1 |
Sgammeglia N, Sprecher SG. Interplay between metabolic energy regulation and memory pathways in Drosophila. Trends Neurosci 2022:S0166-2236(22)00081-9. [PMID: 35597687 DOI: 10.1016/j.tins.2022.04.007] [Reference Citation Analysis]
|
2 |
Shi Y, Pandit A, Nachman RJ, Christiaens O, Davies SA, Dow JAT, Smagghe G. Transcriptome analysis of neuropeptides in the beneficial insect lacewing (Chrysoperla carnea) identifies kinins as a selective pesticide target: a biostable kinin analogue with activity against the peach potato aphid Myzus persicae. J Pest Sci. [DOI: 10.1007/s10340-022-01511-6] [Reference Citation Analysis]
|
3 |
Khan Z, Tondravi M, Oliver R, Vonhoff FJ. Drosophila Corazonin Neurons as a Hub for Regulating Growth, Stress Responses, Ethanol-Related Behaviors, Copulation Persistence and Sexually Dimorphic Reward Pathways. J Dev Biol 2021;9:26. [PMID: 34287347 DOI: 10.3390/jdb9030026] [Reference Citation Analysis]
|
4 |
Gao H, Li Y, Wang M, Song X, Tang J, Feng F, Li B. Identification and Expression Analysis of G Protein-Coupled Receptors in the Miridae Insect Apolygus lucorum. Front Endocrinol (Lausanne) 2021;12:773669. [PMID: 34899608 DOI: 10.3389/fendo.2021.773669] [Reference Citation Analysis]
|
5 |
Moulin TC, Ferro F, Berkins S, Hoyer A, Williams MJ, Schiöth HB. Transient Administration of Dopaminergic Precursor Causes Inheritable Overfeeding Behavior in Young Drosophila melanogaster Adults. Brain Sci 2020;10:E487. [PMID: 32731370 DOI: 10.3390/brainsci10080487] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
|
6 |
Feng KL, Weng JY, Chen CC, Abubaker MB, Lin HW, Charng CC, Lo CC, de Belle JS, Tully T, Lien CC, Chiang AS. Neuropeptide F inhibits dopamine neuron interference of long-term memory consolidation in Drosophila. iScience 2021;24:103506. [PMID: 34934925 DOI: 10.1016/j.isci.2021.103506] [Reference Citation Analysis]
|
7 |
Nässel DR. Leucokinin and Associated Neuropeptides Regulate Multiple Aspects of Physiology and Behavior in Drosophila. Int J Mol Sci 2021;22:1940. [PMID: 33669286 DOI: 10.3390/ijms22041940] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
8 |
Yu X, Li W. Comparative insights into the integration mechanism of neuropeptides to starvation and temperature stress. Gen Comp Endocrinol 2022;316:113945. [PMID: 34826429 DOI: 10.1016/j.ygcen.2021.113945] [Reference Citation Analysis]
|
9 |
Neamtu AA, Szoke-Kovacs R, Mihok E, Georgescu C, Turcus V, Olah NK, Frum A, Tita O, Neamtu C, Szoke-Kovacs Z, Cziaky Z, Mathe E. Bilberry (Vaccinium myrtillus L.) Extracts Comparative Analysis Regarding Their Phytonutrient Profiles, Antioxidant Capacity along with the In Vivo Rescue Effects Tested on a Drosophila melanogaster High-Sugar Diet Model. Antioxidants (Basel) 2020;9:E1067. [PMID: 33143302 DOI: 10.3390/antiox9111067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
10 |
Liu W, Cao H, Liao S, Kudłak B, Williams MJ, Schiöth HB. Dibutyl phthalate disrupts conserved circadian rhythm in Drosophila and human cells. Sci Total Environ 2021;783:147038. [PMID: 34088158 DOI: 10.1016/j.scitotenv.2021.147038] [Reference Citation Analysis]
|
11 |
Shi Y, Liu TY, Ding BY, Niu J, Jiang HB, Liu TX, Wang JJ. Crustacean cardioactive peptide and its receptor modulate the ecdysis behavior in the pea aphid, Acyrthosiphon pisum. J Insect Physiol 2022;:104364. [PMID: 35121009 DOI: 10.1016/j.jinsphys.2022.104364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Verbakel L, Lenaerts C, Abou El Asrar R, Zandecki C, Bruyninckx E, Monjon E, Marchal E, Vanden Broeck J. Prothoracicostatic Activity of the Ecdysis-Regulating Neuropeptide Crustacean Cardioactive Peptide (CCAP) in the Desert Locust. Int J Mol Sci 2021;22:13465. [PMID: 34948262 DOI: 10.3390/ijms222413465] [Reference Citation Analysis]
|
13 |
Powell DJ, Marder E, Nusbaum MP. Perturbation-specific responses by two neural circuits generating similar activity patterns. Curr Biol 2021;31:4831-4838.e4. [PMID: 34506730 DOI: 10.1016/j.cub.2021.08.042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Réalis-Doyelle E, Schwartz J, Dubos MP, Favrel P. Molecular and physiological characterization of a crustacean cardioactive signaling system in a lophotrochozoan - the Pacific oyster (Crassostrea gigas): a role in reproduction and salinity acclimation. J Exp Biol 2021;224:jeb241588. [PMID: 34028518 DOI: 10.1242/jeb.241588] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
15 |
Mashhoor MV, Moharramipour S, Mikani A, Mehrabadi M. Erucin modulates digestive enzyme release via crustacean cardioactive peptide in the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). J Insect Physiol 2021;130:104196. [PMID: 33545106 DOI: 10.1016/j.jinsphys.2021.104196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Waldman J, Xavier MA, Vieira LR, Logullo R, Braz GRC, Tirloni L, Ribeiro JMC, Veenstra JA, Silva Vaz ID. Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks and Tick-borne Diseases 2022. [DOI: 10.1016/j.ttbdis.2022.101910] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Nässel DR, Zandawala M. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell Tissue Res 2020;382:233-66. [PMID: 32827072 DOI: 10.1007/s00441-020-03264-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
|
18 |
Shen CH, Jin L, Fu KY, Guo WC, Li GQ. Crustacean cardioactive peptide as a stimulator of feeding and a regulator of ecdysis in Leptinotarsa decemlineata. Pestic Biochem Physiol 2021;175:104838. [PMID: 33993963 DOI: 10.1016/j.pestbp.2021.104838] [Reference Citation Analysis]
|
19 |
Moulin TC, Covill LE, Itskov PM, Williams MJ, Schiöth HB. Rodent and fly models in behavioral neuroscience: An evaluation of methodological advances, comparative research, and future perspectives. Neurosci Biobehav Rev 2021;120:1-12. [PMID: 33242563 DOI: 10.1016/j.neubiorev.2020.11.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|