analysis]
10 Paff T, Omran H, Nielsen KG, Haarman EG. Current and Future Treatments in Primary Ciliary Dyskinesia. Int J Mol Sci 2021;22:9834. [PMID: 34575997 DOI: 10.3390/ijms22189834] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
11 Dubaissi E. A 'tad' of hope in the fight against airway disease. Biochem Soc Trans 2020;48:2347-57. [PMID: 33079166 DOI: 10.1042/BST20200745] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Shoemark A, Rubbo B, Legendre M, Fassad MR, Haarman EG, Best S, Bon ICM, Brandsma J, Burgel PR, Carlsson G, Carr SB, Carroll M, Edwards M, Escudier E, Honoré I, Hunt D, Jouvion G, Loebinger MR, Maitre B, Morris-Rosendahl D, Papon JF, Parsons CM, Patel MP, Thomas NS, Thouvenin G, Walker WT, Wilson R, Hogg C, Mitchison HM, Lucas JS. Topological data analysis reveals genotype-phenotype relationships in primary ciliary dyskinesia. Eur Respir J 2021;58:2002359. [PMID: 33479112 DOI: 10.1183/13993003.02359-2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
13 Brennan SK, Ferkol TW, Davis SD. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia. Int J Mol Sci 2021;22:8272. [PMID: 34361034 DOI: 10.3390/ijms22158272] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Shoemark A, Harman K. Primary Ciliary Dyskinesia. Semin Respir Crit Care Med 2021;42:537-48. [PMID: 34261178 DOI: 10.1055/s-0041-1730919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wallmeier J, Bracht D, Alsaif HS, Dougherty GW, Olbrich H, Cindric S, Dzietko M, Heyer C, Teig N, Thiels C, Faqeih E, Al-Hashim A, Khan S, Mogarri I, Almannai M, Al Otaibi W, Alkuraya FS, Koerner-Rettberg C, Omran H. Mutations in TP73 cause impaired mucociliary clearance and lissencephaly. Am J Hum Genet 2021;108:1318-29. [PMID: 34077761 DOI: 10.1016/j.ajhg.2021.05.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
16 Kulkarni S, Marquez J, Date P, Ventrella R, Mitchell BJ, Khokha MK. Mechanical stretch scales centriole number to apical area via Piezo1 in multiciliated cells. Elife 2021;10:e66076. [PMID: 34184636 DOI: 10.7554/eLife.66076] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
17 Dunsky K, Menezes M, Ferkol TW. Advances in the Diagnosis and Treatment of Primary Ciliary Dyskinesia: A Review. JAMA Otolaryngol Head Neck Surg 2021. [PMID: 34137802 DOI: 10.1001/jamaoto.2021.0934] [Reference Citation Analysis]
18 Bukowy-Bieryłło Z. Long-term differentiating primary human airway epithelial cell cultures: how far are we? Cell Commun Signal 2021;19:63. [PMID: 34044844 DOI: 10.1186/s12964-021-00740-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
19 Sakamoto K, Nakajima M, Kawamura K, Nakamura E, Tada N, Kondo A, Arai H, Miyajima M. Ependymal ciliary motion and their role in congenital hydrocephalus. Childs Nerv Syst 2021. [PMID: 33999288 DOI: 10.1007/s00381-021-05194-9] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
20 Wu YJ, Liu Y, Hu YQ, Wang L, Bai FR, Xu C, Wu JW. Control of multiciliogenesis by miR-34/449 in the male reproductive tract through enforcing cell cycle exit. J Cell Sci 2021;134:jcs253450. [PMID: 33973639 DOI: 10.1242/jcs.253450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Neupane S, Goto J, Berardinelli SJ, Ito A, Haltiwanger RS, Holdener BC. Hydrocephalus in mouse B3glct mutants is likely caused by defects in multiple B3GLCT substrates in ependymal cells and subcommissural organ. Glycobiology 2021:cwab033. [PMID: 33909046 DOI: 10.1093/glycob/cwab033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
22 Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021;225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Rao VG, Kulkarni SS. Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes. Genesis 2021;59:e23414. [PMID: 33576572 DOI: 10.1002/dvg.23414] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
24 Lewis M, Stracker TH. Transcriptional regulation of multiciliated cell differentiation. Seminars in Cell & Developmental Biology 2021;110:51-60. [DOI: 10.1016/j.semcdb.2020.04.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 14.0] [Reference Citation Analysis]
25 Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary Respiratory Epithelium Integrity in Molecular Defense and Susceptibility to Pulmonary Viral Infections. Biology (Basel) 2021;10:95. [PMID: 33572760 DOI: 10.3390/biology10020095] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
26 Omiya H, Yamaguchi S, Watanabe T, Kuniya T, Harada Y, Kawaguchi D, Gotoh Y. BMP signaling suppresses Gemc1 expression and ependymal differentiation of mouse telencephalic progenitors. Sci Rep 2021;11:613. [PMID: 33436697 DOI: 10.1038/s41598-020-79610-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Chen Q, Tan KS, Liu J, Ong HH, Zhou S, Huang H, Chen H, Ong YK, Thong M, Chow VT, Qiu Q, Wang DY. Host Antiviral Response Suppresses Ciliogenesis and Motile Ciliary Functions in the Nasal Epithelium. Front Cell Dev Biol 2020;8:581340. [PMID: 33409274 DOI: 10.3389/fcell.2020.581340] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
28 Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2021;110:19-33. [PMID: 33279404 DOI: 10.1016/j.semcdb.2020.11.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 26] [Article Influence: 7.5] [Reference Citation Analysis]
29 Horani A, Ferkol TW. Understanding Primary Ciliary Dyskinesia and Other Ciliopathies. J Pediatr 2021;230:15-22.e1. [PMID: 33242470 DOI: 10.1016/j.jpeds.2020.11.040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
30 Coles JL, Thompson J, Horton KL, Hirst RA, Griffin P, Williams GM, Goggin P, Doherty R, Lackie PM, Harris A, Walker WT, O'Callaghan C, Hogg C, Lucas JS, Blume C, Jackson CL. A Revised Protocol for Culture of Airway Epithelial Cells as a Diagnostic Tool for Primary Ciliary Dyskinesia. J Clin Med 2020;9:E3753. [PMID: 33233428 DOI: 10.3390/jcm9113753] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
31 Liu Z, Nguyen QPH, Nanjundappa R, Delgehyr N, Megherbi A, Doherty R, Thompson J, Jackson C, Albulescu A, Heng YM, Lucas JS, Dell SD, Meunier A, Czymmek K, Mahjoub MR, Mennella V. Super-Resolution Microscopy and FIB-SEM Imaging Reveal Parental Centriole-Derived, Hybrid Cilium in Mammalian Multiciliated Cells. Dev Cell 2020;55:224-236.e6. [PMID: 33038333 DOI: 10.1016/j.devcel.2020.09.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
32 Bhatt R, Hogg C. Primary ciliary dyskinesia: a major player in a bigger game. Breathe (Sheff) 2020;16:200047. [PMID: 33304404 DOI: 10.1183/20734735.0047-2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
33 Wallmeier J, Nielsen KG, Kuehni CE, Lucas JS, Leigh MW, Zariwala MA, Omran H. Motile ciliopathies. Nat Rev Dis Primers 2020;6:77. [PMID: 32943623 DOI: 10.1038/s41572-020-0209-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 63] [Article Influence: 17.5] [Reference Citation Analysis]
34 Zhou F, Rayamajhi D, Ravi V, Narasimhan V, Chong YL, Lu H, Venkatesh B, Roy S. Conservation as well as divergence in Mcidas function underlies the differentiation of multiciliated cells in vertebrates. Dev Biol 2020;465:168-77. [PMID: 32735790 DOI: 10.1016/j.ydbio.2020.07.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2021;78:769-97. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
36 Do AN, Chun Y, Grishina G, Grishin A, Rogers AJ, Raby BA, Weiss ST, Vicencio A, Schadt EE, Bunyavanich S. Network study of nasal transcriptome profiles reveals master regulator genes of asthma. J Allergy Clin Immunol 2021;147:879-93. [PMID: 32828590 DOI: 10.1016/j.jaci.2020.07.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
37 Zahid M, Feinstein TN, Oro A, Schwartz M, Lee AD, Lo CW. Rapid Ex-Vivo Ciliogenesis and Dose-Dependent Effect of Notch Inhibition on Ciliogenesis of Respiratory Epithelia. Biomolecules 2020;10:E1182. [PMID: 32823934 DOI: 10.3390/biom10081182] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Bustamante-Marin XM, Horani A, Stoyanova M, Charng WL, Bottier M, Sears PR, Yin WN, Daniels LA, Bowen H, Conrad DF, Knowles MR, Ostrowski LE, Zariwala MA, Dutcher SK. Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genet 2020;16:e1008691. [PMID: 32764743 DOI: 10.1371/journal.pgen.1008691] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
39 Bearce EA, Grimes DT. On being the right shape: Roles for motile cilia and cerebrospinal fluid flow in body and spine morphology. Semin Cell Dev Biol 2021;110:104-12. [PMID: 32693941 DOI: 10.1016/j.semcdb.2020.07.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
40 Robson EA, Dixon L, Causon L, Dawes W, Benenati M, Fassad M, Hirst RA, Kenia P, Moya EF, Patel M, Peckham D, Rutman A, Mitchison HM, Mankad K, O'Callaghan C. Hydrocephalus and diffuse choroid plexus hyperplasia in primary ciliary dyskinesia-related MCIDAS mutation. Neurol Genet 2020;6:e482. [PMID: 32802948 DOI: 10.1212/NXG.0000000000000482] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
41 Shoemark A, Boon M, Brochhausen C, Bukowy-Bieryllo Z, De Santi MM, Goggin P, Griffin P, Hegele RG, Hirst RA, Leigh MW, Lupton A, MacKenney K, Omran H, Pache JC, Pinto A, Reinholt FP, Schroeder J, Yiallouros P, Escudier E; representing the BEAT-PCD Network Guideline Development Group. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur Respir J 2020;55:1900725. [PMID: 32060067 DOI: 10.1183/13993003.00725-2019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 29] [Article Influence: 9.5] [Reference Citation Analysis]
42 Chivukula RR, Montoro DT, Leung HM, Yang J, Shamseldin HE, Taylor MS, Dougherty GW, Zariwala MA, Carson J, Daniels MLA, Sears PR, Black KE, Hariri LP, Almogarri I, Frenkel EM, Vinarsky V, Omran H, Knowles MR, Tearney GJ, Alkuraya FS, Sabatini DM. A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance. Nat Med 2020;26:244-51. [PMID: 31959991 DOI: 10.1038/s41591-019-0730-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
43 Nawroth JC, van der Does AM, Ryan Firth A, Kanso E. Multiscale mechanics of mucociliary clearance in the lung. Philos Trans R Soc Lond B Biol Sci 2020;375:20190160. [PMID: 31884926 DOI: 10.1098/rstb.2019.0160] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
44 Fassad MR, Patel MP, Shoemark A, Cullup T, Hayward J, Dixon M, Rogers AV, Ollosson S, Jackson C, Goggin P, Hirst RA, Rutman A, Thompson J, Jenkins L, Aurora P, Moya E, Chetcuti P, O'Callaghan C, Morris-Rosendahl DJ, Watson CM, Wilson R, Carr S, Walker W, Pitno A, Lopes S, Morsy H, Shoman W, Pereira L, Constant C, Loebinger MR, Chung EMK, Kenia P, Rumman N, Fasseeh N, Lucas JS, Hogg C, Mitchison HM. Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort. J Med Genet 2020;57:322-30. [PMID: 31879361 DOI: 10.1136/jmedgenet-2019-106501] [Cited by in Crossref: 14] [Cited by in F6Publishing: 24] [Article Influence: 4.7] [Reference Citation Analysis]
45 Poprzeczko M, Bicka M, Farahat H, Bazan R, Osinka A, Fabczak H, Joachimiak E, Wloga D. Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019;8:E1614. [PMID: 31835861 DOI: 10.3390/cells8121614] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
46 Fabczak H, Osinka A. Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019;20:E6174. [PMID: 31817850 DOI: 10.3390/ijms20246174] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
47 Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020;77:2029-48. [PMID: 31781811 DOI: 10.1007/s00018-019-03389-7] [Cited by in Crossref: 41] [Cited by in F6Publishing: 57] [Article Influence: 13.7] [Reference Citation Analysis]
48 Wallmeier J, Frank D, Shoemark A, Nöthe-Menchen T, Cindric S, Olbrich H, Loges NT, Aprea I, Dougherty GW, Pennekamp P, Kaiser T, Mitchison HM, Hogg C, Carr SB, Zariwala MA, Ferkol T, Leigh MW, Davis SD, Atkinson J, Dutcher SK, Knowles MR, Thiele H, Altmüller J, Krenz H, Wöste M, Brentrup A, Ahrens F, Vogelberg C, Morris-Rosendahl DJ, Omran H. De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry. Am J Hum Genet 2019;105:1030-9. [PMID: 31630787 DOI: 10.1016/j.ajhg.2019.09.022] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 22.0] [Reference Citation Analysis]
49 Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med 2020;8:202-16. [PMID: 31624012 DOI: 10.1016/S2213-2600(19)30374-1] [Cited by in Crossref: 45] [Cited by in F6Publishing: 70] [Article Influence: 15.0] [Reference Citation Analysis]
50 Vece TJ, Sagel SD, Zariwala MA, Sullivan KM, Burns KA, Dutcher SK, Yusupov R, Leigh MW, Knowles MR. Cytoplasmic "ciliary inclusions" in isolation are not sufficient for the diagnosis of primary ciliary dyskinesia. Pediatr Pulmonol 2020;55:130-5. [PMID: 31549486 DOI: 10.1002/ppul.24528] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
51 Núnez-Ollé M, Stracker TH, Gil-Gómez G. CCNO mutations in NPH? Aging (Albany NY) 2018;10:158-9. [PMID: 29397025 DOI: 10.18632/aging.101379] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
52 Shapiro AJ, Davis SD, Polineni D, Manion M, Rosenfeld M, Dell SD, Chilvers MA, Ferkol TW, Zariwala MA, Sagel SD, Josephson M, Morgan L, Yilmaz O, Olivier KN, Milla C, Pittman JE, Daniels MLA, Jones MH, Janahi IA, Ware SM, Daniel SJ, Cooper ML, Nogee LM, Anton B, Eastvold T, Ehrne L, Guadagno E, Knowles MR, Leigh MW, Lavergne V; American Thoracic Society Assembly on Pediatrics. Diagnosis of Primary Ciliary Dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2018;197:e24-39. [PMID: 29905515 DOI: 10.1164/rccm.201805-0819ST] [Cited by in Crossref: 124] [Cited by in F6Publishing: 152] [Article Influence: 41.3] [Reference Citation Analysis]
53 Bukowy-Bieryllo Z, Rabiasz A, Dabrowski M, Pogorzelski A, Wojda A, Dmenska H, Grzela K, Sroczynski J, Witt M, Zietkiewicz E. Truncating mutations in exons 20 and 21 of OFD1 can cause primary ciliary dyskinesia without associated syndromic symptoms. J Med Genet 2019;56:769-77. [PMID: 31366608 DOI: 10.1136/jmedgenet-2018-105918] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
54 Kempeneers C, Seaton C, Garcia Espinosa B, Chilvers MA. Ciliary functional analysis: Beating a path towards standardization. Pediatr Pulmonol 2019;54:1627-38. [PMID: 31313529 DOI: 10.1002/ppul.24439] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
55 Mianné J, Ahmed E, Bourguignon C, Fieldes M, Vachier I, Bourdin A, Assou S, De Vos J. Induced Pluripotent Stem Cells for Primary Ciliary Dyskinesia Modeling and Personalized Medicine. Am J Respir Cell Mol Biol 2018;59:672-83. [PMID: 30230352 DOI: 10.1165/rcmb.2018-0213TR] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
56 Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. Transl Sci Rare Dis 2019;4:51-75. [PMID: 31572664 DOI: 10.3233/TRD-190036] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
57 Kooter I, Ilves M, Gröllers-Mulderij M, Duistermaat E, Tromp PC, Kuper F, Kinaret P, Savolainen K, Greco D, Karisola P, Ndika J, Alenius H. Molecular Signature of Asthma-Enhanced Sensitivity to CuO Nanoparticle Aerosols from 3D Cell Model. ACS Nano 2019;13:6932-46. [PMID: 31188557 DOI: 10.1021/acsnano.9b01823] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
58 Angerilli A, Smialowski P, Rupp RA. The Xenopus animal cap transcriptome: building a mucociliary epithelium. Nucleic Acids Res 2018;46:8772-87. [PMID: 30165493 DOI: 10.1093/nar/gky771] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
59 Lalioti ME, Arbi M, Loukas I, Kaplani K, Kalogeropoulou A, Lokka G, Kyrousi C, Mizi A, Georgomanolis T, Josipovic N, Gkikas D, Benes V, Politis PK, Papantonis A, Lygerou Z, Taraviras S. GemC1 governs multiciliogenesis through direct interaction with and transcriptional regulation of p73. J Cell Sci 2019;132:jcs228684. [PMID: 31028178 DOI: 10.1242/jcs.228684] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
60 Halbeisen FS, Jose A, de Jong C, Nyilas S, Latzin P, Kuehni CE, Goutaki M. Spirometric indices in primary ciliary dyskinesia: systematic review and meta-analysis. ERJ Open Res 2019;5:00231-2018. [PMID: 31111042 DOI: 10.1183/23120541.00231-2018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
61 Wildung M, Esser TU, Grausam KB, Wiedwald C, Volceanov-Hahn L, Riedel D, Beuermann S, Li L, Zylla J, Guenther AK, Wienken M, Ercetin E, Han Z, Bremmer F, Shomroni O, Andreas S, Zhao H, Lizé M. Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis. Cell Death Differ 2019;26:2740-57. [PMID: 31068677 DOI: 10.1038/s41418-019-0332-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
62 Nanjundappa R, Kong D, Shim K, Stearns T, Brody SL, Loncarek J, Mahjoub MR. Regulation of cilia abundance in multiciliated cells. Elife 2019;8:e44039. [PMID: 31025935 DOI: 10.7554/eLife.44039] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
63 Terré B, Lewis M, Gil-Gómez G, Han Z, Lu H, Aguilera M, Prats N, Roy S, Zhao H, Stracker TH. Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1-, MCIDAS- or CCNO-deficient mice. Development 2019;146:dev162628. [PMID: 30936178 DOI: 10.1242/dev.162628] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
64 Lu H, Anujan P, Zhou F, Zhang Y, Chong YL, Bingle CD, Roy S. Mcidas mutant mice reveal a two-step process for the specification and differentiation of multiciliated cells in mammals. Development 2019;146:dev172643. [PMID: 30877126 DOI: 10.1242/dev.172643] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
65 Wheway G, Mitchison HM; Genomics England Research Consortium. Opportunities and Challenges for Molecular Understanding of Ciliopathies-The 100,000 Genomes Project. Front Genet 2019;10:127. [PMID: 30915099 DOI: 10.3389/fgene.2019.00127] [Cited by in Crossref: 27] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
66 Sahu I, Haque AKMA, Weidensee B, Weinmann P, Kormann MSD. Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019;27:803-23. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
67 Ortiz-Álvarez G, Daclin M, Shihavuddin A, Lansade P, Fortoul A, Faucourt M, Clavreul S, Lalioti ME, Taraviras S, Hippenmeyer S, Livet J, Meunier A, Genovesio A, Spassky N. Adult Neural Stem Cells and Multiciliated Ependymal Cells Share a Common Lineage Regulated by the Geminin Family Members. Neuron 2019;102:159-172.e7. [PMID: 30824354 DOI: 10.1016/j.neuron.2019.01.051] [Cited by in Crossref: 42] [Cited by in F6Publishing: 47] [Article Influence: 14.0] [Reference Citation Analysis]
68 Yepiskoposyan H, Talikka M, Vavassori S, Martin F, Sewer A, Gubian S, Luettich K, Peitsch MC, Hoeng J. Construction of a Suite of Computable Biological Network Models Focused on Mucociliary Clearance in the Respiratory Tract. Front Genet 2019;10:87. [PMID: 30828347 DOI: 10.3389/fgene.2019.00087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
69 Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. Building and Regenerating the Lung Cell by Cell. Physiol Rev 2019;99:513-54. [PMID: 30427276 DOI: 10.1152/physrev.00001.2018] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 24.7] [Reference Citation Analysis]
70 Stracker TH. E2F4/5-mediated transcriptional control of multiciliated cell differentiation: redundancy or fine-tuning? Developmental Biology 2019;446:20-1. [DOI: 10.1016/j.ydbio.2018.12.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Ryan R, Failler M, Reilly ML, Garfa-Traore M, Delous M, Filhol E, Reboul T, Bole-Feysot C, Nitschké P, Baudouin V, Amselem S, Escudier E, Legendre M, Benmerah A, Saunier S. Functional characterization of tektin-1 in motile cilia and evidence for TEKT1 as a new candidate gene for motile ciliopathies. Hum Mol Genet 2018;27:266-82. [PMID: 29121203 DOI: 10.1093/hmg/ddx396] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
72 Revinski DR, Zaragosi LE, Boutin C, Ruiz-Garcia S, Deprez M, Thomé V, Rosnet O, Gay AS, Mercey O, Paquet A, Pons N, Ponzio G, Marcet B, Kodjabachian L, Barbry P. CDC20B is required for deuterosome-mediated centriole production in multiciliated cells. Nat Commun 2018;9:4668. [PMID: 30405130 DOI: 10.1038/s41467-018-06768-z] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
73 Beckers A, Ott T, Schuster-Gossler K, Boldt K, Alten L, Ueffing M, Blum M, Gossler A. The evolutionary conserved FOXJ1 target gene Fam183b is essential for motile cilia in Xenopus but dispensable for ciliary function in mice. Sci Rep 2018;8:14678. [PMID: 30279523 DOI: 10.1038/s41598-018-33045-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
74 Shahid U, Singh P. Emerging Picture of Deuterosome-Dependent Centriole Amplification in MCCs. Cells 2018;7:E152. [PMID: 30262752 DOI: 10.3390/cells7100152] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
75 Chong YL, Zhang Y, Zhou F, Roy S. Distinct requirements of E2f4 versus E2f5 activity for multiciliated cell development in the zebrafish embryo. Dev Biol 2018;443:165-72. [PMID: 30218642 DOI: 10.1016/j.ydbio.2018.09.013] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
76 Nikolić MZ, Sun D, Rawlins EL. Human lung development: recent progress and new challenges. Development 2018;145:dev163485. [PMID: 30111617 DOI: 10.1242/dev.163485] [Cited by in Crossref: 61] [Cited by in F6Publishing: 59] [Article Influence: 15.3] [Reference Citation Analysis]
77 Guan WJ, Peng Y, Zi XX, Tan KS, He TT, Zhong NS, Wang Y. Motile Ciliary Disorders in Chronic Airway Inflammatory Diseases: Critical Target for Interventions. Curr Allergy Asthma Rep 2018;18:48. [PMID: 30046922 DOI: 10.1007/s11882-018-0802-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
78 Kempeneers C, Chilvers MA. To beat, or not to beat, that is question! The spectrum of ciliopathies. Pediatr Pulmonol 2018;53:1122-9. [DOI: 10.1002/ppul.24078] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
79 Horani A, Ferkol TW. Advances in the Genetics of Primary Ciliary Dyskinesia: Clinical Implications. Chest 2018;154:645-52. [PMID: 29800551 DOI: 10.1016/j.chest.2018.05.007] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 13.0] [Reference Citation Analysis]
80 Santos-Carballal B, Fernández Fernández E, Goycoolea FM. Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies. Polymers (Basel) 2018;10:E444. [PMID: 30966479 DOI: 10.3390/polym10040444] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 14.5] [Reference Citation Analysis]
81 Wang Z, Plasschaert LW, Aryal S, Renaud NA, Yang Z, Choo-Wing R, Pessotti AD, Kirkpatrick ND, Cochran NR, Carbone W, Maher R, Lindeman A, Russ C, Reece-Hoyes J, McAllister G, Hoffman GR, Roma G, Jaffe AB. TRRAP is a central regulator of human multiciliated cell formation. J Cell Biol 2018;217:1941-55. [PMID: 29588376 DOI: 10.1083/jcb.201706106] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
82 Chen ZG, Li YY, Wang ZN, Li M, Lim HF, Zhou YQ, Cai LM, Li YT, Yang LF, Zhang TT, Wang DY. Aberrant epithelial remodeling with impairment of cilia architecture in non-cystic fibrosis bronchiectasis. J Thorac Dis 2018;10:1753-64. [PMID: 29707330 DOI: 10.21037/jtd.2018.02.13] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
83 Tu F, Sedzinski J, Ma Y, Marcotte EM, Wallingford JB. Protein localization screening in vivo reveals novel regulators of multiciliated cell development and function. J Cell Sci 2018;131:jcs206565. [PMID: 29180514 DOI: 10.1242/jcs.206565] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
84 Milla CE. The evolving spectrum of ciliopathies and respiratory disease. Curr Opin Pediatr 2016;28:339-47. [PMID: 27070443 DOI: 10.1097/MOP.0000000000000358] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
85 Arbi M, Pefani DE, Taraviras S, Lygerou Z. Controlling centriole numbers: Geminin family members as master regulators of centriole amplification and multiciliogenesis. Chromosoma 2018;127:151-74. [PMID: 29243212 DOI: 10.1007/s00412-017-0652-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
86 Levine M, Holland A. Cell cycle proteins moonlight in multiciliogenesis. Science 2017;358:716-8. [PMID: 29123048 DOI: 10.1126/science.aaq0770] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
87 Núnez-Ollé M, Jung C, Terré B, Balsiger NA, Plata C, Roset R, Pardo-Pastor C, Garrido M, Rojas S, Alameda F, Lloreta J, Martín-Caballero J, Flores JM, Stracker TH, Valverde MA, Muñoz FJ, Gil-Gómez G. Constitutive Cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility. Oncotarget 2017;8:99261-73. [PMID: 29245899 DOI: 10.18632/oncotarget.21818] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
88 Al Jord A, Shihavuddin A, Servignat d'Aout R, Faucourt M, Genovesio A, Karaiskou A, Sobczak-Thépot J, Spassky N, Meunier A. Calibrated mitotic oscillator drives motile ciliogenesis. Science 2017;358:803-6. [PMID: 28982797 DOI: 10.1126/science.aan8311] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 9.2] [Reference Citation Analysis]
89 Werner C, Kouis P. Should transmission electron microscopy and ultrastructural cilia evaluation remain part of the diagnostic work-up for primary ciliary dyskinesia? Ultrastructural Pathology 2017;41:386-9. [DOI: 10.1080/01913123.2017.1362089] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
90 Mitchison HM, Shoemark A. Motile cilia defects in diseases other than primary ciliary dyskinesia: The contemporary diagnostic and research role for transmission electron microscopy. Ultrastruct Pathol 2017;41:415-27. [PMID: 28925789 DOI: 10.1080/01913123.2017.1370050] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
91 Dixon M, Shoemark A. Secondary defects detected by transmission electron microscopy in primary ciliary dyskinesia diagnostics. Ultrastruct Pathol 2017;41:390-8. [PMID: 28922056 DOI: 10.1080/01913123.2017.1365990] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
92 Shapiro AJ, Leigh MW. Value of transmission electron microscopy for primary ciliary dyskinesia diagnosis in the era of molecular medicine: Genetic defects with normal and non-diagnostic ciliary ultrastructure. Ultrastruct Pathol 2017;41:373-85. [PMID: 28915070 DOI: 10.1080/01913123.2017.1362088] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
93 Frisch SM, Farris JC, Pifer PM. Roles of Grainyhead-like transcription factors in cancer. Oncogene 2017;36:6067-73. [PMID: 28714958 DOI: 10.1038/onc.2017.178] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
94 Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017;18:533-547. [PMID: 28698599 DOI: 10.1038/nrm.2017.60] [Cited by in Crossref: 546] [Cited by in F6Publishing: 570] [Article Influence: 109.2] [Reference Citation Analysis]
95 Mirra V, Werner C, Santamaria F. Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies. Front Pediatr 2017;5:135. [PMID: 28649564 DOI: 10.3389/fped.2017.00135] [Cited by in Crossref: 59] [Cited by in F6Publishing: 67] [Article Influence: 11.8] [Reference Citation Analysis]
96 Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol 2017;241:294-309. [PMID: 27859258 DOI: 10.1002/path.4843] [Cited by in Crossref: 210] [Cited by in F6Publishing: 208] [Article Influence: 42.0] [Reference Citation Analysis]
97 Reula A, Lucas J, Moreno-galdó A, Romero T, Milara X, Carda C, Mata-roig M, Escribano A, Dasi F, Armengot-carceller M. New insights in primary ciliary dyskinesia. Expert Opinion on Orphan Drugs 2017;5:537-48. [DOI: 10.1080/21678707.2017.1324780] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
98 Bustamante-Marin XM, Ostrowski LE. Cilia and Mucociliary Clearance. Cold Spring Harb Perspect Biol. 2017;9. [PMID: 27864314 DOI: 10.1101/cshperspect.a028241] [Cited by in Crossref: 183] [Cited by in F6Publishing: 222] [Article Influence: 36.6] [Reference Citation Analysis]
99 Blackburn K, Bustamante-Marin X, Yin W, Goshe MB, Ostrowski LE. Quantitative Proteomic Analysis of Human Airway Cilia Identifies Previously Uncharacterized Proteins of High Abundance. J Proteome Res 2017;16:1579-92. [PMID: 28282151 DOI: 10.1021/acs.jproteome.6b00972] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
100 Olcese C, Patel MP, Shoemark A, Kiviluoto S, Legendre M, Williams HJ, Vaughan CK, Hayward J, Goldenberg A, Emes RD, Munye MM, Dyer L, Cahill T, Bevillard J, Gehrig C, Guipponi M, Chantot S, Duquesnoy P, Thomas L, Jeanson L, Copin B, Tamalet A, Thauvin-Robinet C, Papon JF, Garin A, Pin I, Vera G, Aurora P, Fassad MR, Jenkins L, Boustred C, Cullup T, Dixon M, Onoufriadis A, Bush A, Chung EM, Antonarakis SE, Loebinger MR, Wilson R, Armengot M, Escudier E, Hogg C, Amselem S, Sun Z, Bartoloni L, Blouin JL, Mitchison HM; UK10K Rare Group. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 2017;8:14279. [PMID: 28176794 DOI: 10.1038/ncomms14279] [Cited by in Crossref: 88] [Cited by in F6Publishing: 84] [Article Influence: 17.6] [Reference Citation Analysis]
101 Kyrousi C, Lygerou Z, Taraviras S. How a radial glial cell decides to become a multiciliated ependymal cell: Radial Glial Cell Specification in the Adult V-SVZ Niche. Glia 2017;65:1032-42. [DOI: 10.1002/glia.23118] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
102 Rumman N, Jackson C, Collins S, Goggin P, Coles J, Lucas JS. Diagnosis of primary ciliary dyskinesia: potential options for resource-limited countries. Eur Respir Rev 2017;26:160058. [DOI: 10.1183/16000617.0058-2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
103 Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, Dell S, Eber E, Escudier E, Hirst RA, Hogg C, Jorissen M, Latzin P, Legendre M, Leigh MW, Midulla F, Nielsen KG, Omran H, Papon JF, Pohunek P, Redfern B, Rigau D, Rindlisbacher B, Santamaria F, Shoemark A, Snijders D, Tonia T, Titieni A, Walker WT, Werner C, Bush A, Kuehni CE. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017;49:1601090. [PMID: 27836958 DOI: 10.1183/13993003.01090-2016] [Cited by in Crossref: 254] [Cited by in F6Publishing: 268] [Article Influence: 50.8] [Reference Citation Analysis]
104 Meunier A, Azimzadeh J. Multiciliated Cells in Animals. Cold Spring Harb Perspect Biol 2016;8:a028233. [PMID: 27580630 DOI: 10.1101/cshperspect.a028233] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 9.5] [Reference Citation Analysis]
105 Dehlink E, Hogg C, Carr SB, Bush A. Clinical phenotype and current diagnostic criteria for primary ciliary dyskinesia. Expert Review of Respiratory Medicine 2016;10:1163-75. [DOI: 10.1080/17476348.2016.1242414] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
106 Zhou F, Narasimhan V, Shboul M, Chong YL, Reversade B, Roy S. Gmnc Is a Master Regulator of the Multiciliated Cell Differentiation Program. Curr Biol 2015;25:3267-73. [PMID: 26778655 DOI: 10.1016/j.cub.2015.10.062] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 8.8] [Reference Citation Analysis]
107 Villa M, Crotta S, Dingwell KS, Hirst EM, Gialitakis M, Ahlfors H, Smith JC, Stockinger B, Wack A. The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis. Nat Commun 2016;7:12652. [PMID: 27554288 DOI: 10.1038/ncomms12652] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
108 Knowles MR, Zariwala M, Leigh M. Primary Ciliary Dyskinesia. Clin Chest Med 2016;37:449-61. [PMID: 27514592 DOI: 10.1016/j.ccm.2016.04.008] [Cited by in Crossref: 92] [Cited by in F6Publishing: 93] [Article Influence: 15.3] [Reference Citation Analysis]
109 Nemajerova A, Kramer D, Siller SS, Herr C, Shomroni O, Pena T, Gallinas Suazo C, Glaser K, Wildung M, Steffen H, Sriraman A, Oberle F, Wienken M, Hennion M, Vidal R, Royen B, Alevra M, Schild D, Bals R, Dönitz J, Riedel D, Bonn S, Takemaru K, Moll UM, Lizé M. TAp73 is a central transcriptional regulator of airway multiciliogenesis. Genes Dev 2016;30:1300-12. [PMID: 27257214 DOI: 10.1101/gad.279836.116] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 12.5] [Reference Citation Analysis]
110 Mercey O, Kodjabachian L, Barbry P, Marcet B. MicroRNAs as key regulators of GTPase-mediated apical actin reorganization in multiciliated epithelia. Small GTPases 2016;7:54-8. [PMID: 27144998 DOI: 10.1080/21541248.2016.1151099] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
111 Kyrousi C, Lalioti ME, Skavatsou E, Lygerou Z, Taraviras S. Mcidas and GemC1/Lynkeas specify embryonic radial glial cells. Neurogenesis (Austin) 2016;3:e1172747. [PMID: 27606337 DOI: 10.1080/23262133.2016.1172747] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
112 Vertii A, Hung HF, Hehnly H, Doxsey S. Human basal body basics. Cilia 2016;5:13. [PMID: 26981235 DOI: 10.1186/s13630-016-0030-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
113 Terré B, Piergiovanni G, Segura-Bayona S, Gil-Gómez G, Youssef SA, Attolini CS, Wilsch-Bräuninger M, Jung C, Rojas AM, Marjanović M, Knobel PA, Palenzuela L, López-Rovira T, Forrow S, Huttner WB, Valverde MA, de Bruin A, Costanzo V, Stracker TH. GEMC1 is a critical regulator of multiciliated cell differentiation. EMBO J 2016;35:942-60. [PMID: 26933123 DOI: 10.15252/embj.201592821] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 9.0] [Reference Citation Analysis]
114 Lucas JS, Paff T, Goggin P, Haarman E. Diagnostic Methods in Primary Ciliary Dyskinesia. Paediatric Respiratory Reviews 2016;18:8-17. [DOI: 10.1016/j.prrv.2015.07.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
115 Haarman EG, Schmidts M. Accuracy of diagnostic testing in primary ciliary dyskinesia: are we there yet? Eur Respir J 2016;47:699-701. [DOI: 10.1183/13993003.01914-2015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
116 Arbi M, Pefani DE, Kyrousi C, Lalioti ME, Kalogeropoulou A, Papanastasiou AD, Taraviras S, Lygerou Z. GemC1 controls multiciliogenesis in the airway epithelium. EMBO Rep 2016;17:400-13. [PMID: 26882546 DOI: 10.15252/embr.201540882] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 9.3] [Reference Citation Analysis]
117 Amirav I, Wallmeier J, Loges NT, Menchen T, Pennekamp P, Mussaffi H, Abitbul R, Avital A, Bentur L, Dougherty GW, Nael E, Lavie M, Olbrich H, Werner C, Kintner C, Omran H; Israeli PCD Consortium Investigators. Systematic Analysis of CCNO Variants in a Defined Population: Implications for Clinical Phenotype and Differential Diagnosis. Hum Mutat 2016;37:396-405. [PMID: 26777464 DOI: 10.1002/humu.22957] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 7.2] [Reference Citation Analysis]
118 Olm MA, Caldini EG, Mauad T. Diagnosis of primary ciliary dyskinesia. J Bras Pneumol 2015;41:251-63. [PMID: 26176524 DOI: 10.1590/S1806-37132015000004447] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
119 Werner C, Lablans M, Ataian M, Raidt J, Wallmeier J, Große-Onnebrink J, Kuehni CE, Haarman EG, Leigh MW, Quittner AL, Lucas JS, Hogg C, Witt M, Priftis KN, Yiallouros P, Nielsen KG, Santamaria F, Ückert F, Omran H. An international registry for primary ciliary dyskinesia. Eur Respir J 2016;47:849-59. [PMID: 26659107 DOI: 10.1183/13993003.00776-2015] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 7.9] [Reference Citation Analysis]
120 Jackson CL, Behan L, Collins SA, Goggin PM, Adam EC, Coles JL, Evans HJ, Harris A, Lackie P, Packham S, Page A, Thompson J, Walker WT, Kuehni C, Lucas JS. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur Respir J 2016;47:837-48. [PMID: 26647444 DOI: 10.1183/13993003.00749-2015] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 7.7] [Reference Citation Analysis]
121 Shapiro AJ, Zariwala MA, Ferkol T, Davis SD, Sagel SD, Dell SD, Rosenfeld M, Olivier KN, Milla C, Daniel SJ, Kimple AJ, Manion M, Knowles MR, Leigh MW; Genetic Disorders of Mucociliary Clearance Consortium. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol 2016;51:115-32. [PMID: 26418604 DOI: 10.1002/ppul.23304] [Cited by in Crossref: 170] [Cited by in F6Publishing: 163] [Article Influence: 24.3] [Reference Citation Analysis]
122 Harrison MJ, Shapiro AJ, Kennedy MP. Congenital Heart Disease and Primary Ciliary Dyskinesia. Paediatr Respir Rev 2016;18:25-32. [PMID: 26545972 DOI: 10.1016/j.prrv.2015.09.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
123 Kyrousi C, Arbi M, Pilz GA, Pefani DE, Lalioti ME, Ninkovic J, Götz M, Lygerou Z, Taraviras S. Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development 2015;142:3661-74. [PMID: 26395491 DOI: 10.1242/dev.126342] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 8.7] [Reference Citation Analysis]
124 Chevalier B, Adamiok A, Mercey O, Revinski DR, Zaragosi LE, Pasini A, Kodjabachian L, Barbry P, Marcet B. miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways. Nat Commun 2015;6:8386. [PMID: 26381333 DOI: 10.1038/ncomms9386] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
125 Raidt J, Werner C, Menchen T, Dougherty GW, Olbrich H, Loges NT, Schmitz R, Pennekamp P, Omran H. Ciliary function and motor protein composition of human fallopian tubes. Human Reproduction 2015;30:2871-80. [DOI: 10.1093/humrep/dev227] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 6.1] [Reference Citation Analysis]
126 Horani A, Ferkol TW, Dutcher SK, Brody SL. Genetics and biology of primary ciliary dyskinesia. Paediatr Respir Rev 2016;18:18-24. [PMID: 26476603 DOI: 10.1016/j.prrv.2015.09.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 77] [Article Influence: 6.9] [Reference Citation Analysis]
127 Cibois M, Luxardi G, Chevalier B, Thomé V, Mercey O, Zaragosi LE, Barbry P, Pasini A, Marcet B, Kodjabachian L. BMP signalling controls the construction of vertebrate mucociliary epithelia. Development 2015;142:2352-63. [PMID: 26092849 DOI: 10.1242/dev.118679] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
128 Schweickert A, Feistel K. The Xenopus Embryo: An Ideal Model System to Study Human Ciliopathies. Curr Pathobiol Rep 2015;3:115-27. [DOI: 10.1007/s40139-015-0074-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
129 Lobo J, Zariwala MA, Noone PG. Primary ciliary dyskinesia. Semin Respir Crit Care Med 2015;36:169-79. [PMID: 25826585 DOI: 10.1055/s-0035-1546748] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
130 Benmerah A, Durand B, Giles RH, Harris T, Kohl L, Laclef C, Meilhac SM, Mitchison HM, Pedersen LB, Roepman R, Swoboda P, Ueffing M, Bastin P. The more we know, the more we have to discover: an exciting future for understanding cilia and ciliopathies. Cilia 2015;4:5. [PMID: 25974046 DOI: 10.1186/s13630-015-0014-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
131 Praveen K, Davis EE, Katsanis N. Unique among ciliopathies: primary ciliary dyskinesia, a motile cilia disorder. F1000Prime Rep 2015;7:36. [PMID: 25926987 DOI: 10.12703/P7-36] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 6.1] [Reference Citation Analysis]
132 Crystal RG. Airway basal cells. The "smoking gun" of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014;190:1355-62. [PMID: 25354273 DOI: 10.1164/rccm.201408-1492PP] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 8.4] [Reference Citation Analysis]
133 Epting D, Slanchev K, Boehlke C, Hoff S, Loges NT, Yasunaga T, Indorf L, Nestel S, Lienkamp SS, Omran H, Kuehn EW, Ronneberger O, Walz G, Kramer-Zucker A. The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin. Development 2015;142:174-84. [PMID: 25516973 DOI: 10.1242/dev.112250] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
134 Werner C, Onnebrink JG, Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia 2015;4:2. [PMID: 25610612 DOI: 10.1186/s13630-014-0011-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
135 Werner C, Onnebrink JG, Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia 2015;4:2. [PMID: 25610612 DOI: 10.1186/s13630-014-0011-8] [Cited by in Crossref: 94] [Cited by in F6Publishing: 80] [Article Influence: 13.4] [Reference Citation Analysis]
136 Balestra F, Gönczy P. Multiciliogenesis: Multicilin Directs Transcriptional Activation of Centriole Formation. Current Biology 2014;24:R746-9. [DOI: 10.1016/j.cub.2014.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
137 Ma L, Quigley I, Omran H, Kintner C. Multicilin drives centriole biogenesis via E2f proteins. Genes Dev 2014;28:1461-71. [PMID: 24934224 DOI: 10.1101/gad.243832.114] [Cited by in Crossref: 97] [Cited by in F6Publishing: 90] [Article Influence: 12.1] [Reference Citation Analysis]
138 [DOI: 10.1101/478297] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
139 [DOI: 10.1101/218750] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]