BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang HJ, Lee YH, Hsu YH, Liao CT, Lin YF, Chiu HW. Current Strategies in Assessment of Nanotoxicity: Alternatives to In Vivo Animal Testing. Int J Mol Sci 2021;22:4216. [PMID: 33921715 DOI: 10.3390/ijms22084216] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Balraadjsing S, Peijnenburg WJGM, Vijver MG. Exploring the potential of in silico machine learning tools for the prediction of acute Daphnia magna nanotoxicity. Chemosphere 2022;:135930. [PMID: 35961453 DOI: 10.1016/j.chemosphere.2022.135930] [Reference Citation Analysis]
2 Wu YH, Ho SY, Wang BJ, Wang YJ. Mechanisms of Nanotoxicology and the Important Role of Alternative Testing Strategies. Int J Mol Sci 2022;23:8204. [PMID: 35897780 DOI: 10.3390/ijms23158204] [Reference Citation Analysis]
3 Reagen S, Zhao JX. Analysis of Nanomaterials on Biological and Environmental Systems and New Analytical Methods for Improved Detection. IJMS 2022;23:6331. [DOI: 10.3390/ijms23116331] [Reference Citation Analysis]
4 Vasyukova IA, Zakharova OV, Kuznetsov DV, Gusev AA. Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review. Nanomaterials (Basel) 2022;12:1797. [PMID: 35683652 DOI: 10.3390/nano12111797] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
5 Forest V. Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment. Nanomaterials (Basel) 2022;12:1346. [PMID: 35458054 DOI: 10.3390/nano12081346] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
6 Huang H, Lee Y, Chou C, Zheng C, Chiu H. Investigation of potential descriptors of chemical compounds on prevention of nephrotoxicity via QSAR approach. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.04.013] [Reference Citation Analysis]
7 Anuoluwa Bamidele E, Olanrewaju Ijaola A, Bodunrin M, Ajiteru O, Martha Oyibo A, Makhatha E, Asmatulu E. Discovery and prediction capabilities in metal-based nanomaterials: An overview of the application of machine learning techniques and some recent advances. Advanced Engineering Informatics 2022;52:101593. [DOI: 10.1016/j.aei.2022.101593] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. J Environ Manage 2022;311:114806. [PMID: 35240500 DOI: 10.1016/j.jenvman.2022.114806] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
9 Hashemzadeh H, Kelkawi AHA, Allahverdi A, Rothbauer M, Ertl P, Naderi-manesh H. Fingerprinting Metabolic Activity and Tissue Integrity of 3D Lung Cancer Spheroids under Gold Nanowire Treatment. Cells 2022;11:478. [DOI: 10.3390/cells11030478] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mao BH, Luo YK, Wang BJ, Chen CW, Cheng FY, Lee YH, Yan SJ, Wang YJ. Use of an in silico knowledge discovery approach to determine mechanistic studies of silver nanoparticles-induced toxicity from in vitro to in vivo. Part Fibre Toxicol 2022;19:6. [PMID: 35031062 DOI: 10.1186/s12989-022-00447-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 Panghal A, Flora SJS. Toxicity Evaluation of Nanomedicine. Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology 2022. [DOI: 10.1007/978-3-031-12398-6_19] [Reference Citation Analysis]
12 Lee SY, Lee DY, Kang JH, Jeong JW, Kim JH, Kim HW, Oh DH, Kim J, Rhim S, Kim G, Kim HS, Jang YD, Park Y, Hur SJ. Alternative experimental approaches to reduce animal use in biomedical studies. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103131] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Seo S, Lee JE, Lee K, Kim HN. Effects of microenvironmental factors on assessing nanoparticle toxicity. Environ Sci : Nano 2022;9:454-476. [DOI: 10.1039/d1en00925g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Leudjo Taka A, Tata CM, Klink MJ, Mbianda XY, Mtunzi FM, Naidoo EB. A Review on Conventional and Advanced Methods for Nanotoxicology Evaluation of Engineered Nanomaterials. Molecules 2021;26:6536. [PMID: 34770945 DOI: 10.3390/molecules26216536] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Prasad M, Kumar R, Buragohain L, Kumari A, Ghosh M. Organoid Technology: A Reliable Developmental Biology Tool for Organ-Specific Nanotoxicity Evaluation. Front Cell Dev Biol 2021;9:696668. [PMID: 34631696 DOI: 10.3389/fcell.2021.696668] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
16 Ali SS, Al-Tohamy R, Koutra E, Moawad MS, Kornaros M, Mustafa AM, Mahmoud YA, Badr A, Osman MEH, Elsamahy T, Jiao H, Sun J. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Sci Total Environ 2021;792:148359. [PMID: 34147795 DOI: 10.1016/j.scitotenv.2021.148359] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 23.0] [Reference Citation Analysis]