BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Park J, Choi S, Janardhan AH, Lee S, Raut S, Soares J, Shin K, Yang S, Lee C, Kang K, Cho HR, Kim SJ, Seo P, Hyun W, Jung S, Lee H, Lee N, Choi SH, Sacks M, Lu N, Josephson ME, Hyeon T, Kim D, Hwang HJ. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci Transl Med 2016;8:344ra86-344ra86. [DOI: 10.1126/scitranslmed.aad8568] [Cited by in Crossref: 117] [Cited by in F6Publishing: 94] [Article Influence: 19.5] [Reference Citation Analysis]
Number Citing Articles
1 Tybrandt K, Khodagholy D, Dielacher B, Stauffer F, Renz AF, Buzsáki G, Vörös J. High-Density Stretchable Electrode Grids for Chronic Neural Recording. Adv Mater 2018;30:e1706520. [PMID: 29488263 DOI: 10.1002/adma.201706520] [Cited by in Crossref: 93] [Cited by in F6Publishing: 70] [Article Influence: 23.3] [Reference Citation Analysis]
2 Kim J, Lee Y, Kang M, Hu L, Zhao S, Ahn JH. 2D Materials for Skin-Mountable Electronic Devices. Adv Mater 2021;:e2005858. [PMID: 33998064 DOI: 10.1002/adma.202005858] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Lee H, Song C, Baik S, Kim D, Hyeon T, Kim DH. Device-assisted transdermal drug delivery. Adv Drug Deliv Rev 2018;127:35-45. [PMID: 28867296 DOI: 10.1016/j.addr.2017.08.009] [Cited by in Crossref: 135] [Cited by in F6Publishing: 106] [Article Influence: 27.0] [Reference Citation Analysis]
4 Fleischer S, Feiner R, Dvir T. Cardiac tissue engineering: from matrix design to the engineering of bionic hearts. Regen Med 2017;12:275-84. [PMID: 28498093 DOI: 10.2217/rme-2016-0150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
5 Yoo S, Lee J, Joo H, Sunwoo SH, Kim S, Kim DH. Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Adv Healthc Mater 2021;10:e2100614. [PMID: 34075721 DOI: 10.1002/adhm.202100614] [Reference Citation Analysis]
6 Lee J, Ihle SJ, Pellegrino GS, Kim H, Yea J, Jeon C, Son H, Jin C, Eberli D, Schmid F, Zambrano BL, Renz AF, Forró C, Choi H, Jang K, Küng R, Vörös J. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat Electron 2021;4:291-301. [DOI: 10.1038/s41928-021-00557-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
7 Lee W, Someya T. Emerging Trends in Flexible Active Multielectrode Arrays. Chem Mater 2019;31:6347-58. [DOI: 10.1021/acs.chemmater.9b00165] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
8 Lu B, Yuk H, Lin S, Jian N, Qu K, Xu J, Zhao X. Pure PEDOT:PSS hydrogels. Nat Commun 2019;10:1043. [PMID: 30837483 DOI: 10.1038/s41467-019-09003-5] [Cited by in Crossref: 175] [Cited by in F6Publishing: 109] [Article Influence: 58.3] [Reference Citation Analysis]
9 Feiner R, Dvir T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat Rev Mater 2018;3. [DOI: 10.1038/natrevmats.2017.76] [Cited by in Crossref: 182] [Cited by in F6Publishing: 105] [Article Influence: 36.4] [Reference Citation Analysis]
10 Gao D, Parida K, Lee PS. Emerging Soft Conductors for Bioelectronic Interfaces. Adv Funct Mater 2020;30:1907184. [DOI: 10.1002/adfm.201907184] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
11 Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites. Small 2020;16:e1906270. [PMID: 32022440 DOI: 10.1002/smll.201906270] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 11.5] [Reference Citation Analysis]
12 Kapnisi M, Mansfield C, Marijon C, Guex AG, Perbellini F, Bardi I, Humphrey EJ, Puetzer JL, Mawad D, Koutsogeorgis DC, Stuckey DJ, Terracciano CM, Harding SE, Stevens MM. Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating Myocardial Infarction. Adv Funct Mater 2018;28:1800618. [PMID: 29875619 DOI: 10.1002/adfm.201800618] [Cited by in Crossref: 69] [Cited by in F6Publishing: 53] [Article Influence: 17.3] [Reference Citation Analysis]
13 Kim B, Soepriatna AH, Park W, Moon H, Cox A, Zhao J, Gupta NS, Park CH, Kim K, Jeon Y, Jang H, Kim DR, Lee H, Lee KS, Goergen CJ, Lee CH. Rapid custom prototyping of soft poroelastic biosensor for simultaneous epicardial recording and imaging. Nat Commun 2021;12:3710. [PMID: 34140475 DOI: 10.1038/s41467-021-23959-3] [Reference Citation Analysis]
14 Morikawa Y, Yamagiwa S, Sawahata H, Numano R, Koida K, Kawano T. Donut-Shaped Stretchable Kirigami: Enabling Electronics to Integrate with the Deformable Muscle. Adv Healthc Mater 2019;8:e1900939. [PMID: 31697038 DOI: 10.1002/adhm.201900939] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Hou K, Yang C, Shi J, Kuang B, Tian B. Nano- and Microscale Optical and Electrical Biointerfaces and Their Relevance to Energy Research. Small 2021;17:e2100165. [PMID: 34142435 DOI: 10.1002/smll.202100165] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Wang JL, Hassan M, Liu JW, Yu SH. Nanowire Assemblies for Flexible Electronic Devices: Recent Advances and Perspectives. Adv Mater 2018;30:e1803430. [PMID: 30357968 DOI: 10.1002/adma.201803430] [Cited by in Crossref: 64] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]
17 Cheng X, Zhang Y. Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches. Adv Mater 2019;31:e1901895. [PMID: 31265197 DOI: 10.1002/adma.201901895] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 11.3] [Reference Citation Analysis]
18 Ngan CGY, Kapsa RMI, Choong PFM. Strategies for neural control of prosthetic limbs: from electrode interfacing to 3D printing. Materials (Basel) 2019;12:E1927. [PMID: 31207952 DOI: 10.3390/ma12121927] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
19 Kim MJ, Alvarez S, Chen Z, Fichthorn KA, Wiley BJ. Single-Crystal Electrochemistry Reveals Why Metal Nanowires Grow. J Am Chem Soc 2018;140:14740-6. [DOI: 10.1021/jacs.8b08053] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 11.0] [Reference Citation Analysis]
20 He K, Liu Z, Wan C, Jiang Y, Wang T, Wang M, Zhang F, Liu Y, Pan L, Xiao M, Yang H, Chen X. An On‐Skin Electrode with Anti‐Epidermal‐Surface‐Lipid Function Based on a Zwitterionic Polymer Brush. Adv Mater 2020;32:2001130. [DOI: 10.1002/adma.202001130] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 10.5] [Reference Citation Analysis]
21 Pan C, Markvicka EJ, Malakooti MH, Yan J, Hu L, Matyjaszewski K, Majidi C. A Liquid-Metal-Elastomer Nanocomposite for Stretchable Dielectric Materials. Adv Mater 2019;31:e1900663. [PMID: 30997710 DOI: 10.1002/adma.201900663] [Cited by in Crossref: 81] [Cited by in F6Publishing: 48] [Article Influence: 27.0] [Reference Citation Analysis]
22 Shim HJ, Sunwoo SH, Kim Y, Koo JH, Kim DH. Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Adv Healthc Mater 2021;10:e2002105. [PMID: 33506654 DOI: 10.1002/adhm.202002105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Mehrali M, Bagherifard S, Akbari M, Thakur A, Mirani B, Mehrali M, Hasany M, Orive G, Das P, Emneus J, Andresen TL, Dolatshahi-Pirouz A. Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. Adv Sci (Weinh) 2018;5:1700931. [PMID: 30356969 DOI: 10.1002/advs.201700931] [Cited by in Crossref: 41] [Cited by in F6Publishing: 28] [Article Influence: 10.3] [Reference Citation Analysis]
24 Hong YJ, Jeong H, Cho KW, Lu N, Kim D. Wearable and Implantable Devices for Cardiovascular Healthcare: from Monitoring to Therapy Based on Flexible and Stretchable Electronics. Adv Funct Mater 2019;29:1808247. [DOI: 10.1002/adfm.201808247] [Cited by in Crossref: 138] [Cited by in F6Publishing: 64] [Article Influence: 46.0] [Reference Citation Analysis]
25 Feiner R, Dvir T. An electromechanical hug for the failing heart. Ann Transl Med 2016;4:412. [PMID: 27867964 DOI: 10.21037/atm.2016.08.36] [Reference Citation Analysis]
26 Nayeem MOG, Lee S, Jin H, Matsuhisa N, Jinno H, Miyamoto A, Yokota T, Someya T. All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc Natl Acad Sci U S A 2020;117:7063-70. [PMID: 32188781 DOI: 10.1073/pnas.1920911117] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
27 Horvath MA, Varela CE, Dolan EB, Whyte W, Monahan DS, Payne CJ, Wamala IA, Vasilyev NV, Pigula FA, Mooney DJ, Walsh CJ, Duffy GP, Roche ET. Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart. Ann Biomed Eng 2018;46:1534-47. [DOI: 10.1007/s10439-018-2046-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
28 Wang Y, Graham ES, Unsworth CP. Superior galvanostatic electrochemical deposition of platinum nanograss provides high performance planar microelectrodes forin vitroneural recording. J Neural Eng 2021;18. [PMID: 34371484 DOI: 10.1088/1741-2552/ac1bc1] [Reference Citation Analysis]
29 Zhang C, Hsieh M, Wu S, Li S, Wu J, Liu S, Wei H, Weisel RD, Sung H, Li R. A self-doping conductive polymer hydrogel that can restore electrical impulse propagation at myocardial infarct to prevent cardiac arrhythmia and preserve ventricular function. Biomaterials 2020;231:119672. [DOI: 10.1016/j.biomaterials.2019.119672] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
30 Cha GD, Kang D, Lee J, Kim D. Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Adv Healthcare Mater 2019;8:1801660. [DOI: 10.1002/adhm.201801660] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
31 Koo JH, Jeong S, Shim HJ, Son D, Kim J, Kim DC, Choi S, Hong J, Kim D. Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes. ACS Nano 2017;11:10032-41. [DOI: 10.1021/acsnano.7b04292] [Cited by in Crossref: 114] [Cited by in F6Publishing: 77] [Article Influence: 22.8] [Reference Citation Analysis]
32 Jang TM, Lee JH, Zhou H, Joo J, Lim BH, Cheng H, Kim SH, Kang IS, Lee KS, Park E, Hwang SW. Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. Sci Adv 2020;6:eabc9675. [PMID: 33177091 DOI: 10.1126/sciadv.abc9675] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
33 Post AD, Buchan S, John M, Safavi-Naeini P, Cosgriff-Hernández E, Razavi M. Reconstituting electrical conduction in soft tissue: the path to replace the ablationist. Europace 2021:euab187. [PMID: 34477862 DOI: 10.1093/europace/euab187] [Reference Citation Analysis]
34 Song KI, Seo H, Seong D, Kim S, Yu KJ, Kim YC, Kim J, Kwon SJ, Han HS, Youn I, Lee H, Son D. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nat Commun 2020;11:4195. [PMID: 32826916 DOI: 10.1038/s41467-020-18025-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
35 Cho KW, Lee WH, Kim B, Kim D. Sensors in heart-on-a-chip: A review on recent progress. Talanta 2020;219:121269. [DOI: 10.1016/j.talanta.2020.121269] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
36 Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021;10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Lee JH, Hwang J, Zhu J, Hwang HR, Lee SM, Cheng H, Lee S, Hwang S. Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs. ACS Appl Mater Interfaces 2018;10:21184-90. [DOI: 10.1021/acsami.8b06484] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
38 Choi JS, Lee HJ, Rajaraman S, Kim DH. Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces. Biosens Bioelectron 2021;171:112687. [PMID: 33059168 DOI: 10.1016/j.bios.2020.112687] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
39 Liu Y, Yin P, Chen J, Cui B, Zhang C, Wu F. Conducting Polymer-Based Composite Materials for Therapeutic Implantations: From Advanced Drug Delivery System to Minimally Invasive Electronics. International Journal of Polymer Science 2020;2020:1-16. [DOI: 10.1155/2020/5659682] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
40 Herbert R, Kim JH, Kim YS, Lee HM, Yeo WH. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces. Materials (Basel) 2018;11:E187. [PMID: 29364861 DOI: 10.3390/ma11020187] [Cited by in Crossref: 100] [Cited by in F6Publishing: 53] [Article Influence: 25.0] [Reference Citation Analysis]
41 Dwyer KD, Coulombe KLK. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021;6:2198-220. [PMID: 33553810 DOI: 10.1016/j.bioactmat.2020.12.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Huang H, Su S, Wu N, Wan H, Wan S, Bi H, Sun L. Graphene-Based Sensors for Human Health Monitoring. Front Chem 2019;7:399. [PMID: 31245352 DOI: 10.3389/fchem.2019.00399] [Cited by in Crossref: 84] [Cited by in F6Publishing: 44] [Article Influence: 28.0] [Reference Citation Analysis]
43 Nguyen DT, Althage M, Magnone MC, Heydarkhan-hagvall S. Translational strategy: humanized mini-organs. Drug Discovery Today 2018;23:1812-7. [DOI: 10.1016/j.drudis.2018.05.039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
44 Filgueira CS, Igo SR, Wang DK, Hirsch M, Schulz DG, Bruckner BA, Grattoni A. Technologies for intrapericardial delivery of therapeutics and cells. Advanced Drug Delivery Reviews 2019;151-152:222-32. [DOI: 10.1016/j.addr.2019.02.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
45 Koo JH, Song J, Yoo S, Sunwoo S, Son D, Kim D. Unconventional Device and Material Approaches for Monolithic Biointegration of Implantable Sensors and Wearable Electronics. Adv Mater Technol 2020;5:2000407. [DOI: 10.1002/admt.202000407] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
46 Liu J, Yan D, Zhang Y. Mechanics of unusual soft network materials with rotatable structural nodes. Journal of the Mechanics and Physics of Solids 2021;146:104210. [DOI: 10.1016/j.jmps.2020.104210] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 16.0] [Reference Citation Analysis]
47 Wang C, Yokota T, Someya T. Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chem Rev 2021;121:2109-46. [DOI: 10.1021/acs.chemrev.0c00897] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 15.0] [Reference Citation Analysis]
48 Long Y, Li J, Yang F, Wang J, Wang X. Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. Adv Sci (Weinh) 2021;8:2004023. [PMID: 33898184 DOI: 10.1002/advs.202004023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
49 Shi Q, Wang J, Aziz I, Lee PS. Stretchable and Wearable Resistive Switching Random‐Access Memory. Advanced Intelligent Systems 2020;2:2000007. [DOI: 10.1002/aisy.202000007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
50 Lee S, Sasaki D, Kim D, Mori M, Yokota T, Lee H, Park S, Fukuda K, Sekino M, Matsuura K, Shimizu T, Someya T. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nature Nanotech 2019;14:156-60. [DOI: 10.1038/s41565-018-0331-8] [Cited by in Crossref: 79] [Cited by in F6Publishing: 60] [Article Influence: 19.8] [Reference Citation Analysis]
51 Oh J, Yang JC, Kim J, Park H, Kwon SY, Lee S, Sim JY, Oh HW, Kim J, Park S. Pressure Insensitive Strain Sensor with Facile Solution-Based Process for Tactile Sensing Applications. ACS Nano 2018;12:7546-53. [DOI: 10.1021/acsnano.8b03488] [Cited by in Crossref: 79] [Cited by in F6Publishing: 49] [Article Influence: 19.8] [Reference Citation Analysis]
52 Sunwoo SH, Lee JS, Bae S, Shin YJ, Kim CS, Joo SY, Choi HS, Suh M, Kim SW, Choi YJ, Kim TI. Chronic and acute stress monitoring by electrophysiological signals from adrenal gland. Proc Natl Acad Sci U S A 2019;116:1146-51. [PMID: 30617062 DOI: 10.1073/pnas.1806392115] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
53 Lim C, Shin Y, Jung J, Kim JH, Lee S, Kim D. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Materials 2019;7:031502. [DOI: 10.1063/1.5063657] [Cited by in Crossref: 49] [Cited by in F6Publishing: 24] [Article Influence: 16.3] [Reference Citation Analysis]
54 Yoo J, Yang J, Chung M, Kim S, Yoon J. A review of geometric and structural design for reliable flexible electronics. J Micromech Microeng 2021;31:074001. [DOI: 10.1088/1361-6439/abfd0a] [Reference Citation Analysis]
55 Qiu Y, Tian Y, Sun S, Hu J, Wang Y, Zhang Z, Liu A, Cheng H, Gao W, Zhang W, Chai H, Wu H. Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 2020;78:105337. [DOI: 10.1016/j.nanoen.2020.105337] [Cited by in Crossref: 26] [Cited by in F6Publishing: 3] [Article Influence: 13.0] [Reference Citation Analysis]
56 Wu H, Gao W, Yin Z. Materials, Devices and Systems of Soft Bioelectronics for Precision Therapy. Adv Healthc Mater 2017;6. [PMID: 28371156 DOI: 10.1002/adhm.201700017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
57 Kim J, Ghaffari R, Kim D. The quest for miniaturized soft bioelectronic devices. Nat Biomed Eng 2017;1. [DOI: 10.1038/s41551-017-0049] [Cited by in Crossref: 73] [Cited by in F6Publishing: 50] [Article Influence: 14.6] [Reference Citation Analysis]
58 Norahan MH, Amroon M, Ghahremanzadeh R, Mahmoodi M, Baheiraei N. Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering: GRAPHENE OXIDE-INCORPORATED COLLAGEN FOR CARDIOVASCULAR APPLICATIONS. J Biomed Mater Res 2019;107:204-19. [DOI: 10.1002/jbm.a.36555] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
59 Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 2017;3:e1700015. [PMID: 28580425 DOI: 10.1126/sciadv.1700015] [Cited by in Crossref: 521] [Cited by in F6Publishing: 359] [Article Influence: 104.2] [Reference Citation Analysis]
60 Liu J, Zhu X, Shen Z, Zhang Y. Imperfection sensitivity of mechanical properties in soft network materials with horseshoe microstructures. Acta Mech Sin 2021;37:1050-62. [DOI: 10.1007/s10409-021-01087-x] [Reference Citation Analysis]
61 Jung JP, Bhuiyan DB, Ogle BM. Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomater Res 2016;20:27. [PMID: 27583168 DOI: 10.1186/s40824-016-0074-2] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 8.3] [Reference Citation Analysis]
62 Koo JH, Song J, Kim D. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology 2019;30:132001. [DOI: 10.1088/1361-6528/aafbbe] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
63 Chen X, Park YJ, Kang M, Kang SK, Koo J, Shinde SM, Shin J, Jeon S, Park G, Yan Y, MacEwan MR, Ray WZ, Lee KM, Rogers JA, Ahn JH. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat Commun 2018;9:1690. [PMID: 29703901 DOI: 10.1038/s41467-018-03956-9] [Cited by in Crossref: 92] [Cited by in F6Publishing: 59] [Article Influence: 23.0] [Reference Citation Analysis]
64 Renz AF, Reichmuth AM, Stauffer F, Thompson-steckel G, Vörös J. A guide towards long-term functional electrodes interfacing neuronal tissue. J Neural Eng 2018;15:061001. [DOI: 10.1088/1741-2552/aae0c2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
65 Curry F, Chrysler AM, Tasnim T, Shea JE, Agarwal J, Furse CM, Zhang H. Biostable conductive nanocomposite for implantable subdermal antenna. APL Materials 2020;8:101112. [DOI: 10.1063/5.0019720] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
66 Lee H, Hong YJ, Baik S, Hyeon T, Kim DH. Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Adv Healthc Mater 2018;7:e1701150. [PMID: 29334198 DOI: 10.1002/adhm.201701150] [Cited by in Crossref: 190] [Cited by in F6Publishing: 125] [Article Influence: 47.5] [Reference Citation Analysis]
67 Lee Y, Kim J, Joo H, Raj MS, Ghaffari R, Kim D. Wearable Sensing Systems with Mechanically Soft Assemblies of Nanoscale Materials. Adv Mater Technol 2017;2:1700053. [DOI: 10.1002/admt.201700053] [Cited by in Crossref: 60] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
68 Hong G, Yang X, Zhou T, Lieber CM. Mesh electronics: a new paradigm for tissue-like brain probes. Curr Opin Neurobiol 2018;50:33-41. [PMID: 29202327 DOI: 10.1016/j.conb.2017.11.007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 50] [Article Influence: 12.6] [Reference Citation Analysis]
69 Han F, Li M, Ye H, Zhang G. Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. Nanomaterials (Basel) 2021;11:1220. [PMID: 34063165 DOI: 10.3390/nano11051220] [Reference Citation Analysis]
70 Jang KI, Li K, Chung HU, Xu S, Jung HN, Yang Y, Kwak JW, Jung HH, Song J, Yang C, Wang A, Liu Z, Lee JY, Kim BH, Kim JH, Lee J, Yu Y, Kim BJ, Jang H, Yu KJ, Kim J, Lee JW, Jeong JW, Song YM, Huang Y, Zhang Y, Rogers JA. Self-assembled three dimensional network designs for soft electronics. Nat Commun 2017;8:15894. [PMID: 28635956 DOI: 10.1038/ncomms15894] [Cited by in Crossref: 195] [Cited by in F6Publishing: 139] [Article Influence: 39.0] [Reference Citation Analysis]
71 Qi D, Liu Z, Liu Y, Jiang Y, Leow WR, Pal M, Pan S, Yang H, Wang Y, Zhang X, Yu J, Li B, Yu Z, Wang W, Chen X. Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. Adv Mater 2017;29:1702800. [DOI: 10.1002/adma.201702800] [Cited by in Crossref: 90] [Cited by in F6Publishing: 74] [Article Influence: 18.0] [Reference Citation Analysis]
72 Lu C, Park S, Richner TJ, Derry A, Brown I, Hou C, Rao S, Kang J, Mortiz CT, Fink Y, Anikeeva P. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci Adv 2017;3:e1600955. [PMID: 28435858 DOI: 10.1126/sciadv.1600955] [Cited by in Crossref: 96] [Cited by in F6Publishing: 83] [Article Influence: 19.2] [Reference Citation Analysis]
73 Kwon M, Song K, Jung D, Lee J. Microfluidic‐Release Insertion Shuttle Designed for Implanting Flexible Biomedical Electronic Devices into Live Bodies. Adv Mater Interfaces 2019. [DOI: 10.1002/admi.201900259] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
74 Chen R, Canales A, Anikeeva P. Neural Recording and Modulation Technologies. Nat Rev Mater 2017;2:16093. [PMID: 31448131 DOI: 10.1038/natrevmats.2016.93] [Cited by in Crossref: 207] [Cited by in F6Publishing: 120] [Article Influence: 41.4] [Reference Citation Analysis]
75 Zhu M, Wang H, Li S, Liang X, Zhang M, Dai X, Zhang Y. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Adv Healthc Mater 2021;10:e2100646. [PMID: 34050635 DOI: 10.1002/adhm.202100646] [Reference Citation Analysis]
76 Huang Q, Zhu Y. Patterning of Metal Nanowire Networks: Methods and Applications. ACS Appl Mater Interfaces 2021;13:60736-62. [PMID: 34919389 DOI: 10.1021/acsami.1c14816] [Reference Citation Analysis]
77 Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X. Flexible Hybrid Electronics for Digital Healthcare. Adv Mater 2020;32:1902062. [DOI: 10.1002/adma.201902062] [Cited by in Crossref: 122] [Cited by in F6Publishing: 53] [Article Influence: 40.7] [Reference Citation Analysis]
78 Varela CE, Fan Y, Roche ET. Optimizing Epicardial Restraint and Reinforcement Following Myocardial Infarction: Moving Towards Localized, Biomimetic, and Multitherapeutic Options. Biomimetics (Basel) 2019;4:E7. [PMID: 31105193 DOI: 10.3390/biomimetics4010007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
79 Pan C, Ohm Y, Wang J, Ford MJ, Kumar K, Kumar S, Majidi C. Silver-Coated Poly(dimethylsiloxane) Beads for Soft, Stretchable, and Thermally Stable Conductive Elastomer Composites. ACS Appl Mater Interfaces 2019;11:42561-70. [PMID: 31638761 DOI: 10.1021/acsami.9b13266] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
80 Feiner R, Dvir T. Engineering Smart Hybrid Tissues with Built-In Electronics. iScience 2020;23:100833. [PMID: 31982781 DOI: 10.1016/j.isci.2020.100833] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
81 Lee Y, Kim J, Koo JH, Kim T, Kim D. Nanomaterials for bioelectronics and integrated medical systems. Korean J Chem Eng 2018;35:1-11. [DOI: 10.1007/s11814-017-0236-5] [Cited by in Crossref: 34] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
82 Hong YJ, Lee H, Kim J, Lee M, Choi HJ, Hyeon T, Kim D. Multifunctional Wearable System that Integrates Sweat-Based Sensing and Vital-Sign Monitoring to Estimate Pre-/Post-Exercise Glucose Levels. Adv Funct Mater 2018;28:1805754. [DOI: 10.1002/adfm.201805754] [Cited by in Crossref: 66] [Cited by in F6Publishing: 44] [Article Influence: 16.5] [Reference Citation Analysis]
83 Sunwoo S, Han SI, Kang H, Cho YS, Jung D, Lim C, Lim C, Cha M, Lee S, Hyeon T, Kim D. Stretchable Low‐Impedance Nanocomposite Comprised of Ag–Au Core–Shell Nanowires and Pt Black for Epicardial Recording and Stimulation. Adv Mater Technol 2020;5:1900768. [DOI: 10.1002/admt.201900768] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
84 Cha GD, Kang T, Baik S, Kim D, Choi SH, Hyeon T, Kim DH. Advances in drug delivery technology for the treatment of glioblastoma multiforme. J Control Release 2020;328:350-67. [PMID: 32896613 DOI: 10.1016/j.jconrel.2020.09.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
85 Lee M, Shim HJ, Choi C, Kim D. Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches. Nano Lett 2019;19:2741-9. [DOI: 10.1021/acs.nanolett.8b04895] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 9.3] [Reference Citation Analysis]
86 Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Reference Citation Analysis]
87 Cai P, Hu B, Leow WR, Wang X, Loh XJ, Wu Y, Chen X. Biomechano-Interactive Materials and Interfaces. Adv Mater 2018;30:1800572. [DOI: 10.1002/adma.201800572] [Cited by in Crossref: 64] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
88 Chen Y, Zhang Y, Liang Z, Cao Y, Han Z, Feng X. Flexible inorganic bioelectronics. npj Flex Electron 2020;4. [DOI: 10.1038/s41528-020-0065-1] [Cited by in Crossref: 34] [Cited by in F6Publishing: 7] [Article Influence: 17.0] [Reference Citation Analysis]
89 Cao Y, Zhang G, Zhang Y, Yue M, Chen Y, Cai S, Xie T, Feng X. Direct Fabrication of Stretchable Electronics on a Polymer Substrate with Process‐Integrated Programmable Rigidity. Adv Funct Mater 2018;28:1804604. [DOI: 10.1002/adfm.201804604] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 8.8] [Reference Citation Analysis]
90 Wang J, Cai G, Li S, Gao D, Xiong J, Lee PS. Printable Superelastic Conductors with Extreme Stretchability and Robust Cycling Endurance Enabled by Liquid-Metal Particles. Adv Mater 2018;30:e1706157. [PMID: 29512208 DOI: 10.1002/adma.201706157] [Cited by in Crossref: 105] [Cited by in F6Publishing: 71] [Article Influence: 26.3] [Reference Citation Analysis]
91 McGlynn E, Nabaei V, Ren E, Galeote-Checa G, Das R, Curia G, Heidari H. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. Adv Sci (Weinh) 2021;8:2002693. [PMID: 34026431 DOI: 10.1002/advs.202002693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
92 Koo JH, Kim DC, Shim HJ, Kim T, Kim D. Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Adv Funct Mater 2018;28:1801834. [DOI: 10.1002/adfm.201801834] [Cited by in Crossref: 165] [Cited by in F6Publishing: 74] [Article Influence: 41.3] [Reference Citation Analysis]
93 Özenler S, Sozen Y, Sahin H, Yildiz UH. Fabrication of a Postfunctionalizable, Biorepellent, Electroactive Polyurethane Interface on a Gold Surface by Surface-Assisted Polymerization. Langmuir 2020;36:6828-36. [PMID: 32459493 DOI: 10.1021/acs.langmuir.9b03922] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 Roshanbinfar K, Esser TU, Engel FB. Stem Cells and Their Cardiac Derivatives for Cardiac Tissue Engineering and Regenerative Medicine. Antioxid Redox Signal 2021;35:143-62. [PMID: 32993354 DOI: 10.1089/ars.2020.8193] [Reference Citation Analysis]
95 Lee GJ, Choi C, Kim D, Song YM. Bioinspired Artificial Eyes: Optic Components, Digital Cameras, and Visual Prostheses. Adv Funct Mater 2017;28:1705202. [DOI: 10.1002/adfm.201705202] [Cited by in Crossref: 75] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
96 Lee W, Kobayashi S, Nagase M, Jimbo Y, Saito I, Inoue Y, Yambe T, Sekino M, Malliaras GG, Yokota T, Tanaka M, Someya T. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci Adv 2018;4:eaau2426. [PMID: 30345362 DOI: 10.1126/sciadv.aau2426] [Cited by in Crossref: 65] [Cited by in F6Publishing: 44] [Article Influence: 16.3] [Reference Citation Analysis]
97 Park S, Loke G, Fink Y, Anikeeva P. Flexible fiber-based optoelectronics for neural interfaces. Chem Soc Rev 2019;48:1826-52. [PMID: 30815657 DOI: 10.1039/c8cs00710a] [Cited by in Crossref: 42] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
98 Liu J, Zhang X, Liu Y, Rodrigo M, Loftus PD, Aparicio-Valenzuela J, Zheng J, Pong T, Cyr KJ, Babakhanian M, Hasi J, Li J, Jiang Y, Kenney CJ, Wang PJ, Lee AM, Bao Z. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc Natl Acad Sci U S A 2020;117:14769-78. [PMID: 32541030 DOI: 10.1073/pnas.2000207117] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 11.5] [Reference Citation Analysis]
99 Lee Y, Kim J, Jang B, Kim S, Sharma BK, Kim J, Ahn J. Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 2019;62:259-67. [DOI: 10.1016/j.nanoen.2019.05.039] [Cited by in Crossref: 49] [Cited by in F6Publishing: 19] [Article Influence: 16.3] [Reference Citation Analysis]
100 Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem Rev 2019;119:8972-9073. [DOI: 10.1021/acs.chemrev.8b00745] [Cited by in Crossref: 112] [Cited by in F6Publishing: 54] [Article Influence: 37.3] [Reference Citation Analysis]
101 Lee JH, Kim H, Hwang JY, Chung J, Jang TM, Seo DG, Gao Y, Lee J, Park H, Lee S, Moon HC, Cheng H, Lee SH, Hwang SW. 3D Printed, Customizable, and Multifunctional Smart Electronic Eyeglasses for Wearable Healthcare Systems and Human-Machine Interfaces. ACS Appl Mater Interfaces 2020;12:21424-32. [PMID: 32319751 DOI: 10.1021/acsami.0c03110] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
102 Fallegger F, Schiavone G, Lacour SP. Conformable Hybrid Systems for Implantable Bioelectronic Interfaces. Adv Mater 2020;32:1903904. [DOI: 10.1002/adma.201903904] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 7.7] [Reference Citation Analysis]
103 Kim SH, Seo H, Kang J, Hong J, Seong D, Kim HJ, Kim J, Mun J, Youn I, Kim J, Kim YC, Seok HK, Lee C, Tok JB, Bao Z, Son D. An Ultrastretchable and Self-Healable Nanocomposite Conductor Enabled by Autonomously Percolative Electrical Pathways. ACS Nano 2019;13:6531-9. [PMID: 31072094 DOI: 10.1021/acsnano.9b00160] [Cited by in Crossref: 53] [Cited by in F6Publishing: 29] [Article Influence: 17.7] [Reference Citation Analysis]