BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Paff T, Loges NT, Aprea I, Wu K, Bakey Z, Haarman EG, Daniels JMA, Sistermans EA, Bogunovic N, Dougherty GW, Höben IM, Große-Onnebrink J, Matter A, Olbrich H, Werner C, Pals G, Schmidts M, Omran H, Micha D. Mutations in PIH1D3 Cause X-Linked Primary Ciliary Dyskinesia with Outer and Inner Dynein Arm Defects. Am J Hum Genet 2017;100:160-8. [PMID: 28041644 DOI: 10.1016/j.ajhg.2016.11.019] [Cited by in Crossref: 101] [Cited by in F6Publishing: 82] [Article Influence: 20.2] [Reference Citation Analysis]
Number Citing Articles
1 Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2021;110:19-33. [PMID: 33279404 DOI: 10.1016/j.semcdb.2020.11.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
2 Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020;26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
3 Bukowy-Bieryllo Z, Rabiasz A, Dabrowski M, Pogorzelski A, Wojda A, Dmenska H, Grzela K, Sroczynski J, Witt M, Zietkiewicz E. Truncating mutations in exons 20 and 21 of OFD1 can cause primary ciliary dyskinesia without associated syndromic symptoms. J Med Genet 2019;56:769-77. [PMID: 31366608 DOI: 10.1136/jmedgenet-2018-105918] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
4 Brennan SK, Ferkol TW, Davis SD. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia. Int J Mol Sci 2021;22:8272. [PMID: 34361034 DOI: 10.3390/ijms22158272] [Reference Citation Analysis]
5 Rosenfeld M, Ostrowski LE, Zariwala MA. Primary ciliary dyskinesia: keep it on your radar. Thorax 2018;73:101-2. [PMID: 29133352 DOI: 10.1136/thoraxjnl-2017-210776] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
6 Bustamante-Marin XM, Horani A, Stoyanova M, Charng WL, Bottier M, Sears PR, Yin WN, Daniels LA, Bowen H, Conrad DF, Knowles MR, Ostrowski LE, Zariwala MA, Dutcher SK. Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genet 2020;16:e1008691. [PMID: 32764743 DOI: 10.1371/journal.pgen.1008691] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
7 Höben IM, Hjeij R, Olbrich H, Dougherty GW, Nöthe-Menchen T, Aprea I, Frank D, Pennekamp P, Dworniczak B, Wallmeier J, Raidt J, Nielsen KG, Philipsen MC, Santamaria F, Venditto L, Amirav I, Mussaffi H, Prenzel F, Wu K, Bakey Z, Schmidts M, Loges NT, Omran H. Mutations in C11orf70 Cause Primary Ciliary Dyskinesia with Randomization of Left/Right Body Asymmetry Due to Defects of Outer and Inner Dynein Arms. Am J Hum Genet 2018;102:973-84. [PMID: 29727693 DOI: 10.1016/j.ajhg.2018.03.025] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 9.5] [Reference Citation Analysis]
8 Videbaek K, Buchvald F, Holgersen MG, Henriksen A, Eriksson F, Garred P, Nielsen KG. The impact of mannose-binding lectin polymorphisms on lung function in primary ciliary dyskinesia. Pediatr Pulmonol 2019;54:1182-9. [PMID: 31012247 DOI: 10.1002/ppul.24346] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
9 Wallmeier J, Nielsen KG, Kuehni CE, Lucas JS, Leigh MW, Zariwala MA, Omran H. Motile ciliopathies. Nat Rev Dis Primers 2020;6:77. [PMID: 32943623 DOI: 10.1038/s41572-020-0209-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 17.5] [Reference Citation Analysis]
10 Huang C, Liu NC, Wang XB, Gu BH, Zhang JX, Li-Zhang, Li Z. Novel deletion mutations of the PIH1D3 gene in an infertile young man with primary ciliary dyskinesia and his cousin with Kartagener's syndrome. Asian J Androl 2021;23:330-2. [PMID: 33106461 DOI: 10.4103/aja.aja_43_20] [Reference Citation Analysis]
11 Horani A, Ferkol TW. Advances in the Genetics of Primary Ciliary Dyskinesia: Clinical Implications. Chest 2018;154:645-52. [PMID: 29800551 DOI: 10.1016/j.chest.2018.05.007] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
12 Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021;225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tu C, Wang W, Hu T, Lu G, Lin G, Tan YQ. Genetic underpinnings of asthenozoospermia. Best Pract Res Clin Endocrinol Metab 2020;34:101472. [PMID: 33191078 DOI: 10.1016/j.beem.2020.101472] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Mitchison HM, Shoemark A. Motile cilia defects in diseases other than primary ciliary dyskinesia: The contemporary diagnostic and research role for transmission electron microscopy. Ultrastruct Pathol 2017;41:415-27. [PMID: 28925789 DOI: 10.1080/01913123.2017.1370050] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
15 Xiong Y, Xia H, Yuan L, Deng S, Ding Z, Deng H. Identification of compound heterozygous DNAH11 variants in a Han-Chinese family with primary ciliary dyskinesia. J Cell Mol Med 2021;25:9028-37. [PMID: 34405951 DOI: 10.1111/jcmm.16866] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Lennon J, Zur Lage P, von Kriegsheim A, Jarman AP. Strongly Truncated Dnaaf4 Plays a Conserved Role in Drosophila Ciliary Dynein Assembly as Part of an R2TP-Like Co-Chaperone Complex With Dnaaf6. Front Genet 2022;13:943197. [PMID: 35873488 DOI: 10.3389/fgene.2022.943197] [Reference Citation Analysis]
17 Paff T, Kooi IE, Moutaouakil Y, Riesebos E, Sistermans EA, Daniels HJMA, Weiss JMM, Niessen HHWM, Haarman EG, Pals G, Micha D. Diagnostic yield of a targeted gene panel in primary ciliary dyskinesia patients. Hum Mutat 2018;39:653-65. [PMID: 29363216 DOI: 10.1002/humu.23403] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
18 Shami AN, Zheng X, Munyoki SK, Ma Q, Manske GL, Green CD, Sukhwani M, Orwig KE, Li JZ, Hammoud SS. Single-Cell RNA Sequencing of Human, Macaque, and Mouse Testes Uncovers Conserved and Divergent Features of Mammalian Spermatogenesis. Dev Cell 2020;54:529-547.e12. [PMID: 32504559 DOI: 10.1016/j.devcel.2020.05.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
19 Takeuchi K, Kitano M, Sakaida H, Usui S, Masuda S, Ogawa S, Ikejiri M, Nagao M, Fujisawa T, Nakatani K. Analysis of Otologic Features of Patients With Primary Ciliary Dyskinesia. Otol Neurotol 2017;38:e451-6. [PMID: 29135867 DOI: 10.1097/MAO.0000000000001599] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
20 Nenna R, Hunt KA, Dassios T, Collins JJP, Rottier RJ, Liu NM, Rottier B, Goutaki M, Karadag B, Prayle A, Fernandes RM, Parisi GF, Barben J, Rubbo B, Snijders D, Makrinioti H, Hall G, Pijnenburg MW, Grigg J. Key paediatric messages from the 2018 European Respiratory Society International Congress. ERJ Open Res 2019;5:00241-2018. [PMID: 31044141 DOI: 10.1183/23120541.00241-2018] [Reference Citation Analysis]
21 Agopian AJ, Hoang TT, Goldmuntz E, Hakonarson H, Musfee FI, Mitchell LE; Pediatric Cardiac Genomics Consortium. X-chromosome association studies of congenital heart defects. Am J Med Genet A 2020;182:250-4. [PMID: 31729158 DOI: 10.1002/ajmg.a.61411] [Reference Citation Analysis]
22 Laan M. Systematic review of the monogenetic causes of male infertility: the first step towards diagnostic gene panels in the andrology clinic. Human Reproduction 2019;34:783-5. [DOI: 10.1093/humrep/dez024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Yamamoto R, Obbineni JM, Alford LM, Ide T, Owa M, Hwang J, Kon T, Inaba K, James N, King SM, Ishikawa T, Sale WS, Dutcher SK. Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms. PLoS Genet 2017;13:e1006996. [PMID: 28892495 DOI: 10.1371/journal.pgen.1006996] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
24 Chiyonobu K, Xu Y, Feng G, Saso S, Ogawa S, Ikejiri M, Abo M, Kondo M, Gotoh S, Kubo H, Hosoki K, Nagao M, Fujisawa T, Nakatani K, Takeuchi K. Analysis of the clinical features of Japanese patients with primary ciliary dyskinesia. Auris Nasus Larynx 2021:S0385-8146(21)00224-8. [PMID: 34454779 DOI: 10.1016/j.anl.2021.08.003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Zur Lage P, Stefanopoulou P, Styczynska-Soczka K, Quinn N, Mali G, von Kriegsheim A, Mill P, Jarman AP. Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. J Cell Biol 2018;217:2583-98. [PMID: 29743191 DOI: 10.1083/jcb.201709026] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
26 Liu G, Wang L, Pan J. Chlamydomonas WDR92 in association with R2TP-like complex and multiple DNAAFs to regulate ciliary dynein preassembly. J Mol Cell Biol 2019;11:770-80. [PMID: 30428028 DOI: 10.1093/jmcb/mjy067] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
27 Sun Y, Ye X, Fan Y, Wang L, Luo X, Liu H, Gao X, Gong Z, Wang Y, Qiu W, Zhang H, Han L, Liang L, Ye H, Xiao B, Gu X, Yu Y. High Detection Rate of Copy Number Variations Using Capture Sequencing Data: A Retrospective Study. Clin Chem 2020;66:455-62. [PMID: 32031585 DOI: 10.1093/clinchem/hvz033] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Dafinger C, Rinschen MM, Borgal L, Ehrenberg C, Basten SG, Franke M, Höhne M, Rauh M, Göbel H, Bloch W, Wunderlich FT, Peters DJM, Tasche D, Mishra T, Habbig S, Dötsch J, Müller RU, Brüning JC, Persigehl T, Giles RH, Benzing T, Schermer B, Liebau MC. Targeted deletion of the AAA-ATPase Ruvbl1 in mice disrupts ciliary integrity and causes renal disease and hydrocephalus. Exp Mol Med 2018;50:1-17. [PMID: 29959317 DOI: 10.1038/s12276-018-0108-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
29 Tian T, Bi H, Zhang D, Liu Y, Sun H, Jia C, Zheng T, Huang H, Fu J, Zhu L, Zhao Y. Methylation of three genes encoded by X chromosome in blood leukocytes and colorectal cancer risk. Cancer Med 2021;10:4964-76. [PMID: 34145793 DOI: 10.1002/cam4.4056] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019;8:E730. [PMID: 31319499 DOI: 10.3390/cells8070730] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
31 Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F, Marcotte EM, Brody SL, Wallingford JB. A liquid-like organelle at the root of motile ciliopathy. Elife 2018;7:e38497. [PMID: 30561330 DOI: 10.7554/eLife.38497] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
32 Fassad MR, Shoemark A, le Borgne P, Koll F, Patel M, Dixon M, Hayward J, Richardson C, Frost E, Jenkins L, Cullup T, Chung EMK, Lemullois M, Aubusson-Fleury A, Hogg C, Mitchell DR, Tassin AM, Mitchison HM. C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia. Am J Hum Genet 2018;102:956-72. [PMID: 29727692 DOI: 10.1016/j.ajhg.2018.03.024] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
33 Aitken RJ. The Male Is Significantly Implicated as the Cause of Unexplained Infertility. Semin Reprod Med 2020;38:3-20. [PMID: 33086406 DOI: 10.1055/s-0040-1718941] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Mabrouk I, Al-harthi N, Mani R, Montantin G, Tissier S, Lagha R, Ben Abdallah F, Hassan MM, Alhomrani M, Gaber A, Alsanie WF, Ouali H, Jambi FA, Almaghamsi TM, Alqarni NA, Alfarsi NA, Kashgari K, Al-zahrani HJ, Al-shamary ZA, Al-harbi A, Amselem S, Escudier E, Legendre M. Combining RSPH9 founder mutation screening and next-generation sequencing analysis is efficient for primary ciliary dyskinesia diagnosis in Saudi patients. J Hum Genet. [DOI: 10.1038/s10038-021-01006-9] [Reference Citation Analysis]
35 Horani A, Ustione A, Huang T, Firth AL, Pan J, Gunsten SP, Haspel JA, Piston DW, Brody SL. Establishment of the early cilia preassembly protein complex during motile ciliogenesis. Proc Natl Acad Sci U S A 2018;115:E1221-8. [PMID: 29358401 DOI: 10.1073/pnas.1715915115] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
36 Aprea I, Raidt J, Höben IM, Loges NT, Nöthe-Menchen T, Pennekamp P, Olbrich H, Kaiser T, Biebach L, Tüttelmann F, Horvath J, Schubert M, Krallmann C, Kliesch S, Omran H. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021;17:e1009306. [PMID: 33635866 DOI: 10.1371/journal.pgen.1009306] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
37 Bustamante-Marin XM, Yin WN, Sears PR, Werner ME, Brotslaw EJ, Mitchell BJ, Jania CM, Zeman KL, Rogers TD, Herring LE, Refabért L, Thomas L, Amselem S, Escudier E, Legendre M, Grubb BR, Knowles MR, Zariwala MA, Ostrowski LE. Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance. Am J Hum Genet 2019;104:229-45. [PMID: 30665704 DOI: 10.1016/j.ajhg.2018.12.009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 15.0] [Reference Citation Analysis]
38 Guo T, Tan ZP, Chen HM, Zheng DY, Liu L, Huang XG, Chen P, Luo H, Yang YF. An effective combination of whole-exome sequencing and runs of homozygosity for the diagnosis of primary ciliary dyskinesia in consanguineous families. Sci Rep 2017;7:7905. [PMID: 28801648 DOI: 10.1038/s41598-017-08510-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
39 Deng S, Wu S, Xia H, Xiong W, Deng X, Liao J, Deng H, Yuan L. Identification of a frame shift mutation in the CCDC151 gene in a Han-Chinese family with Kartagener syndrome. Biosci Rep 2020;40:BSR20192510. [PMID: 32490514 DOI: 10.1042/BSR20192510] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
40 Johnson JL. Mutations in Hsp90 Cochaperones Result in a Wide Variety of Human Disorders. Front Mol Biosci 2021;8:787260. [PMID: 34957217 DOI: 10.3389/fmolb.2021.787260] [Reference Citation Analysis]
41 Takeuchi K, Kitano M, Kiyotoshi H, Ikegami K, Ogawa S, Ikejiri M, Nagao M, Fujisawa T, Nakatani K. A targeted next-generation sequencing panel reveals novel mutations in Japanese patients with primary ciliary dyskinesia. Auris Nasus Larynx 2018;45:585-91. [PMID: 28939216 DOI: 10.1016/j.anl.2017.09.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
42 Chanchani SR, Xie H, Sekhon G, Melikishvili AM, Moyer Harasink S, Pall H, Giampietro PF. A male infant with Xq22.2q22.3 duplication containing PLP1 and MID2. Mol Genet Genomic Med 2020;8:e1078. [PMID: 31951325 DOI: 10.1002/mgg3.1078] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Xu Y, Ogawa S, Adachi Y, Sone N, Gotoh S, Ikejiri M, Nakatani K, Takeuchi K. A pediatric case of primary ciliary dyskinesia caused by novel copy number variation in PIH1D3. Auris Nasus Larynx 2021:S0385-8146(21)00087-0. [PMID: 33812756 DOI: 10.1016/j.anl.2021.03.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Sone N, Konishi S, Igura K, Tamai K, Ikeo S, Korogi Y, Kanagaki S, Namba T, Yamamoto Y, Xu Y, Takeuchi K, Adachi Y, Chen-Yoshikawa TF, Date H, Hagiwara M, Tsukita S, Hirai T, Torisawa YS, Gotoh S. Multicellular modeling of ciliopathy by combining iPS cells and microfluidic airway-on-a-chip technology. Sci Transl Med 2021;13:eabb1298. [PMID: 34233948 DOI: 10.1126/scitranslmed.abb1298] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020;77:2029-48. [PMID: 31781811 DOI: 10.1007/s00018-019-03389-7] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 13.7] [Reference Citation Analysis]
46 Shoemark A, Harman K. Primary Ciliary Dyskinesia. Semin Respir Crit Care Med 2021;42:537-48. [PMID: 34261178 DOI: 10.1055/s-0041-1730919] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 McKenzie CW, Lee L. Genetic interaction between central pair apparatus genes CFAP221, CFAP54, and SPEF2 in mouse models of primary ciliary dyskinesia. Sci Rep 2020;10:12337. [PMID: 32704025 DOI: 10.1038/s41598-020-69359-3] [Reference Citation Analysis]
48 Li Y, Zhao L, Yuan S, Zhang J, Sun Z. Axonemal dynein assembly requires the R2TP complex component Pontin. Development 2017;144:4684-93. [PMID: 29113992 DOI: 10.1242/dev.152314] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
49 Cannarella R, Condorelli RA, Duca Y, La Vignera S, Calogero AE. New insights into the genetics of spermatogenic failure: a review of the literature. Hum Genet 2019;138:125-40. [PMID: 30656449 DOI: 10.1007/s00439-019-01974-1] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
50 Liu Z, Nguyen QPH, Guan Q, Albulescu A, Erdman L, Mahdaviyeh Y, Kang J, Ouyang H, Hegele RG, Moraes T, Goldenberg A, Dell SD, Mennella V. A quantitative super-resolution imaging toolbox for diagnosis of motile ciliopathies. Sci Transl Med 2020;12:eaay0071. [PMID: 32188719 DOI: 10.1126/scitranslmed.aay0071] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
51 Wang Y, Tu C, Nie H, Meng L, Li D, Wang W, Zhang H, Lu G, Lin G, Tan YQ, Du J. Novel DNAAF6 variants identified by whole-exome sequencing cause male infertility and primary ciliary dyskinesia. J Assist Reprod Genet 2020;37:811-20. [PMID: 32170493 DOI: 10.1007/s10815-020-01735-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
52 Kuehni CE, Lucas JS. Diagnosis of primary ciliary dyskinesia: summary of the ERS Task Force report. Breathe (Sheff) 2017;13:166-78. [PMID: 28894478 DOI: 10.1183/20734735.008517] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
53 Aprea I, Nöthe-Menchen T, Dougherty GW, Raidt J, Loges NT, Kaiser T, Wallmeier J, Olbrich H, Strünker T, Kliesch S, Pennekamp P, Omran H. Motility of efferent duct cilia aids passage of sperm cells through the male reproductive system. Mol Hum Reprod 2021;27:gaab009. [PMID: 33561200 DOI: 10.1093/molehr/gaab009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med 2020;8:202-16. [PMID: 31624012 DOI: 10.1016/S2213-2600(19)30374-1] [Cited by in Crossref: 45] [Cited by in F6Publishing: 21] [Article Influence: 15.0] [Reference Citation Analysis]
55 Halbeisen F, Hogg C, Alanin MC, Bukowy-Bieryllo Z, Dasi F, Duncan J, Friend A, Goutaki M, Jackson C, Keenan V, Harris A, Hirst RA, Latzin P, Marsh G, Nielsen K, Norris D, Pellicer D, Reula A, Rubbo B, Rumman N, Shoemark A, Walker WT, Kuehni CE, Lucas JS. Proceedings of the 2nd BEAT-PCD conference and 3rd PCD training school: part 1. BMC Proc 2018;12:1. [PMID: 29630684 DOI: 10.1186/s12919-018-0098-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
56 Zietkiewicz E, Bukowy-Bieryllo Z, Rabiasz A, Daca-Roszak P, Wojda A, Voelkel K, Rutkiewicz E, Pogorzelski A, Rasteiro M, Witt M. CFAP300: Mutations in Slavic Patients with Primary Ciliary Dyskinesia and a Role in Ciliary Dynein Arms Trafficking. Am J Respir Cell Mol Biol 2019;61:440-9. [PMID: 30916986 DOI: 10.1165/rcmb.2018-0260OC] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
57 Thomas L, Bouhouche K, Whitfield M, Thouvenin G, Coste A, Louis B, Szymanski C, Bequignon E, Papon JF, Castelli M, Lemullois M, Dhalluin X, Drouin-Garraud V, Montantin G, Tissier S, Duquesnoy P, Copin B, Dastot F, Couvet S, Barbotin AL, Faucon C, Honore I, Maitre B, Beydon N, Tamalet A, Rives N, Koll F, Escudier E, Tassin AM, Touré A, Mitchell V, Amselem S, Legendre M. TTC12 Loss-of-Function Mutations Cause Primary Ciliary Dyskinesia and Unveil Distinct Dynein Assembly Mechanisms in Motile Cilia Versus Flagella. Am J Hum Genet 2020;106:153-69. [PMID: 31978331 DOI: 10.1016/j.ajhg.2019.12.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 13.5] [Reference Citation Analysis]
58 Sempou E, Khokha MK. Genes and mechanisms of heterotaxy: patients drive the search. Curr Opin Genet Dev 2019;56:34-40. [PMID: 31234044 DOI: 10.1016/j.gde.2019.05.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
59 Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2021;27:154-89. [PMID: 33118031 DOI: 10.1093/humupd/dmaa034] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
60 Liu L, Luo H. Whole-Exome Sequencing Identified a Novel Compound Heterozygous Mutation of LRRC6 in a Chinese Primary Ciliary Dyskinesia Patient. Biomed Res Int 2018;2018:1854269. [PMID: 29511670 DOI: 10.1155/2018/1854269] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
61 Poprzeczko M, Bicka M, Farahat H, Bazan R, Osinka A, Fabczak H, Joachimiak E, Wloga D. Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019;8:E1614. [PMID: 31835861 DOI: 10.3390/cells8121614] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
62 Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol 2021. [PMID: 34862511 DOI: 10.1038/s41569-021-00635-z] [Reference Citation Analysis]
63 Paff T, Omran H, Nielsen KG, Haarman EG. Current and Future Treatments in Primary Ciliary Dyskinesia. Int J Mol Sci 2021;22:9834. [PMID: 34575997 DOI: 10.3390/ijms22189834] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Takeuchi K, Xu Y, Kitano M, Chiyonobu K, Abo M, Ikegami K, Ogawa S, Ikejiri M, Kondo M, Gotoh S, Nagao M, Fujisawa T, Nakatani K. Copy number variation in DRC1 is the major cause of primary ciliary dyskinesia in the Japanese population. Mol Genet Genomic Med 2020;8:e1137. [PMID: 31960620 DOI: 10.1002/mgg3.1137] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
65 Chen X, Deng S, Xia H, Yuan L, Xu H, Tang S, Deng H. Identification of a CCDC114 variant in a Han-Chinese patient with situs inversus. Exp Ther Med 2020;20:3336-42. [PMID: 32855706 DOI: 10.3892/etm.2020.9059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
66 Baz-Redón N, Rovira-Amigo S, Fernández-Cancio M, Castillo-Corullón S, Cols M, Caballero-Rabasco MA, Asensio Ó, Martín de Vicente C, Martínez-Colls MDM, Torrent-Vernetta A, de Mir-Messa I, Gartner S, Iglesias-Serrano I, Díez-Izquierdo A, Polverino E, Amengual-Pieras E, Amaro-Rodríguez R, Vendrell M, Mumany M, Pascual-Sánchez MT, Pérez-Dueñas B, Reula A, Escribano A, Dasí F, Armengot-Carceller M, Garrido-Pontnou M, Camats-Tarruella N, Moreno-Galdó A. Immunofluorescence Analysis as a Diagnostic Tool in a Spanish Cohort of Patients with Suspected Primary Ciliary Dyskinesia. J Clin Med 2020;9:E3603. [PMID: 33182294 DOI: 10.3390/jcm9113603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
67 Reula A, Lucas J, Moreno-galdó A, Romero T, Milara X, Carda C, Mata-roig M, Escribano A, Dasi F, Armengot-carceller M. New insights in primary ciliary dyskinesia. Expert Opinion on Orphan Drugs 2017;5:537-48. [DOI: 10.1080/21678707.2017.1324780] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
68 [DOI: 10.1101/2020.03.17.994509] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Fabczak H, Osinka A. Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019;20:E6174. [PMID: 31817850 DOI: 10.3390/ijms20246174] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
70 Lee C, Cox RM, Papoulas O, Horani A, Drew K, Devitt CC, Brody SL, Marcotte EM, Wallingford JB. Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins. Elife 2020;9:e58662. [PMID: 33263282 DOI: 10.7554/eLife.58662] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
71 Mirra V, Werner C, Santamaria F. Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies. Front Pediatr 2017;5:135. [PMID: 28649564 DOI: 10.3389/fped.2017.00135] [Cited by in Crossref: 59] [Cited by in F6Publishing: 50] [Article Influence: 11.8] [Reference Citation Analysis]
72 Zur Lage P, Xi Z, Lennon J, Hunter I, Chan WK, Bolado Carrancio A, von Kriegsheim A, Jarman AP. The Drosophila orthologue of the primary ciliary dyskinesia-associated gene, DNAAF3, is required for axonemal dynein assembly. Biol Open 2021;10:bio058812. [PMID: 34553759 DOI: 10.1242/bio.058812] [Reference Citation Analysis]
73 Kulappu Arachchige SN, Young ND, Shil PK, Legione AR, Kanci Condello A, Browning GF, Wawegama NK. Differential Response of the Chicken Trachea to Chronic Infection with Virulent Mycoplasma gallisepticum Strain Ap3AS and Vaxsafe MG (Strain ts-304): a Transcriptional Profile. Infect Immun 2020;88:e00053-20. [PMID: 32122943 DOI: 10.1128/IAI.00053-20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
74 Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW; American Heart Association Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Genomic and Precision Medicine. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018;138:e653-711. [PMID: 30571578 DOI: 10.1161/CIR.0000000000000606] [Cited by in Crossref: 125] [Cited by in F6Publishing: 60] [Article Influence: 41.7] [Reference Citation Analysis]
75 Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. Transl Sci Rare Dis 2019;4:51-75. [PMID: 31572664 DOI: 10.3233/TRD-190036] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
76 Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2021;78:769-97. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
77 Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, Zur Lage P, Shoemark A, Garcia-Munoz A, Shimada A, Takeda H, Edlich F, Takahashi S, von Kreigsheim A, Jarman AP, Mill P. ZMYND10 functions in a chaperone relay during axonemal dynein assembly. Elife 2018;7:e34389. [PMID: 29916806 DOI: 10.7554/eLife.34389] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
78 Lynham J, Houry WA. The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022;12:1045. [DOI: 10.3390/biom12081045] [Reference Citation Analysis]
79 Cho KJ, Noh SH, Han SM, Choi WI, Kim HY, Yu S, Lee JS, Rim JH, Lee MG, Hildebrandt F, Gee HY. ZMYND10 stabilizes intermediate chain proteins in the cytoplasmic pre-assembly of dynein arms. PLoS Genet 2018;14:e1007316. [PMID: 29601588 DOI: 10.1371/journal.pgen.1007316] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
80 Harmer J, Towers K, Addison M, Vaughan S, Ginger ML, McKean PG. A centriolar FGR1 oncogene partner-like protein required for paraflagellar rod assembly, but not axoneme assembly in African trypanosomes. Open Biol 2018;8:170218. [PMID: 30045883 DOI: 10.1098/rsob.170218] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
81 Olbrich H, Omran H. Angewandte genetische Diagnostik in der Pädiatrie: Vor- und Nachteile moderner Sequenziermethoden. Monatsschr Kinderheilkd 2020;168:10-20. [DOI: 10.1007/s00112-019-00815-9] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
82 Vockel M, Riera-Escamilla A, Tüttelmann F, Krausz C. The X chromosome and male infertility. Hum Genet 2021;140:203-15. [PMID: 31875237 DOI: 10.1007/s00439-019-02101-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
83 Yamaguchi H, Oda T, Kikkawa M, Takeda H. Systematic studies of all PIH proteins in zebrafish reveal their distinct roles in axonemal dynein assembly. Elife 2018;7:e36979. [PMID: 29741156 DOI: 10.7554/eLife.36979] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
84 Gauthier MS, Cloutier P, Coulombe B. Role of the PAQosome in Regulating Arrangement of Protein Quaternary Structure in Health and Disease. Adv Exp Med Biol 2018;1106:25-36. [PMID: 30484151 DOI: 10.1007/978-3-030-00737-9_3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
85 Yamamoto R, Yanagi S, Nagao M, Yamasaki Y, Tanaka Y, Sale WS, Yagi T, Kon T. Mutations in PIH proteins MOT48, TWI1 and PF13 define common and unique steps for preassembly of each, different ciliary dynein. PLoS Genet 2020;16:e1009126. [PMID: 33141819 DOI: 10.1371/journal.pgen.1009126] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
86 Zur Lage P, Newton FG, Jarman AP. Survey of the Ciliary Motility Machinery of Drosophila Sperm and Ciliated Mechanosensory Neurons Reveals Unexpected Cell-Type Specific Variations: A Model for Motile Ciliopathies. Front Genet 2019;10:24. [PMID: 30774648 DOI: 10.3389/fgene.2019.00024] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]