BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rantner LJ, Tice BM, Trayanova NA. Terminating ventricular tachyarrhythmias using far-field low-voltage stimuli: mechanisms and delivery protocols. Heart Rhythm 2013;10:1209-17. [PMID: 23628521 DOI: 10.1016/j.hrthm.2013.04.027] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Berberog̃lu E, Göktepe S. Computational Modeling of Myocardial Infarction. Procedia IUTAM 2015;12:52-61. [DOI: 10.1016/j.piutam.2014.12.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Trayanova NA, Rantner LJ. New insights into defibrillation of the heart from realistic simulation studies. Europace 2014;16:705-13. [PMID: 24798960 DOI: 10.1093/europace/eut330] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.1] [Reference Citation Analysis]
3 Tomii N, Yamazaki M, Arafune T, Kamiya K, Nakazawa K, Honjo H, Shibata N, Sakuma I. Interaction of phase singularities on the spiral wave tail: reconsideration of capturing the excitable gap. American Journal of Physiology-Heart and Circulatory Physiology 2018;315:H318-26. [DOI: 10.1152/ajpheart.00558.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Moreno A, Walton RD, Bernus O, Vigmond EJ, Bayer JD. Low-energy, single-pulse surface stimulation defibrillates large mammalian ventricles. Heart Rhythm 2021:S1547-5271(21)02222-0. [PMID: 34648972 DOI: 10.1016/j.hrthm.2021.10.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Buran P, Bär M, Alonso S, Niedermayer T. Control of electrical turbulence by periodic excitation of cardiac tissue. Chaos 2017;27:113110. [PMID: 29195336 DOI: 10.1063/1.5010787] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
6 Chang ET, Strong M, Clayton RH. Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator. PLoS One 2015;10:e0130252. [PMID: 26114610 DOI: 10.1371/journal.pone.0130252] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 4.9] [Reference Citation Analysis]
7 Lim H, Cun W, Wang Y, Gray RA, Glimm J. The role of conductivity discontinuities in design of cardiac defibrillation. Chaos 2018;28:013106. [DOI: 10.1063/1.5019367] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Buchan S, Kar R, John M, Post A, Razavi M. Electrical Stimulation for Low-Energy Termination of Cardiac Arrhythmias: a Review. Cardiovasc Drugs Ther 2021. [PMID: 34363570 DOI: 10.1007/s10557-021-07236-5] [Reference Citation Analysis]
9 Shah AR, Khan MS, Lange M, Hirahara AM, Stoddard G, Ranjan R, Dosdall DJ. During Early VF in Rabbit Hearts, His Bundle Pacing is Less Effective Than Working Myocardial Pacing in Modulating Left Ventricular Activation Rates. Cardiovasc Eng Technol 2021. [PMID: 34816378 DOI: 10.1007/s13239-021-00593-0] [Reference Citation Analysis]
10 Kantharia BK. Low-Voltage MultiPulse Therapy: Novel, Nonpharmacological, and Nonablation Method to Terminate Atrial Fibrillation. JACC Clin Electrophysiol 2021;7:1000-2. [PMID: 34412864 DOI: 10.1016/j.jacep.2021.01.012] [Reference Citation Analysis]
11 Lamata P, Casero R, Carapella V, Niederer SA, Bishop MJ, Schneider JE, Kohl P, Grau V. Images as drivers of progress in cardiac computational modelling. Prog Biophys Mol Biol 2014;115:198-212. [PMID: 25117497 DOI: 10.1016/j.pbiomolbio.2014.08.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 4.4] [Reference Citation Analysis]
12 Boyle PM, Karathanos TV, Entcheva E, Trayanova NA. Computational modeling of cardiac optogenetics: Methodology overview & review of findings from simulations. Comput Biol Med 2015;65:200-8. [PMID: 26002074 DOI: 10.1016/j.compbiomed.2015.04.036] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
13 Varghese F, Neuber JU, Xie F, Philpott JM, Pakhomov AG, Zemlin CW. Low-energy defibrillation with nanosecond electric shocks. Cardiovasc Res 2017;113:1789-97. [PMID: 29016714 DOI: 10.1093/cvr/cvx172] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
14 Prakosa A, Malamas P, Zhang S, Pashakhanloo F, Arevalo H, Herzka DA, Lardo A, Halperin H, McVeigh E, Trayanova N, Vadakkumpadan F. Methodology for image-based reconstruction of ventricular geometry for patient-specific modeling of cardiac electrophysiology. Prog Biophys Mol Biol 2014;115:226-34. [PMID: 25148771 DOI: 10.1016/j.pbiomolbio.2014.08.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 4.5] [Reference Citation Analysis]
15 Karathanos TV, Bayer JD, Wang D, Boyle PM, Trayanova NA. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study. J Physiol 2016;594:6879-91. [PMID: 26941055 DOI: 10.1113/JP271739] [Cited by in Crossref: 32] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
16 Shah AR, Khan MS, Hirahara AM, Lange M, Ranjan R, Dosdall DJ. A real-time system for selectively sensing and pacing the His-bundle during sinus rhythm and ventricular fibrillation. Biomed Eng Online 2020;19:19. [PMID: 32276597 DOI: 10.1186/s12938-020-00763-6] [Reference Citation Analysis]
17 Connolly A, Robson MD, Schneider J, Burton R, Plank G, Bishop MJ. Highly trabeculated structure of the human endocardium underlies asymmetrical response to low-energy monophasic shocks. Chaos 2017;27:093913. [PMID: 28964115 DOI: 10.1063/1.4999609] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
18 Connolly A, Vigmond E, Bishop M. Virtual electrodes around anatomical structures and their roles in defibrillation. PLoS One 2017;12:e0173324. [PMID: 28253365 DOI: 10.1371/journal.pone.0173324] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
19 Neuber JU, Varghese F, Pakhomov AG, Zemlin CW. Using Nanosecond Shocks for Cardiac Defibrillation. Bioelectricity 2019;1:240-6. [PMID: 32685917 DOI: 10.1089/bioe.2019.0030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
20 Semenov I, Grigoryev S, Neuber JU, Zemlin CW, Pakhomova ON, Casciola M, Pakhomov AG. Excitation and injury of adult ventricular cardiomyocytes by nano- to millisecond electric shocks. Sci Rep 2018;8:8233. [PMID: 29844431 DOI: 10.1038/s41598-018-26521-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
21 Qian S, Connolly A, Mendonca-Costa C, Campos F, Williams SE, Whitaker J, Rinaldi CA, Bishop MJ. An in-silico assessment of efficacy of two novel intra-cardiac electrode configurations versus traditional anti-tachycardia pacing therapy for terminating sustained ventricular tachycardia. Comput Biol Med 2021;139:104987. [PMID: 34741904 DOI: 10.1016/j.compbiomed.2021.104987] [Reference Citation Analysis]
22 Ji YC, Uzelac I, Otani N, Luther S, Gilmour RF, Cherry EM, Fenton FH. Synchronization as a mechanism for low-energy anti-fibrillation pacing. Heart Rhythm 2017;14:1254-62. [DOI: 10.1016/j.hrthm.2017.05.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
23 Connolly AJ, Vigmond E, Bishop MJ. Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels. Front Bioeng Biotechnol 2017;5:18. [PMID: 28396856 DOI: 10.3389/fbioe.2017.00018] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
24 Arevalo HJ, Boyle PM, Trayanova NA. Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. Prog Biophys Mol Biol 2016;121:185-94. [PMID: 27334789 DOI: 10.1016/j.pbiomolbio.2016.06.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
25 Tveito A, Jæger KH, Kuchta M, Mardal K, Rognes ME. A Cell-Based Framework for Numerical Modeling of Electrical Conduction in Cardiac Tissue. Front Phys 2017;5:48. [DOI: 10.3389/fphy.2017.00048] [Cited by in Crossref: 36] [Cited by in F6Publishing: 5] [Article Influence: 7.2] [Reference Citation Analysis]
26 Neuber JU, Pakhomov AG, Zemlin CW. Electroporation safety factor of 300 nanosecond and 10 millisecond defibrillation in Langendorff-perfused rabbit hearts. PLoS One 2021;16:e0257287. [PMID: 34559811 DOI: 10.1371/journal.pone.0257287] [Reference Citation Analysis]
27 Bishop MJ, Plank G. Simulating photon scattering effects in structurally detailed ventricular models using a Monte Carlo approach. Front Physiol 2014;5:338. [PMID: 25309442 DOI: 10.3389/fphys.2014.00338] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
28 Trayanova NA, Boyle PM. Advances in modeling ventricular arrhythmias: from mechanisms to the clinic. Wiley Interdiscip Rev Syst Biol Med 2014;6:209-24. [PMID: 24375958 DOI: 10.1002/wsbm.1256] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
29 Trayanova NA, Chang KC. How computer simulations of the human heart can improve anti-arrhythmia therapy. J Physiol 2016;594:2483-502. [PMID: 26621489 DOI: 10.1113/JP270532] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
30 Roth BJ. Bidomain simulations of defibrillation: 20 years of progress. Heart Rhythm 2013;10:1218-9. [PMID: 23643512 DOI: 10.1016/j.hrthm.2013.05.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
31 Gemmell P, Burrage K, Rodríguez B, Quinn TA. Rabbit-specific computational modelling of ventricular cell electrophysiology: Using populations of models to explore variability in the response to ischemia. Prog Biophys Mol Biol 2016;121:169-84. [PMID: 27320382 DOI: 10.1016/j.pbiomolbio.2016.06.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
32 Connolly A, Williams S, Rhode K, Rinaldi CA, Bishop MJ. Conceptual Intra-Cardiac Electrode Configurations That Facilitate Directional Cardiac Stimulation for Optimal Electrotherapy. IEEE Trans Biomed Eng 2019;66:1259-68. [PMID: 31021745 DOI: 10.1109/TBME.2018.2871863] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Berberoğlu E, Solmaz HO, Göktepe S. Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions. European Journal of Mechanics - A/Solids 2014;48:60-73. [DOI: 10.1016/j.euromechsol.2014.02.021] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]