BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin F, Jia C, Wu F. Carbon Dots for Intracellular Sensing. Small Structures. [DOI: 10.1002/sstr.202200033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Bai H, Jin X, Cheng Z, Zhou H, Wang H, Yu J, Zuo J, Chen W. Highly efficient regulation strategy of fluorescence emission wavelength via designing the structure of carbon dots. Adv Compos Hybrid Mater 2023;6:62. [DOI: 10.1007/s42114-023-00641-4] [Reference Citation Analysis]
2 Xin N, Gao D, Su B, Zhou T, Zhu Y, Wu C, Wei D, Sun J, Fan H. Orange-Emissive Carbon Dots with High Photostability for Mitochondrial Dynamics Tracking in Living Cells. ACS Sens 2023;8:1161-72. [PMID: 36795996 DOI: 10.1021/acssensors.2c02451] [Reference Citation Analysis]
3 Shellaiah M, Sun KW. Review on Carbon Dot-Based Fluorescent Detection of Biothiols. Biosensors 2023;13:335. [DOI: 10.3390/bios13030335] [Reference Citation Analysis]
4 Liang C, Shi Q, Zhang Y, Xie X. Water-soluble carbonized polymer dots with tunable solid- and dispersion-state fluorescence for multicolor films, anti-counterfeiting and fungal imaging. Materials Today Nano 2023. [DOI: 10.1016/j.mtnano.2023.100324] [Reference Citation Analysis]
5 Liu J, Zhan Y, Qiu B, Lin Z, Guo L. Portable Smartphone Platform Based on Aggregation-Induced Enhanced Emission Carbon Dots for Ratiometric Quantitative Sensing of Fluoride Ions. ACS Sens 2023;8:884-92. [PMID: 36657970 DOI: 10.1021/acssensors.2c02589] [Reference Citation Analysis]
6 Wang J, An J, Zhang Z, Zhu H, Liang X, Yang S, Sheng K, Chen L, Lu H, Wang Y. High fluorescent nitrogen−doped carbon dots derived from Sanghuangporus lonicericola for detecting tetracyclines in aquaculture water and rat serum samples. Microchemical Journal 2023. [DOI: 10.1016/j.microc.2023.108517] [Reference Citation Analysis]
7 Xu KF, Jia HR, Wang Z, Feng HH, Li LY, Zhang R, Durrani S, Lin F, Wu FG. See the Unseen: Red-Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and In Vivo Drug Toxicity. Small 2023;:e2205890. [PMID: 36634974 DOI: 10.1002/smll.202205890] [Reference Citation Analysis]
8 Durrani S, Yang Z, Zhang J, Wang Z, Wang H, Durrani F, Wu F, Lin F. Nucleus-targeting pH-Responsive carbon dots for fast nucleus pH detection. Talanta 2023;252:123855. [DOI: 10.1016/j.talanta.2022.123855] [Reference Citation Analysis]
9 Durrani S, Zhang J, Mukramin, Wang H, Wang Z, Khan LU, Zhang F, Durrani F, Wu F, Lin F. Biomass-Based Carbon Dots for Fe3+ and Adenosine Triphosphate Detection in Mitochondria. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c03740] [Reference Citation Analysis]
10 Yang Y, Ding H, Li Z, Tedesco AC, Bi H. Carbon Dots Derived from Tea Polyphenols as Photosensitizers for Photodynamic Therapy. Molecules 2022;27. [PMID: 36500718 DOI: 10.3390/molecules27238627] [Reference Citation Analysis]
11 bai H, Jin X, Cheng Z, Zhou H, Wang H, Yu J, Zuo J, Chen W. Highly Efficient Regulation Strategy of Fluorescence Emission Wavelength via Designing the Structure of Carbon Dots.. [DOI: 10.21203/rs.3.rs-2242391/v1] [Reference Citation Analysis]
12 Lin F, Wang Z, Wu FG. Carbon Dots for Killing Microorganisms: An Update since 2019. Pharmaceuticals (Basel) 2022;15:1236. [PMID: 36297348 DOI: 10.3390/ph15101236] [Reference Citation Analysis]