BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fernandes GM, Silva WR, Barreto DN, Lamarca RS, Lima Gomes PCF, Flávio da S Petruci J, Batista AD. Novel approaches for colorimetric measurements in analytical chemistry - A review. Anal Chim Acta 2020;1135:187-203. [PMID: 33070854 DOI: 10.1016/j.aca.2020.07.030] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 30.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhao G, Liu S, Li G, Fang W, Liao Y, Li R, Fu L, Wang J. A customizable automated container-free multi-strip detection and line recognition system for colorimetric analysis with lateral flow immunoassay for lean meat powder based on machine vision and smartphone. Talanta 2023;253:123925. [DOI: 10.1016/j.talanta.2022.123925] [Reference Citation Analysis]
2 Barreto DN, Conrado JAM, Lamarca RS, Batista AD, Cardoso AA, Lima Gomes PCFD, da Silveira Petruci JF. Sensing Materials: UV/Vis-Based Optical Sensors for Gaseous and Volatile Analytes. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00009-1] [Reference Citation Analysis]
3 Benito-altamirano I, Martínez-carpena D, Casals O, Fábrega C, Waag A, Prades JD. Back-compatible Color QR Codes for colorimetric applications. Pattern Recognition 2023;133:108981. [DOI: 10.1016/j.patcog.2022.108981] [Reference Citation Analysis]
4 de Castro CM, Olivi P, de Freitas Araújo KC, Barbosa Segundo ID, dos Santos EV, Martínez-huitle CA. Environmental application of a cost-effective smartphone-based method for COD analysis: Applicability in the electrochemical treatment of real wastewater. Science of The Total Environment 2023;855:158816. [DOI: 10.1016/j.scitotenv.2022.158816] [Reference Citation Analysis]
5 Sousa LR, Silva-neto HA, Moreira NS, Guinati BG, Coltro WK. Sensing Materials: Paper Substrates. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00055-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Forbes TP, Burks R. Field-Deployable Devices. Encyclopedia of Forensic Sciences, Third Edition 2023. [DOI: 10.1016/b978-0-12-823677-2.00060-x] [Reference Citation Analysis]
7 Martínez-pérez-cejuela H, Mesquita RB, Couto JA, Simó-alfonso E, Herrero-martínez J, Rangel AOS. Design of a microfluidic paper-based device for the quantification of phenolic compounds in wine samples. Talanta 2022;250:123747. [DOI: 10.1016/j.talanta.2022.123747] [Reference Citation Analysis]
8 Dalapati R, Hunter M, Zang L. A Dual Fluorometric and Colorimetric Sulfide Sensor Based on Coordinating Self-Assembled Nanorods: Applicable for Monitoring Meat Spoilage. Chemosensors 2022;10:500. [DOI: 10.3390/chemosensors10120500] [Reference Citation Analysis]
9 da Silva Sousa D, Leal VG, dos Reis GT, da Silva SG, Cardoso AA, da Silveira Petruci JF. An Automated, Self-Powered, and Integrated Analytical Platform for On-Line and In Situ Air Quality Monitoring. Chemosensors 2022;10:454. [DOI: 10.3390/chemosensors10110454] [Reference Citation Analysis]
10 Rastogi S, Kumari V, Sharma V, Ahmad FJ. RGB colorimetric method based detection of oxytocin in food samples using cysteamine functionalized gold nanoparticles. Anal Biochem 2022;656:114886. [PMID: 36087767 DOI: 10.1016/j.ab.2022.114886] [Reference Citation Analysis]
11 Ghasemi F, Fahimi-kashani N, Bigdeli A, Alshatteri AH, Abbasi-moayed S, Al-jaf SH, Merry MY, Omer KM, Hormozi-nezhad MR. Paper-based optical nanosensors – A review. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340640] [Reference Citation Analysis]
12 Grazioli C, Dossi N, Cesaro F, Svigelj R, Toniolo R, Bontempelli G. A 3D printed Do-It-Yourself miniaturized device with a sensor responsive at six different wavelengths for reflectance measurements on paper-based supports. Microchemical Journal 2022;182:107857. [DOI: 10.1016/j.microc.2022.107857] [Reference Citation Analysis]
13 Al-Saidi HM, Khan S. A Review on Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Ag(I) Ions. Crit Rev Anal Chem 2022;:1-27. [PMID: 36251012 DOI: 10.1080/10408347.2022.2133561] [Reference Citation Analysis]
14 Teixeira GG, Santos PM. Simple and cost-effective approaches for quantification of reducing sugar exploiting digital image analysis. Journal of Food Composition and Analysis 2022;113:104719. [DOI: 10.1016/j.jfca.2022.104719] [Reference Citation Analysis]
15 Xin J, Pang H, Jin Z, Wu Q, Yu X, Ma H, Wang X, Tan L, Yang G. Two Polyoxometalate-Encapsulated Two-Fold Interpenetrating dia Metal-Organic Frameworks for the Detection, Discrimination, and Degradation of Phenolic Pollutants. Inorg Chem 2022. [PMID: 36173134 DOI: 10.1021/acs.inorgchem.2c02454] [Reference Citation Analysis]
16 Facure MHM, Andre RS, Mercante LA, Correa DS. Colorimetric Detection of Antioxidants in Food Samples Using MnO 2 /Graphene Quantum Dot Composites with Oxidase-like Activity. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03340] [Reference Citation Analysis]
17 Li H, Fang T, Tan Q, Ma J. Development of a versatile smartphone-based environmental analyzer (vSEA) and its application in on-site nutrient detection. Science of The Total Environment 2022;838:156197. [DOI: 10.1016/j.scitotenv.2022.156197] [Reference Citation Analysis]
18 Liao J, Yu Z, Fu L, Liu J, Jia L. Enzyme-free colorimetric detection of biothiols based on the photoinduced oxidation of 3,3',5,5'-tetramethylbenzidine. Anal Bioanal Chem 2022. [PMID: 36040483 DOI: 10.1007/s00216-022-04304-z] [Reference Citation Analysis]
19 Housaindokht MR, Jamshidi A, Janati-fard F. Recent advances in polyoxometalates for spectroscopic sensors: a review. J Mater Sci. [DOI: 10.1007/s10853-022-07500-5] [Reference Citation Analysis]
20 Salem H, Mazen DZ, Heshmat D, Mahmoud MM, Ali E, Abdelaziz A. Development and validation of three colorimetric charge transfer complexes for estimation of fingolimod as an antineoplastic drug in pharmaceutical and biological samples. Chem Pap . [DOI: 10.1007/s11696-022-02334-6] [Reference Citation Analysis]
21 Anconi ACSA, Brito NCS, Nunes CA. Determination of peroxide value in edible oils based on Digital Image Colorimetry. Journal of Food Composition and Analysis 2022. [DOI: 10.1016/j.jfca.2022.104724] [Reference Citation Analysis]
22 Della Noce Wehbe F, Mendes da Silva D, Domingues Batista A, da Silveira Petruci JF. Heat-based procedure for detectability enhancement of colorimetric paper-based spot tests. Microchemical Journal 2022;177:107320. [DOI: 10.1016/j.microc.2022.107320] [Reference Citation Analysis]
23 He L, Tan J, Liu C, Wu S, Zhang Q, Redshaw C, Ni X. Triphenylamine Derived Radical Cations for Colorimetric Cu 2+ Sensors and as an Antibacterial Agent. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202201155] [Reference Citation Analysis]
24 Filgueiras MF, de Oliveira Lima B, Borges EM. A high-throughput, cheap, and green method for determination of ethanol in cachaça and vodka using 96-well-plate images. Talanta 2022;241:123229. [DOI: 10.1016/j.talanta.2022.123229] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
25 Nix C, Ghassemi M, Crommen J, Fillet M. Overview on microfluidics devices for monitoring brain disorder biomarkers. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116693] [Reference Citation Analysis]
26 Filgueiras MF, Borges EM. Iron Quantification in Dietary Supplements using Four Colorimetric Assays. J Chem Educ . [DOI: 10.1021/acs.jchemed.1c00869] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Ye X, Zhang F, Yang L, Yang W, Zhang L, Wang Z. Paper-based multicolor sensor for on-site quantitative detection of 2,4-dichlorophenoxyacetic acid based on alkaline phosphatase-mediated gold nanobipyramids growth and colorimeter-assisted method for quantifying color. Talanta 2022;245:123489. [PMID: 35460981 DOI: 10.1016/j.talanta.2022.123489] [Reference Citation Analysis]
28 Mazzaracchio V, Sassolini A, Mitra KY, Mitra D, Stojanović GM, Willert A, Sowade E, Baumann RR, Zichner R, Moscone D, Arduini F. A fully-printed electrochemical platform for assisted colorimetric detection of phosphate in saliva: Greenness and whiteness quantification by the AGREE and RGB tools. Green Analytical Chemistry 2022;1:100006. [DOI: 10.1016/j.greeac.2022.100006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Filgueiras MF, Borges EM. Quick and Cheap Colorimetric Quantification of Proteins Using 96-Well-Plate Images. J Chem Educ . [DOI: 10.1021/acs.jchemed.1c00756] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Camarillo-escobedo R, Flores-nuñez JL, Garcia-torales G, Hernandez-campos E, Camarillo-escobedo JM. 3D printed opto-microfluidic autonomous analyzer for photometric applications. Sensors and Actuators A: Physical 2022;337:113425. [DOI: 10.1016/j.sna.2022.113425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Huang ZJ, Luo JY, Zheng FY, Li SX, Liu FJ, Lin LX, Huang YJ, Man S, Cao GX, Huang XG. Long-term stable, high accuracy, and visual detection platform for In-field analysis of nitrite in food based on colorimetric test paper and deep convolutional neural networks. Food Chem 2022;373:131593. [PMID: 34838401 DOI: 10.1016/j.foodchem.2021.131593] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Villarino N, Pena-Pereira F, Lavilla I, Bendicho C. Waterproof Cellulose-Based Substrates for In-Drop Plasmonic Colorimetric Sensing of Volatiles: Application to Acid-Labile Sulfide Determination in Waters. ACS Sens 2022;7:839-48. [PMID: 35285629 DOI: 10.1021/acssensors.1c02585] [Reference Citation Analysis]
33 da Silva Souza D, Fernandes GM, Dias BC, Stefanelli Junior JR, Sequinel R, da Silveira Petruci JF. A Green Analytical Methodology for Detecting Adulteration in Automotive Urea-SCR Products Using Microfluidic-Paper Analytical Devices. Sustainability 2022;14:3363. [DOI: 10.3390/su14063363] [Reference Citation Analysis]
34 Iqbal S, Nadeem S, Javed M, Alsaab HO, Awwad NS, Ibrahium HA, Mohyuddin A. Controlled preparation of grafted starch modified with Ni nanoparticles for biodegradable polymer nanocomposites and its application in food packaging. Microsc Res Tech 2022. [PMID: 35238434 DOI: 10.1002/jemt.24089] [Reference Citation Analysis]
35 Tang X, Su R, Luo H, Zhao Y, Feng L, Chen J. Colorimetric detection of Aflatoxin B1 by using smartphone-assisted microfluidic paper-based analytical devices. Food Control 2022;132:108497. [DOI: 10.1016/j.foodcont.2021.108497] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
36 Chaitavon K, Sumriddetchkajorn S, Prasertsak A, Chanhorm S, Prempree P, Intaravanne Y. Mobile-device-based two-dimensional measurement for estimating the embryo and endosperm areas of brown rice. Appl Opt 2022;61:E14. [DOI: 10.1364/ao.444854] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Alharthi S, El-naggar ME, Abu-saied M, Khattab TA, Saleh DI. Preparation of biosensor based on triarylmethane loaded cellulose acetate xerogel for the detection of urea. Materials Chemistry and Physics 2022;276:125377. [DOI: 10.1016/j.matchemphys.2021.125377] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
38 Baghban HN, Hasanzadeh M, Liu Y, Seidi F. A portable colorimetric chemosensing regime for ractopamine in chicken samples using μPCD decorated by silver nanoprisms. RSC Adv 2022;12:25675-86. [DOI: 10.1039/d2ra04793d] [Reference Citation Analysis]
39 de Carvalho Oliveira G, Machado CCS, Inácio DK, Silveira Petruci JFD, Silva SG. RGB color sensor for colorimetric determinations: Evaluation and quantitative analysis of colored liquid samples. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123244] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
40 Kalinichev AV, Kravchenko AV, Gryazev IP, Kechin AA, Karpukhin OR, Khairullina EM, Kartsova LA, Golovkina AG, Kozynchenko VA, Peshkova MA, Tumkin II. Classification of ballpoint pen inks based on selective extraction and subsequent digital color and cluster analyses. Analyst 2022;147:3055-3064. [DOI: 10.1039/d2an00482h] [Reference Citation Analysis]
41 Xu W, Ceylan Koydemir H. Non-invasive biomedical sensors for early detection and monitoring of bacterial biofilm growth at the point of care. Lab Chip 2022. [DOI: 10.1039/d2lc00776b] [Reference Citation Analysis]
42 Amouzegar Z, Rezvani Jalal N, Kamalabadi M, Abbasi Tarighat M, Afkhami A, Madrakian T, Thomas S, Nguyen TA, Ahmadi M. Spectrometric miniaturized instruments. Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems 2022. [DOI: 10.1016/b978-0-12-823727-4.00016-x] [Reference Citation Analysis]
43 Costa-rama E, Fernández-abedul MT. Signal detection techniques. Wearable Physical, Chemical and Biological Sensors 2022. [DOI: 10.1016/b978-0-12-821661-3.00008-2] [Reference Citation Analysis]
44 Ghoorchian A, Rezvani Jalal N, Kamalabadi M, Mollarasouli F, Moradi M, Asadi S, Afkhami A, Madrakian T, Thomas S, Nguyen TA, Ahmadi M. Smartphone-enabled miniaturized analytical devices. Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems 2022. [DOI: 10.1016/b978-0-12-823727-4.00005-5] [Reference Citation Analysis]
45 Samir A, Salem H, Abdelkawy M. Optimization of two charge transfer reactions for colorimetric determination of two beta 2 agonist drugs, salmeterol xinafoate and salbutamol, in pharmaceutical and biological samples. Spectrochim Acta A Mol Biomol Spectrosc 2021;269:120747. [PMID: 34952438 DOI: 10.1016/j.saa.2021.120747] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 de Carvalho TCL, Nunes CA. Smartphone-based method for the determination of chlorophyll and carotenoid contents in olive and avocado oils: An approach with calibration transfer. Journal of Food Composition and Analysis 2021;104:104164. [DOI: 10.1016/j.jfca.2021.104164] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
47 Ortiz-martínez M, Flores-delatoba R, González-gonzález M, Rito-palomares M. Current Challenges and Future Trends of Enzymatic Paper-Based Point-of-Care Testing for Diabetes Mellitus Type 2. Biosensors 2021;11:482. [DOI: 10.3390/bios11120482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
48 Xu J, Khan H, Yang L. Hydrogel Paper-Based Analytical Devices: Separation-Free In Situ Assay of Small-Molecule Targets in Whole Blood. Anal Chem 2021;93:14755-63. [PMID: 34709797 DOI: 10.1021/acs.analchem.1c03347] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
49 Gawlik-kobylińska M, Gudzbeler G, Szklarski Ł, Kopp N, Koch-eschweiler H, Urban M. The EU-SENSE System for Chemical Hazards Detection, Identification, and Monitoring. Applied Sciences 2021;11:10308. [DOI: 10.3390/app112110308] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Faura G, Grazioli C, Dossi N, Svigelj R, Toniolo R, Bontempelli G. Transmittance measurements on paper soaked with deep eutectic solvents. Microchemical Journal 2021;170:106690. [DOI: 10.1016/j.microc.2021.106690] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Bhattu M, Verma M, Kathuria D. Recent advancements in the detection of organophosphate pesticides: a review. Anal Methods 2021;13:4390-428. [PMID: 34486591 DOI: 10.1039/d1ay01186c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
52 Tiuftiakov NY, Kalinichev AV, Pokhvishcheva NV, Peshkova MA. Digital color analysis for colorimetric signal processing: Towards an analytically justified choice of acquisition technique and color space. Sensors and Actuators B: Chemical 2021;344:130274. [DOI: 10.1016/j.snb.2021.130274] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Filgueiras MF, de Jesus PC, Borges EM. Quantification of Nitrite in Food and Water Samples Using the Griess Assay and Digital Images Acquired Using a Desktop Scanner. J Chem Educ 2021;98:3303-11. [DOI: 10.1021/acs.jchemed.0c01392] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
54 Yuan Z, Wang L, Chen J, Su W, Li A, Su G, Liu P, Zhou X. Electrochemical strategies for the detection of cTnI. Analyst 2021;146:5474-95. [PMID: 34515706 DOI: 10.1039/d1an00808k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
55 Moreira BM, Lima AP, Munoz RAA, Petruci JFDS. An indirect electrochemical method for aqueous sulfide determination in freshwaters using a palladium chelate as a selective sensor. Talanta 2021;231:122413. [PMID: 33965053 DOI: 10.1016/j.talanta.2021.122413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Choi MG, Kwon S, Chang S. Convenient office scanner-based Au3+ analysis using dual signaling of resorufin dimethylthiocarbamate. Dyes and Pigments 2021;192:109394. [DOI: 10.1016/j.dyepig.2021.109394] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Zheng X, Zhang F, Wang K, Zhang W, Li Y, Sun Y, Sun X, Li C, Dong B, Wang L, Xu L. Smart biosensors and intelligent devices for salivary biomarker detection. TrAC Trends in Analytical Chemistry 2021;140:116281. [DOI: 10.1016/j.trac.2021.116281] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 20.0] [Reference Citation Analysis]
58 Charbaji A, Heidari-bafroui H, Rahmani N, Anagnostopoulos C, Faghri M. Colorimetric Determination of Nitrate after Reduction to Nitrite in a Paper-Based Dip Strip. The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry 2021. [DOI: 10.3390/csac2021-10459] [Reference Citation Analysis]
59 Stefani A, Gotz T, Vieregge JM, Wiedmann M, Tschekalinskij W, Holzer N, Peters V, Dold M, Bauerfeld M, Junger S. Investigation of the influence of the number of spectral channels in colorimetric analysis. 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) 2021. [DOI: 10.1109/cleo/europe-eqec52157.2021.9542450] [Reference Citation Analysis]
60 Fang T, Li H, Bo G, Lin K, Yuan D, Ma J. On-site detection of nitrate plus nitrite in natural water samples using smartphone-based detection. Microchemical Journal 2021;165:106117. [DOI: 10.1016/j.microc.2021.106117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
61 Soda Y, Bakker E. Colorimetric ratiometry with ion optodes for spatially resolved concentration analysis. Anal Chim Acta 2021;1154:338225. [PMID: 33736816 DOI: 10.1016/j.aca.2021.338225] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
62 Pohanka M, Denizli A. Point-of-Care Diagnoses and Assays Based on Lateral Flow Test. International Journal of Analytical Chemistry 2021;2021:1-9. [DOI: 10.1155/2021/6685619] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
63 Rincon-jimenez A, Tinoco HA, Buitrago-osorio J, Ocampo O, Berrio LV, Rodriguez-sotelo JL, Arizmendi C. Ripeness stage characterization of coffee fruits (coffea arabica L. var. Castillo) applying chromaticity maps obtained from digital images. Materials Today: Proceedings 2021;44:1271-8. [DOI: 10.1016/j.matpr.2020.11.264] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Figura L. Optische Eigenschaften. Lebensmittelphysik 2021. [DOI: 10.1007/978-3-662-63288-8_12] [Reference Citation Analysis]
65 Charbaji A, Heidari-Bafroui H, Anagnostopoulos C, Faghri M. A New Paper-Based Microfluidic Device for Improved Detection of Nitrate in Water. Sensors (Basel) 2020;21:E102. [PMID: 33375290 DOI: 10.3390/s21010102] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]