BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Paisley NR, Halldorson SV, Tran MV, Gupta R, Kamal S, Algar WR, Hudson ZM. Near-Infrared-Emitting Boron-Difluoride-Curcuminoid-Based Polymers Exhibiting Thermally Activated Delayed Fluorescence as Biological Imaging Probes. Angew Chem Int Ed Engl 2021;60:18630-8. [PMID: 34133838 DOI: 10.1002/anie.202103965] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 15.5] [Reference Citation Analysis]
Number Citing Articles
1 Bergmann K, Hojo R, Hudson ZM. Uncovering the Mechanism of Thermally Activated Delayed Fluorescence in Coplanar Emitters Using Potential Energy Surface Analysis. J Phys Chem Lett 2023;14:310-7. [PMID: 36602966 DOI: 10.1021/acs.jpclett.2c03425] [Reference Citation Analysis]
2 Ye Z, Lian M, Yang Z, Fu Y, Wang Z, Mu Y, Ji S, Zhang H, Yuan L, Chi Z, Huo Y. Long‐Lived Emissive Hydrogen‐Bonded Macrocycles: Donors Regulating Room‐Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Advanced Optical Materials 2023. [DOI: 10.1002/adom.202202521] [Reference Citation Analysis]
3 Jiang Y, Zhang J, Jung SR, Chen H, Xu S, Chiu DT. High-Precision Mapping of Membrane Proteins on Synaptic Vesicles using Spectrally Encoded Super-Resolution Imaging. Angew Chem Int Ed Engl 2022;:e202217889. [PMID: 36581589 DOI: 10.1002/anie.202217889] [Reference Citation Analysis]
4 Li W, Zhang J, Gao Z, Qi J, Ding D. Advancing biomedical applications via manipulating intersystem crossing. Coordination Chemistry Reviews 2022;471:214754. [DOI: 10.1016/j.ccr.2022.214754] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Mayder DM, Christopherson CJ, Primrose WL, Lin AS, Hudson ZM. Polymer dots and glassy organic dots using dibenzodipyridophenazine dyes as water-dispersible TADF probes for cellular imaging. J Mater Chem B 2022;10:6496-506. [PMID: 35979840 DOI: 10.1039/d2tb01252a] [Reference Citation Analysis]
6 Cappello D, Buguis FL, Gilroy JB. Tuning the Properties of Donor–Acceptor and Acceptor–Donor–Acceptor Boron Difluoride Hydrazones via Extended π-Conjugation. ACS Omega. [DOI: 10.1021/acsomega.2c04401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hempe M, Kukhta NA, Danos A, Batsanov AS, Monkman AP, Bryce MR. Intramolecular Hydrogen Bonding in Thermally Activated Delayed Fluorescence Emitters: Is There Evidence Beyond Reasonable Doubt? J Phys Chem Lett 2022;:8221-7. [PMID: 36007139 DOI: 10.1021/acs.jpclett.2c00907] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Mayder DM, Hojo R, Primrose WL, Tonge CM, Hudson ZM. Heptazine‐Based TADF Materials for Nanoparticle‐Based Non‐linear Optical Bioimaging. Adv Funct Materials. [DOI: 10.1002/adfm.202204087] [Reference Citation Analysis]
9 Ye L, Lv C, Yao Y, Wang K, Song Q, Wang K, Zhang C, Zhang Y. Deep‐Red Fluorescence from AIE‐Active Luminophore: High‐Brightness and Wide‐Range Piezochromism**. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202201148] [Reference Citation Analysis]
10 Riahin C, Meares A, Esemoto NN, Ptaszek M, LaScola M, Pandala N, Lavik E, Yang M, Stacey G, Hu D, Traeger JC, Orr G, Rosenzweig Z. Hydroporphyrin-Doped Near-Infrared-Emitting Polymer Dots for Cellular Fluorescence Imaging. ACS Appl Mater Interfaces 2022;14:20790-801. [PMID: 35451825 DOI: 10.1021/acsami.2c02551] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Shang A, Zhao L, Li Z, Cheng Z, Jin H, Feng Z, Chen Z, Zhang H, Lu P. Rational Design of a Near-infrared Fluorescent Material with High Solid-state Efficiency, Aggregation-induced Emission and Live Cell Imaging Property. Chem Res Chin Univ . [DOI: 10.1007/s40242-022-2046-5] [Reference Citation Analysis]
12 Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022;23:4949. [PMID: 35563340 DOI: 10.3390/ijms23094949] [Reference Citation Analysis]
13 Murali AC, Nayak P, Venkatasubbaiah K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds. Dalton Trans 2022;51:5751-71. [PMID: 35343524 DOI: 10.1039/d2dt00160h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
14 Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022;61:e202117872. [PMID: 35146858 DOI: 10.1002/anie.202117872] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Mayder DM, Tonge CM, Nguyen GD, Hojo R, Paisley NR, Yu J, Tom G, Burke SA, Hudson ZM. Design of High-Performance Thermally Activated Delayed Fluorescence Emitters Containing s -Triazine and s -Heptazine with Molecular Orbital Visualization by STM. Chem Mater . [DOI: 10.1021/acs.chemmater.1c03870] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
16 Mcquade J, Serrano MI, Jäkle F. Main group functionalized polymers through ring-opening metathesis polymerization (ROMP). Polymer 2022. [DOI: 10.1016/j.polymer.2022.124739] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Yu M, Zhao W, Ni F, Zhao Q, Yang C. Photoswitchable Thermally Activated Delayed Fluorescence Nanoparticles for “Double‐Check” Confocal and Time‐Resolved Luminescence Bioimaging. Advanced Optical Materials 2022;10:2102437. [DOI: 10.1002/adom.202102437] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
18 Wang JX, Peng LY, Liu ZF, Zhu X, Niu LY, Cui G, Yang QZ. Tunable Fluorescence and Afterglow in Organic Crystals for Temperature Sensing. J Phys Chem Lett 2022;:1985-90. [PMID: 35188776 DOI: 10.1021/acs.jpclett.2c00168] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
19 Fang F, Yuan Y, Wan Y, Li J, Song Y, Chen WC, Zhao D, Chi Y, Li M, Lee CS, Zhang J. Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Levels. Small 2022;18:e2106215. [PMID: 35018711 DOI: 10.1002/smll.202106215] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
20 Jaiswal S, Das S, Kundu S, Rawal I, Anand P, Patra A. Progress and perspectives: fluorescent to long-lived emissive multifunctional probes for intracellular sensing and imaging. J Mater Chem C 2022;10:6141-95. [DOI: 10.1039/d2tc00241h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Wang X, Wang G, Li J, Li X, Zhang K. A simple and straightforward polymer post-modification method for wearable difluoroboron β-diketonate luminescent sensors. Polymer 2022;239:124449. [DOI: 10.1016/j.polymer.2021.124449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Hojo R, Mayder DM, Hudson ZM. Deep-blue emission and thermally activated delayed fluorescence via Dimroth rearrangement of tris(triazolo)triazines. J Mater Chem C. [DOI: 10.1039/d2tc01153k] [Reference Citation Analysis]
23 Cardeynaels T, Etherington MK, Paredis S, Batsanov AS, Deckers J, Stavrou K, Vanderzande D, Monkman AP, Champagne B, Maes W. Dominant dimer emission provides colour stability for red thermally activated delayed fluorescence emitter. J Mater Chem C 2022;10:5840-8. [DOI: 10.1039/d1tc04913e] [Reference Citation Analysis]
24 Yang H, Guo S, Jin B, Luo Y, Li X. Versatile, stable, and air-tolerant triplet–triplet annihilation upconversion block copolymer micelles. Polym Chem . [DOI: 10.1039/d2py00596d] [Reference Citation Analysis]
25 Zhang J, Li J, Li X, Yuan S, Sun Y, Zou Y, Pan Y, Zhang K. Boosting organic afterglow efficiency via triplet–triplet annihilation and thermally-activated delayed fluorescence. J Mater Chem C 2022;10:4795-804. [DOI: 10.1039/d1tc04903h] [Reference Citation Analysis]
26 Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. Adv Sci (Weinh) 2021;8:e2102970. [PMID: 34705318 DOI: 10.1002/advs.202102970] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
27 Du Y, Liu D, Du Y. Recent advances in hepatocellular carcinoma therapeutic strategies and imaging-guided treatment. J Drug Target 2021;:1-15. [PMID: 34727794 DOI: 10.1080/1061186X.2021.1999963] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Das S, Kundu S, Sk B, Sarkar M, Patra A. Red Thermally Activated Delayed Fluorescence in Dibenzopyridoquinoxaline-Based Nanoaggregates. Organic Materials 2021;3:477-87. [DOI: 10.1055/a-1679-9558] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Bao Y. Controlling Molecular Aggregation-Induced Emission by Controlled Polymerization. Molecules 2021;26:6267. [PMID: 34684848 DOI: 10.3390/molecules26206267] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Polgar AM, Hudson ZM. Thermally activated delayed fluorescence materials as organic photosensitizers. Chem Commun (Camb) 2021;57:10675-88. [PMID: 34569578 DOI: 10.1039/d1cc04593h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
31 Hojo R, Mayder DM, Hudson ZM. Donor–acceptor materials exhibiting deep blue emission and thermally activated delayed fluorescence with tris(triazolo)triazine. J Mater Chem C 2021;9:14342-50. [DOI: 10.1039/d1tc03480d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]