BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Merkle EM, Dale BM, Barboriak DP. Gain in Signal-to-Noise for First-Pass Contrast-Enhanced Abdominal MR Angiography at 3 Tesla Over Standard 1.5 Tesla: Prediction with a Computer Model. Academic Radiology 2007;14:795-803. [DOI: 10.1016/j.acra.2007.03.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Frydrychowicz A, Nagle SK, D'Souza SL, Vigen KK, Reeder SB. Optimized high-resolution contrast-enhanced hepatobiliary imaging at 3 tesla: a cross-over comparison of gadobenate dimeglumine and gadoxetic acid. J Magn Reson Imaging 2011;34:585-94. [PMID: 21751288 DOI: 10.1002/jmri.22713] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 4.5] [Reference Citation Analysis]
2 Bhatti L, Hoang JK, Dale BM, Bashir MR. Advanced Magnetic Resonance Techniques: 3 T. Radiologic Clinics of North America 2015;53:441-55. [DOI: 10.1016/j.rcl.2014.12.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
3 Goncalves Neto JA, Altun E, Elazzazi M, Vaidean GD, Chaney M, Semelka RC. Enhancement of abdominal organs on hepatic arterial phase: quantitative comparison between 1.5- and 3.0-T magnetic resonance imaging. Magnetic Resonance Imaging 2010;28:47-55. [DOI: 10.1016/j.mri.2009.05.041] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
4 Peldschus K, Hamdorf M, Robert P, Port M, Adam G, Herborn CU. Comparison of the high relaxivity Gd chelates P1152 and Gd-BOPTA for contrast-enhanced MR angiography in rabbits at 1.5 Tesla and 3.0 Tesla. J Magn Reson Imaging 2010;32:459-65. [DOI: 10.1002/jmri.22261] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
5 Gilbert G, Soulez G, Beaudoin G. Improved In-Stent Lumen Visualization using Intravascular MRI and a Balanced Steady-State Free-Precession Sequence. Academic Radiology 2009;16:1466-74. [DOI: 10.1016/j.acra.2009.07.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
6 Peldschus K, Hamdorf M, Robert P, Port M, Graessner J, Adam G, Herborn CU. Contrast-Enhanced Magnetic Resonance Angiography: Evaluation of the High Relaxivity Low Diffusible Gadolinium-Based Contrast Agent P846 in Comparison With Gadoterate Meglumine in Rabbits at 1.5 Tesla and 3.0 Tesla. Investigative Radiology 2008;43:837-42. [DOI: 10.1097/rli.0b013e3181852158] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
7 Umutlu L, Maderwald S, Kraff O, Kinner S, Schaefer L, Wrede K, Antoch G, Forsting M, Ladd M, Lauenstein T, Quick H. New look at renal vasculature: 7 tesla nonenhanced T1-weighted FLASH imaging. J Magn Reson Imaging 2012;36:714-21. [DOI: 10.1002/jmri.23702] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
8 Dehkharghani S, Qiu D, Albin LS, Saindane AM. Dose Reduction in Contrast-Enhanced Cervical MR Angiography: Field Strength Dependency of Vascular Signal Intensity, Contrast Administration, and Arteriographic Quality. American Journal of Roentgenology 2015;204:W701-6. [DOI: 10.2214/ajr.14.13435] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
9 Fischer A, Maderwald S, Orzada S, Johst S, Schäfer LC, Ladd ME, Nassenstein K, Umutlu L, Lauenstein TC. Nonenhanced magnetic resonance angiography of the lower extremity vessels at 7 tesla: initial experience. Invest Radiol 2013;48:525-34. [PMID: 23493120 DOI: 10.1097/RLI.0b013e3182839c2b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Husarik DB, Bashir MR, Weber PW, Nichols EB, Howle LE, Merkle EM, Nelson RC. Contrast-Enhanced Magnetic Resonance Angiography: First-Pass Arterial Enhancement as a Function of Gadolinium-Chelate Concentration, and the Saline Chaser Volume and Injection Rate. Investigative Radiology 2012;47:121-7. [DOI: 10.1097/rli.0b013e3182300603] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
11 Lohan DG, Tomasian A, Saleh RS, Singhal A, Krishnam MS, Finn JP. Ultra-low-dose, time-resolved contrast-enhanced magnetic resonance angiography of the carotid arteries at 3.0 tesla. Invest Radiol 2009;44:207-17. [PMID: 19300100 DOI: 10.1097/RLI.0b013e31819ca048] [Cited by in Crossref: 26] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
12 Chhabra A, Madhuranthakam AJ, Andreisek G. Magnetic resonance neurography: current perspectives and literature review. Eur Radiol 2018;28:698-707. [PMID: 28710579 DOI: 10.1007/s00330-017-4976-8] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 11.4] [Reference Citation Analysis]
13 Soher BJ, Dale BM, Merkle EM. A review of MR physics: 3T versus 1.5T. Magn Reson Imaging Clin N Am. 2007;15:277-290, v. [PMID: 17893049 DOI: 10.1016/j.mric.2007.06.002] [Cited by in Crossref: 156] [Cited by in F6Publishing: 129] [Article Influence: 11.1] [Reference Citation Analysis]
14 Ivancevic MK, Geerts L, Weadock WJ, Chenevert TL. Technical Principles of MR Angiography Methods. Magnetic Resonance Imaging Clinics of North America 2009;17:1-11. [DOI: 10.1016/j.mric.2009.01.012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]